Tree Size Inequalities Induced by Stand Age and Functional Trait Identities Control Biomass Productivity Across Stand Types of Temperate Forests in South Korea
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Data Collection and Assessment of Forest Stand Biomass Productivity
2.3. Quantification of Biotic Drivers
2.4. Quantification of Abiotic Drivers and Forest Succession-Related Factor
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Abiotic and Biotic Factors Controlling Stand Biomass Productivity Across All Forest Types
4.2. Abiotic and Biotic Drivers Controlling Stand Biomass Productivity in Temperate Conifer Stands
4.3. Abiotic and Biotic Drivers Controlling Stand Biomass Productivity in Temperate Broadleaved Stands
4.4. Abiotic and Biotic Drivers Controlling Stand Biomass Productivity in Temperate Mixed Stands
4.5. Abiotic and Biotic Drivers Controlling Stand Biomass Productivity in Temperate Total Stands
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AIC | Akaike Information Criterion |
| CMI | Climatic Moisture Index |
| CWM | Community-Weighted Mean |
| CWM MH | Community-Weighted Mean value of Maximum Tree Height |
| CWM N | Community-Weighted Mean value of Leaf Nitrogen Content |
| CWM SLA | Community-Weighted Mean value of Specific Leaf Area |
| CWM WD | Community-Weighted Mean value of Wood Density |
| DBH | Diameter at Breast Height |
| DBH CV | Coefficient of Variation of DBHs |
| DBH Mean | Mean DBH |
| DBH SD | Shannon H index of DBH classes with 2 cm diameter interval |
| DBH Skew | Skewness of DBHs |
| DBH STD | Standard Deviation of DBHs |
| FDis | Functional Dispersion |
| FEve | Functional Evenness |
| FRic | Functional Richness |
| FSF | Forest Succession stage-related Factor |
| FTD | Functional Trait Diversity |
| FTI | Functional Trait Identity |
| GLS | Generalized Least Squares |
| LDMC | Leaf Dry Matter Content |
| MAP | Mean Annual Precipitation |
| MAT | Mean Annual Temperature |
| SD | Shannon–Wiener H index |
| SE | Species Evenness |
| Soil N | Soil total Nitrogen content |
| SR | Species Richness |
| SSD | Stand Structural Diversity |
| TPI | Topographic Position Index |
| TWI | Topographic Wetness Index |
| VIF | Variance Inflation Factor |
| pSEM | piecewise Structural Equation Modelling |
References
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.B.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef]
- Peres, C.A.; Gardner, T.A.; Barlow, J.; Zuanon, J.; Michalski, F.; Lees, A.C.; Vieira, I.C.G.; Moreira, F.M.S.; Feeley, K.J. Biodiversity conservation in human-modified Amazonian forest landscapes. Biol. Conserv. 2010, 143, 2314–2327. [Google Scholar] [CrossRef]
- Borges, P.A.; Gabriel, R.; Fattorini, S. Biodiversity erosion: Causes and consequences. In Life on Land; Springer: Cham, Switzerland, 2020; pp. 81–90. [Google Scholar]
- Thom, D.; Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 2016, 91, 760–781. [Google Scholar] [CrossRef] [PubMed]
- Parrotta, J.; Yeo-Chang, Y.; Camacho, L.D. Traditional knowledge for sustainable forest management and provision of ecosystem services. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2016, 12, 1–4. [Google Scholar] [CrossRef]
- Srivastava, D.S.; Vellend, M. Biodiversity–ecosystem function research: Is it relevant to conservation? Annu. Rev. Ecol. Evol. Syst. 2005, 36, 267–294. [Google Scholar] [CrossRef]
- Ali, A. Biodiversity–ecosystem functioning research: Brief history, major trends and perspectives. Biol. Conserv. 2023, 285, 110210. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Wright, J.P.; Cadotte, M.W.; Carroll, I.T.; Hector, A.; Srivastava, D.S.; Loreau, M.; Weis, J.J. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. USA 2007, 104, 18123–18128. [Google Scholar] [CrossRef]
- Finegan, B.; Peña-Claros, M.; de Oliveira, A.; Ascarrunz, N.; Bret-Harte, M.S.; Carreño-Rocabado, G.; Casanoves, F.; Díaz, S.; Eguiguren Velepucha, P.; Fernandez, F.; et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 2015, 103, 191–201. [Google Scholar] [CrossRef]
- Tilman, D.; Lehman, C.L.; Thomson, K.T. Plant diversity and ecosystem productivity: Theoretical considerations. Proc. Natl. Acad. Sci. USA 1997, 94, 1857–1861. [Google Scholar] [CrossRef]
