Use of Multi-Temporal LiDAR to Quantify Fertilization Effects on Stand Volume and Biomass in Late-Rotation Coastal Douglas-Fir Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plot Establishment and Measurement
2.3. Tree-Ring Data Collection and Measurement
2.4. Biomass Increments Using Tree-Ring Volume Reconstructions and CBM-CFS3
2.5. LiDAR Data Aquisition
2.6. Sample Plot Data for Area-Based Models
2.7. LiDAR Data Processing
2.8. Area-Based Modelling
3. Results
3.1. Sample Plots
3.2. CBM-CFS3 Plot Biomass Increments Using Tree-Ring and Default Growth Curves
3.3. Area-Based Models
4. Discussion
4.1. Method Comparisons
4.2. Sources of Uncertainty
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reid, A.; de Montigny, L.; Prescott, C.; Sajedi, T. A Systematic Review of Forest Fertilization Research in Interior British Columbia; Technical Report 111; Ministry of Forests, Lands, Natural Resource Operations and Rural Development: Victoria, BC, Canada, 2017; Available online: www.for.gov.bc.ca/hfd/pubs/Docs/Tr/Tr111.htm (accessed on 20 August 2020).
- Saarsalmi, A.; Mälkönen, E. Forest fertilization research in Finland: A literature review. Scand. J. For. Res. 2001, 16, 514–535. [Google Scholar] [CrossRef]
- Vejre, H.; Ingerslev, M.; Raulund-Rasmussen, K. Fertilization of Danish Forests: A review of experiments. Scand. J. For. Res. 2001, 16, 502–513. [Google Scholar] [CrossRef]
- Albaugh, T.J.; Lee Allen, H.; Fox, T.R. Historical patterns of Forest fertilization in the Southeastern United States from 1969 to 2004. South. J. Appl. For. 2007, 31, 129–137. [Google Scholar] [CrossRef]
- Brockley, R.P. Effects of 12 years of repeated fertilization on the foliar nutrition and growth of young lodgepole pine in the central interior of British Columbia. Can. J. For. Res. 2007, 37, 2115–2129. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.; Ransome, D.B.; Zabek, L. Twenty-five years after stand thinning and repeated fertilization in lodgepole Pine Forest: Implications for tree growth, stand structure, and carbon sequestration. Forests 2020, 11, 337. [Google Scholar] [CrossRef]
- Nabuurs, G.J.; Masera, O.; Andrasko, K.; Benitez-Ponce, P.; Boer, R.; Dutschke, M.; Elsiddig, E.; Ford-Robertson, J.; Frumhoff, P.; Karjalainen, T.; et al. Forestry. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- White, A.E.; Lutz, D.A.; Howarth, R.B.; Soto, J.R. Small-scale forestry and carbon offset markets: An empirical study of Vermont current use forest landowner willingness to accept carbon credit programs. PLoS ONE 2018, 13, e0201967. [Google Scholar] [CrossRef]
- Shryock, B.; Littke, K.; Ciol, M.; Briggs, D.; Harrison, R. The effects of urea fertilization on carbon sequestration in Douglas-fir plantations of the coastal Pacific Northwest. For. Ecol. Manag. 2014, 318, 341–348. [Google Scholar] [CrossRef]
- Di Lucca, C.M.; Goudie, J.W. Using TIPSY to predict the effect of stand management on quantity and value of carbon and biomass. In Carbon Management in BC Ecosystems, June 15–16, 2011; Columbia Mountains Institute of Applied Ecology: Nelson, BC, Canada, 2011; pp. 18–32. [Google Scholar]
- Routa, J.; Kilpeläinen, A.; Ikonen, V.; Asikainen, A.; Venäläinen, A.; Peltola, H. Effects of intensified silviculture on timber production and its economic profitability in boreal Norway spruce and Scots pine stands under changing climatic conditions. Forestry 2019, 92, 648–658. [Google Scholar] [CrossRef]
- Kurz, W.A.; Dymond, C.C.; White, T.M.; Stinson, G.; Shaw, C.H.; Rampley, G.J.; Smyth, C.; Simpson, B.N.; Neilson, E.T.; Trofymow, J.A.; et al. CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol. Mod. 2009, 220, 480–504. [Google Scholar] [CrossRef]
