Somatic Embryogenesis and Organogenesis on Tree Species: 2nd Edition

A special issue of Forests (ISSN 1999-4907). This special issue belongs to the section "Genetics and Molecular Biology".

Deadline for manuscript submissions: 30 December 2025 | Viewed by 3521

Special Issue Editors


E-Mail Website
Guest Editor
Department of Plant Breeding and Plant Conservation, Bioplantas Center, University of Ciego de Avila, Ciego de Ávila 65200, Cuba
Interests: plant tissue culture; in vitro culture; plant cryopreservation; cryobionomics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, 4400 Nyíregyháza, Hungary
Interests: plant tissue culture; in vitro culture; organogenesis; cytokinins; somatic embryogenesis; transcriptomics; epigenetics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Tree species are of invaluable importance to both our environment and human well-being. Their benefits are essential in helping cities and countries achieve 15 of the United Nations Sustainable Development Goals (SDGs).

Forest and tree genetic diversity is widely recognized as crucial, as trees serve as foundation species in forests, offer a diverse range of goods and services, support ecosystem functions, contribute to landscape restoration efforts, and provide nutrition year-round.

However, the rapid growth of the human population has placed increasing pressure on trees and tree products. The combination of biotechnology and conventional methods, such as plant propagation and breeding, has become a promising strategy for improving and multiplying a diverse range of tree species.

This Special Issue focuses on the recent advancements in somatic embryogenesis and organogenesis in tree species, both of which hold significant potential for various applications. These techniques are important not only in basic cell biology and tree genetic research but also for the long-term ex situ conservation of genetic resources through cryopreservation and for mass propagation.

Our goal is to explore the diverse aspects of somatic embryogenesis and organogenesis as valuable tools in tree biotechnology, particularly in the conservation of genetic diversity, adaptation to climate change, and the sustainable production of tree-based products.

Potential topics for this Special Issue include, but are not limited to, the following:

  • Somatic embryogenesis and organogenesis;
  • Tree biotechnology;
  • Tree products;
  • Cryopreservation techniques;
  • Mass propagation;
  • Genetic diversity and conservation;
  • Climate change adaptation;
  • Plant breeding and improvement.

Dr. Marcos Edel Martinez-Montero
Dr. Judit Dobránszki
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Forests is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • somatic embryogenesis
  • tree biotechnology
  • tree products
  • cryopreservation
  • mass propagation
  • forest
  • genetic diversity
  • ecosystem
  • climate change
  • plant breeding

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 1649 KB  
Article
Experimental Approaches to Improve Yerba Mate Tissue Culture Using Nanoparticles
by Bruna Zanatta Pereira, Regina Caetano Quisen, Juliana Degenhardt and Ivar Wendling
Forests 2025, 16(9), 1429; https://doi.org/10.3390/f16091429 - 6 Sep 2025
Viewed by 1290
Abstract
Ilex paraguariensis (yerba mate), a culturally and economically important South American species, faces significant challenges in vitro, including contamination, phenolic oxidation, and low regeneration rates. Nanoparticles have recently emerged as promising tools to overcome such limitations. This study evaluated silver (AgNPs) and chitosan [...] Read more.
Ilex paraguariensis (yerba mate), a culturally and economically important South American species, faces significant challenges in vitro, including contamination, phenolic oxidation, and low regeneration rates. Nanoparticles have recently emerged as promising tools to overcome such limitations. This study evaluated silver (AgNPs) and chitosan nanoparticles (ChNPs) in eight experiments using nodal, leaf, and internodal explants. Surface disinfection with 1% colloidal silver solution 20 ppm significantly reduced contamination (17.2% and 15%) while maintaining viability (62.1%). However, supplementation of culture media with AgNPs (4–75 mg·L−1) or ChNPs (5–120 mg·L−1) did not improve nodal segment responses. In leaf explants, 4 mg·L−1 AgNPs proved most effective, reducing contamination and markedly decreasing callus oxidation from 63.3% to 10.0%. Callogenesis was enhanced when AgNPs were combined with growth regulators, with the highest induction at 6 mg·L−1 AgNPs + zeatin (38.1%) and 4 mg·L−1 AgNPs + BAP (42.9%). Conversely, in internodal segments, AgNPs combined with BAP completely inhibiting callus formation. The resulting calli exhibited compact and friable morphologies but no signs of somatic embryogenesis. Overall, the effectiveness of AgNPs depends on their formulation, explant type, and interaction with cytokinins. Optimization of nanoparticle formulation and hormonal balance remains essential to maximize efficacy while minimizing toxicity. Full article
(This article belongs to the Special Issue Somatic Embryogenesis and Organogenesis on Tree Species: 2nd Edition)
Show Figures

Figure 1

14 pages, 12299 KB  
Article
Induction of Somatic Embryogenesis in Araucaria araucana (Molina) K. Koch: Considerations for Ex Situ Conservation of Ancient Tree in Chile
by Daniela Riffo-Agurto, Neusa Steiner, Priscila Cartes, Pamela Quiroga, Jaime Espejo, Ester San Martin, Jean-Pierre Lasserre, Marcos Edel Martínez-Montero, Martha Hernández de la Torre, Darcy Ríos-Leal, Roberto Ipinza, Simón Sandoval and Manuel Sánchez-Olate
Forests 2025, 16(5), 732; https://doi.org/10.3390/f16050732 - 25 Apr 2025
Viewed by 840
Abstract
Araucaria araucana is an emblematic native conifer from Chile and Argentina that has been classified as threatened due to anthropogenic activities. Somatic embryogenesis (SE) is a biotechnological tool used for both the preservation of genetic material and the propagation of valuable genotypes. The [...] Read more.
Araucaria araucana is an emblematic native conifer from Chile and Argentina that has been classified as threatened due to anthropogenic activities. Somatic embryogenesis (SE) is a biotechnological tool used for both the preservation of genetic material and the propagation of valuable genotypes. The present study investigates the effects of explant source and culture medium on SE induction in A. araucana genotypes from three wild plant populations. Immature strobili were collected from different geographical provenances: a coastal area (Villa Araucarias, “VA”), Cordillera de Nahuelbuta (Trongol Alto, “TR”), and the Andes Mountains (Malalcahuello, “MA”). SE induction was observed after 45 days in a basal medium (BM) supplemented with 1-naphthaleneacetic acid (NAA—11 µM), 6-benzylaminopurine (6-BA—2.8 µM), and Kinetin (Kin—2.8 µM). The highest induction rate (75%) was achieved for seeds from VA. Embryogenic cell line (ECL) proliferation requires auxins but is genotype-dependent, as not all genotypes survive. Cytochemical analysis revealed the presence of pro-embryogenic masses (PEMs) in the ECLs, indicating an efficient SE induction protocol. The progression of PEMs to early embryos was observed in the presence of maltose (3% w/v), polyethylene glycol 3350 (PEG—7% w/v), and abscisic acid (ABA—68 µM). Our results establish a baseline for the establishment of in vitro cultures for a diverse range of A. araucana genotypes, enabling the initiation of ex situ preservation programs and further investigation into embryo maturation. Full article
(This article belongs to the Special Issue Somatic Embryogenesis and Organogenesis on Tree Species: 2nd Edition)
Show Figures

Figure 1

Back to TopTop