- Wan, Z.; Ganjurjav, H.; Gu, R.; Hu, G.; Gornish, E.S.; Chun, X.; Zhou, H.; Gao, Q. Changes in plant species dominance maintain community biomass production under warming and precipitation addition in temperate steppe in Inner Mongolia, China. Agric. For. Meteorol. 2023, 341, 109671. [Google Scholar] [CrossRef]
- Grime, J.P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 1998, 86, 902–910. [Google Scholar] [CrossRef]
- Dănescu, A.; Albrecht, A.T.; Bauhus, J. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia 2016, 182, 319–333. [Google Scholar] [CrossRef]
- Fotis, A.T.; Morin, T.H.; Fahey, R.T.; Hardiman, B.S.; Bohrer, G.; Curtis, P.S. Forest structure in space and time: Biotic and abiotic determinants of canopy complexity and their effects on net primary productivity. Agric. For. Meteorol. 2018, 250, 181–191. [Google Scholar] [CrossRef]
- Dieler, J.; Uhl, E.; Biber, P.; Müller, J.; Rötzer, T.; Pretzsch, H. Effect of forest stand management on species composition, structural diversity, and productivity in the temperate zone of Europe. Eur. J. For. Res. 2017, 136, 739–766. [Google Scholar] [CrossRef]
- Ma, Q.; Su, Y.; Hu, T.; Jiang, L.; Mi, X.; Lin, L.; Cao, M.; Wang, X.; Lin, F.; Wang, B.; et al. The coordinated impact of forest internal structural complexity and tree species diversity on forest productivity across forest biomes. Fundam. Res. 2024, 4, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Fei, S.; Jo, I.; Guo, Q.; Wardle, D.A.; Fang, J.; Chen, A.; Oswalt, C.M.; Brockerhoff, E.G. Impacts of climate on the biodiversity–productivity relationship in natural forests. Nat. Commun. 2018, 9, 5436. [Google Scholar] [CrossRef]
- Qiao, X.; Zhang, N.; Zhang, C.; Zhang, Z.; Zhao, X.; von Gadow, K. Unravelling biodiversity–productivity relationships across a large temperate forest region. Funct. Ecol. 2021, 35, 2808–2820. [Google Scholar] [CrossRef]
- Jactel, H.; Gritti, E.S.; Drössler, L.; Forrester, D.I.; Mason, W.L.; Morin, X.; Pretzsch, H.; Castagneyrol, B. Positive biodiversity–productivity relationships in forests: Climate matters. Biol. Lett. 2018, 14, 20170747. [Google Scholar] [CrossRef]
- Zhang, W.P.; Fornara, D.; Yang, H.; Yu, R.P.; Callaway, R.M.; Li, L. Plant litter strengthens positive biodiversity–ecosystem functioning relationships over time. Trends Ecol. Evol. 2023, 38, 473–484. [Google Scholar] [CrossRef]
- Binkley, D.; Fisher, R.F. Ecology and Management of Forest Soils, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Grace, J.B.; Anderson, T.M.; Seabloom, E.W.; Borer, E.T.; Adler, P.B.; Harpole, W.S.; Hautier, Y.; Hillebrand, H.; Lind, E.M.; Pärtel, M.; et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 2016, 529, 390–393. [Google Scholar] [CrossRef]
- Ouyang, S.; Xiang, W.; Wang, X.; Zeng, Y.; Lei, P.; Deng, X.; Peng, C. Significant effects of biodiversity on forest biomass during the succession of subtropical forest in south China. For. Ecol. Manag. 2016, 372, 291–302. [Google Scholar] [CrossRef]
- LaManna, J.A.; Belote, R.T.; Burkle, L.A.; Catano, C.P.; Myers, J.A. Negative density dependence mediates biodiversity–productivity relationships across scales. Nat. Ecol. Evol. 2017, 1, 1107–1115. [Google Scholar] [CrossRef]
- Tian, D.; Yan, Y.; Zhang, Z.; Jiang, L. Driving mechanisms of biomass mean annual increment in planted and natural forests in China. For. Ecol. Manag. 2024, 569, 122191. [Google Scholar] [CrossRef]
- Korea Forest Service. Guide to the Seventh National Forest Resources Inventory and Field Survey of Forest Ecosystem Health and Vitality; Korea Forest Service: Daejeon, Republic of Korea, 2017. (In Korean) [Google Scholar]
- Son, Y.M.; Kim, R.H.; Lee, K.H.; Pyo, J.K.; Kim, S.W.; Hwang, J.S.; Park, H. Carbon Emission Factors and Biomass Allometric Equations by Species in Korea; Korea Forest Research Institute: Seoul, Republic of Korea, 2014. [Google Scholar]
- Lee, Y.J.; Lee, C.B.; Lee, M.K. Tree size variation induced by stand age mainly regulates aboveground biomass across three major stands of temperate forests in South Korea. Front. For. Glob. Change 2023, 6, 1229661. [Google Scholar] [CrossRef]