- Brockley, R.P. Effects of Fertilization on the Growth and Foliar Nutrition of Immature Douglas-Fir in the Interior Cedar-Hemlock Zone of British Columbia: Six-Year Results; Res. Rep. 27; BC Ministry of Forests and Range Research Branch: Victoria, BC, Canada, 2006. [Google Scholar]
- Omule, A.Y.; Mitchell, A.K.; Wagner, W.L. Fertilization and Thinning Effects on a Douglas-Fir Ecosystem at Shawnigan Lake: 32-Year Growth Response; Report No. FI-X-005; The Canadian Wood Fibre Centre: Victoria, BC, Canada, 2011; pp. 1–22. [Google Scholar]
- Prescott, C.E.; Nery, V.; Van Niejenhuis, A.; Sajedi, T.; Marshall, P. Nutrition management of Cedar and Hemlock plantations in coastal British Columbia. New Forests 2013, 44, 769–784. [Google Scholar] [CrossRef]
- Province of British Columbia. Tipsy, Version 4.4. Forestry Analysis and Inventory Branch; BC Ministry of Forests, Lands, Natural Resource Operations and Rural Development. 2018. Available online: https://www2.gov.bc.ca/gov/content/industry/forestry/managing-our-forest-resources/forest-inventory/field-forms-and-software/software-download (accessed on 28 February 2021).
- Kull, S.J.; Rampley, G.J.; Morken, S.; Metsaranta, J.; Neilson, E.T.; Kurz, W.A. Operational-Scale Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) Version 1.2: User’s Guide; Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre: Edmonton, AB, Canada, 2019.
- Jang, W.; Eskelson, B.N.I.; de Montigny, L.; Bealle Statland, C.A.; Sattler, D.F.; Ahmed, S. Stand growth responses after fertilization for thinned lodgepole pine, Douglas-fir, and spruce in forests of interior British Columbia, Canada. Can. J. For. Res. 2019, 49, 1471–1482. [Google Scholar] [CrossRef]
- Richards, K.R.; Huebner, G.E. Evaluating protocols and standards for forest carbon-offset programs, part A: Additionality, baselines and permanence. Carbon Manag. 2012, 3, 393–410. [Google Scholar] [CrossRef]
- Richards, K.R.; Huebner, G.E. Evaluating protocols and standards for forest carbon-offset programs, part B: Leakage assessment, wood products, validation and verification. Carbon Manag. 2012, 3, 411–425. [Google Scholar] [CrossRef]
- Di Lallo, G.; Mundhenk, P.; Marchetti, M.; Köhl, M. Understanding measurement reporting and verification systems for redd+ as an investment for generating carbon benefits. Forests 2017, 8, 271. [Google Scholar] [CrossRef]
- Filipescu, C.N.; Trofymow, J.A.; Koppenaal, R.S. Late-rotation nitrogen fertilization of Douglas-fir: Growth response and fibre properties. Can. J. For. Res. 2017, 47, 134–138. [Google Scholar] [CrossRef]
- Harrington, C.A.; Devine, W.D. Stand development following precommercial thinning and fertilization treatments in a western redcedar (Thuja plicata) dominated forest. Can. J. For. Res. 2011, 41, 151–164. [Google Scholar] [CrossRef]
- Brix, H. Fertilization and Thinning Effect on a Douglas-Fir Ecosystem at Shawnigan Lake: A Synthesis of Project Results; FRDA Report 196; Forestry Canada, Pacific Forestry Center: Victoria, BC, Canada, 1993. [Google Scholar]
- Negrave, R.W.; Prescott, C.E.; Barker, J.E. Growth and foliar nutrition of juvenile western hemlock and western redcedar plantations on low- and medium-productivity sites on northern Vancouver Island: Response to fertilization and planting density. Can. J. For. Res. 2007, 37, 2587–2599. [Google Scholar] [CrossRef]
- Metsaranta, J.M.; Lieffers, V.J. Using dendrochronology to obtain annual data for modeling stand development: A supplement to permanent sample plots. Forestry 2009, 82, 163–173. [Google Scholar] [CrossRef]