- Lee, Y.J.; Park, G.E.; Lee, H.I.; Lee, C.B. Stand age-driven tree size variation and stand type regulate aboveground biomass in alpine–subalpine forests, South Korea. Sci. Total Environ. 2024, 915, 170063. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lee, H.I.; Lee, C.B.; Lee, K.H.; Kim, R.H.; Ali, A. Abiotic and stand age-induced changes in tree diversity and size inequality regulate aboveground biomass and soil organic carbon stock in temperate forests of South Korea. Catena 2024, 237, 107827. [Google Scholar] [CrossRef]
- Lee, M.K.; Lee, Y.J.; Lee, C.B. Ecosystem multifunctionality in temperate forests of South Korea is primarily controlled by structural diversity and potential moisture availability with synergy effects between ecosystem functions. J. Environ. Manag. 2025, 382, 125449. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2016, 64, 715–716. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Lee, M.K.; Lee, Y.J.; Chun, J.H.; Kim, A.R.; Lee, C.B. Ecosystem services and multifunctionality are co-regulated by biotic and abiotic factors along with forest types in a temperate forest of South Korea. Glob. Ecol. Conserv. 2025, 61, e03683. [Google Scholar] [CrossRef]
- Yuan, Z.; Ali, A.; Wang, S.; Wang, X.; Lin, F.; Wang, Y.; Fang, S.; Hao, Z.; Loreau, M.; Jiang, L. Temporal stability of aboveground biomass is governed by species asynchrony in temperate forests. Ecol. Indic. 2019, 107, 105661. [Google Scholar] [CrossRef]
- Li, W.; Zhou, X.; Xiang, Z.; Li, J.; Wang, S.; Loreau, M.; Jiang, L. Biomass temporal stability increases at two spatial scales during secondary succession. J. Ecol. 2023, 111, 1575–1586. [Google Scholar] [CrossRef]
- Lee, C.B.; Ali, A.; Yuan, Z.; Lutz, J.A.; Svenning, J.C.; Lee, M.K. Large-diameter trees control forest structure and function in successional temperate forests. Biogeosci. Discuss. 2022, 2022, 1–20. [Google Scholar]
- Graham, M.H. Confronting multicollinearity in ecological multiple regression. Ecology 2003, 84, 2809–2815. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Lefcheck, J.S. piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 2016, 7, 573–579. [Google Scholar] [CrossRef]
- Wang, L.Q.; Ali, A. Functional identity regulates aboveground biomass better than trait diversity along abiotic conditions in global forest metacommunities. Ecography 2022, 2022, e06110. [Google Scholar] [CrossRef]
- Matsuo, T.; Martínez-Ramos, M.; Bongers, F.; van der Sande, M.T.; Poorter, L. Forest structure drives changes in light heterogeneity during tropical secondary forest succession. J. Ecol. 2021, 109, 2871–2884. [Google Scholar] [CrossRef]
- Matsuo, T.; Hiura, T.; Onoda, Y. Vertical and horizontal light heterogeneity along gradients of secondary succession in cool- and warm-temperate forests. J. Veg. Sci. 2022, 33, e13135. [Google Scholar] [CrossRef]
- Binkley, D.; Stape, J.L.; Bauerle, W.L.; Ryan, M.G. Explaining growth of individual trees: Light interception and efficiency of light use by Eucalyptus at four sites in Brazil. For. Ecol. Manag. 2010, 259, 1704–1713. [Google Scholar] [CrossRef]
- Kern, C.C.; Montgomery, R.A.; Reich, P.B.; Strong, T.F. Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest. J. Plant Ecol. 2013, 6, 101–112. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.Y. Individual size inequality links forest diversity and above-ground biomass. J. Ecol. 2015, 103, 1245–1252. [Google Scholar] [CrossRef]
- Michaletz, S.T.; Kerkhoff, A.J.; Enquist, B.J. Drivers of terrestrial plant production across broad geographical gradients. Glob. Ecol. Biogeogr. 2018, 27, 166–174. [Google Scholar] [CrossRef]
- Toledo, M.; Peña-Claros, M.; Bongers, F.; Alarcón, A.; Balcázar, J.; Chuviña, J.; Leaño, C.; Licona, J.C.; Poorter, L. Distribution patterns of tropical woody species in response to climatic and edaphic gradients. J. Ecol. 2012, 100, 253–263. [Google Scholar] [CrossRef]
- Quesada, C.A.; Phillips, O.L.; Schwarz, M.; Czimczik, C.I.; Baker, T.R.; Patiño, S.; Fyllas, N.M.; Hodnett, M.G.; Herrera, R.; Almeida, S.; et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 2012, 9, 2203–2246. [Google Scholar] [CrossRef]
- Poorter, L.; van der Sande, M.T.; Arets, E.J.M.M.; Ascarrunz, N.; Enquist, B.J.; Finegan, B.; Licona, J.C.; Martínez-Ramos, M.; Mazzei, L.; Meave, J.A.; et al. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr. 2017, 26, 1423–1434. [Google Scholar] [CrossRef]
- Hao, M.; Messier, C.; Geng, Y.; Zhang, C.; Zhao, X.; von Gadow, K. Functional traits influence biomass and productivity through multiple mechanisms in a temperate secondary forest. Eur. J. For. Res. 2020, 139, 959–968. [Google Scholar] [CrossRef]
- McAlpine, K.G.; Lamoureaux, S.L.; Timmins, S.M. Understory vegetation provides clues to succession in woody weed stands. N. Z. J. Ecol. 2021, 45, 1–10. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, X.; Wen, Y.; Zhu, H.; You, Y.; Qin, Z.; Li, Y.; Huang, X.; Yan, L.; Li, H.; et al. Coniferous–broadleaf mixture increases soil microbial biomass and functions accompanied by improved stand biomass and litter production in subtropical China. Forests 2019, 10, 879. [Google Scholar] [CrossRef]
- Lopez, E.L.; Kerr, S.A.; Sauchyn, D.J.; Vanderwel, M.C. Variation in tree growth sensitivity to moisture across a water-limited forest landscape. Dendrochronologia 2019, 54, 87–96. [Google Scholar] [CrossRef]
- Schwaab, J.; Davin, E.L.; Bebi, P.; Duguay-Tetzlaff, A.; Waser, L.T.; Haeni, M.; Meier, R. Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes. Sci. Rep. 2020, 10, 14153. [Google Scholar] [CrossRef]
- Billing, M.; Thonicke, K.; Sakschewski, B.; von Bloh, W.; Walz, A. Future tree survival in European forests depends on understorey tree diversity. Sci. Rep. 2022, 12, 20750. [Google Scholar] [CrossRef]
- Castillo-Figueroa, D.; González-Melo, A.; Posada, J.M. Wood density is related to aboveground biomass and productivity along a successional gradient in upper Andean tropical forests. Front. Plant Sci. 2023, 14, 1276424. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Shi, P.; Li, P.; Li, Z.; Niu, H.; Zu, P.; Cao, M.; Jia, Y. Effects of forest type on carbon storage in the hilly region of Loess Plateau, China. Front. For. Glob. Change 2024, 7, 1349047. [Google Scholar] [CrossRef]
- Weemstra, M.; Zambrano, J.; Allen, D.; Umaña, M.N. Tree growth increases through opposing above-ground and below-ground resource strategies. J. Ecol. 2021, 109, 3502–3512. [Google Scholar] [CrossRef]
- Priesner, J.; Sakschewski, B.; Billing, M.; von Bloh, W.; Fiedler, S.; Bereswill, S.; Thonicke, K.; Tietjen, B. What if extreme droughts occur more frequently?—Mechanisms and limits of forest adaptation in pine monocultures and mixed forests in Berlin-Brandenburg, Germany. EGUsphere 2025, 25, 3309–3331. [Google Scholar] [CrossRef]
- Tan, J.; Wu, X.; Wang, L.; Wu, N.; Li, Z. Differential specific leaf area due to different stand structures drives alterations in soil organic carbon in artificial forests of karst areas. For. Ecol. Manag. 2024, 556, 121719. [Google Scholar] [CrossRef]
- Singh Ramesh, A.; Cheesman, A.W.; Flores-Moreno, H.; Preece, N.D.; Crayn, D.M.; Cernusak, L.A. Temperature, nutrient availability, and species traits interact to shape elevation responses of Australian tropical trees. Front. For. Glob. Change 2023, 6, 1089167. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-J.; Lee, C.-B. Tree Size Inequalities Induced by Stand Age and Functional Trait Identities Control Biomass Productivity Across Stand Types of Temperate Forests in South Korea. Forests 2025, 16, 1759. https://doi.org/10.3390/f16121759
Lee Y-J, Lee C-B. Tree Size Inequalities Induced by Stand Age and Functional Trait Identities Control Biomass Productivity Across Stand Types of Temperate Forests in South Korea. Forests. 2025; 16(12):1759. https://doi.org/10.3390/f16121759
Chicago/Turabian StyleLee, Yong-Ju, and Chang-Bae Lee. 2025. "Tree Size Inequalities Induced by Stand Age and Functional Trait Identities Control Biomass Productivity Across Stand Types of Temperate Forests in South Korea" Forests 16, no. 12: 1759. https://doi.org/10.3390/f16121759
APA StyleLee, Y.-J., & Lee, C.-B. (2025). Tree Size Inequalities Induced by Stand Age and Functional Trait Identities Control Biomass Productivity Across Stand Types of Temperate Forests in South Korea. Forests, 16(12), 1759. https://doi.org/10.3390/f16121759