- Metsaranta, J.; Trofymow, J.; Black, T.; Jassal, R. Long-term time series of annual ecosystem production (1985–2010) derived from tree rings in Douglas-fir stands on Vancouver Island, Canada using a hybrid biometric-modelling approach. Forest Ecol. Manag. 2018, 429, 57–68. [Google Scholar] [CrossRef]
- Fisher, J.I.; Hurtt, G.C.; Thomas, R.Q.; Chambers, J.Q. Clustered disturbances lead to bias in large-scale estimates based on forest sample plots. Ecol. Lett. 2008, 11, 554–563. [Google Scholar] [CrossRef]
- Klesse, S.; DeRose, R.J.; Guiterman, C.H.; Lynch, A.M.; O’Connor, C.D.; Shaw, J.D.; Evans, M.E. Sampling bias overestimates climate change impacts on forest growth in the southwestern United States. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Jassal, R.S.; Black, T.A.; Cai, T.; Ethier, G.; Pepin, S.; Brümmer, C.; Nesic, Z.; Spittlehouse, D.L.; Trofymow, J.A. Impact of nitrogen fertilization on carbon and water balances in a chronosequence of three Douglas-fir stands in the Pacific northwest. Agric. For. Meteorol. 2010, 150, 208–218. [Google Scholar] [CrossRef]
- Coursolle, C.; Margolis, H.A.; Giasson, M.; Bernier, P.; Amiro, B.D.; Arain, M.A.; Barr, A.G.; Black, T.A.; Goulden, M.L.; McCaughey, J.H.; et al. Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests. Agric. For. Meteorol. 2012, 165, 136–148. [Google Scholar] [CrossRef]
- Ferster, C.J.; Trofymow, J.A.; Coops, N.C.; Chen, B.; Black, T.A. Comparison of carbon-stock changes, eddy-covariance carbon fluxes and model estimates in coastal Douglas-fir stands in British Columbia. For. Ecosyst. 2015, 2, 1–19. [Google Scholar] [CrossRef]
- Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Woods, M.; Lim, K.; Treitz, P. Predicting forest stand variables from LiDAR data in the Great Lakes—St. Lawrence forest of Ontario. For. Chron. 2008, 84, 827–839. [Google Scholar] [CrossRef]
- Woods, M.; Pitt, D.; Penner, M.; Lim, K.; Nesbitt, D.; Treitz, P. Operational implementation of LiDAR inventories in boreal Ontario advanced forest resource inventory technologies. For. Chron. 2011, 87, 512–528. [Google Scholar] [CrossRef]
- Bouvier, M.; Durrieu, S.; Fournier, R.A.; Renaud, J. Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data. Remote Sens. Environ. 2015, 156, 322–334. [Google Scholar] [CrossRef]
- Penner, M.; Pitt, D.G.; Woods, M.E. Parametric vs. non-parametric LiDAR models for operational forest inventory in boreal Ontario. Can. J. Remote Sens. 2013, 39, 426–443. [Google Scholar] [CrossRef]
- Pojar, J.; Klinka, K.; Demarchi, D.A. Chapter 6: Coastal Western Hemlock Zone. In Ecosystems of British Columbia; BC Special Report Series No. 6; Meidinger, D., Pojar, J., Eds.; BC Ministry of Forests: Victoria, BC, Canada, 1991; pp. 95–111. [Google Scholar]
- Trofymow, J.A.; Coops, N.C.; Hayhurst, D. Comparison of remote sensing and ground-based methods for determining residue burn pile wood volumes and biomass. Can. J. For. Res. 2014, 44, 182–194. [Google Scholar] [CrossRef]
- Trofymow, J.; Stinson, G.; Kurz, W. Derivation of a spatially explicit 86-year retrospective carbon budget for a landscape undergoing conversion from old-growth to managed forests on Vancouver Island, BC. Forest Ecol. Manag. 2008, 256, 1677–1691. [Google Scholar] [CrossRef]
- Kozak, A. Development of Taper Equations by BEC Zones and Species; Report No. FS 189A HTA 90/08; BC Ministry of Forests: Victoria, BC, Canada, 1994; Available online: https://www.for.gov.bc.ca/HFD/library/Documents/bib95354a.pdf (accessed on 8 November 2019).
- National Forest Inventory. Individual Tree Biomass Calculator. Available online: https://nfi.nfis.org/en/biomass_calc (accessed on 15 August 2020).
- National Forest Inventory. Canada’s National Forest Inventory Ground Sampling Guidelines: Specifications for Ongoing Measurements. Version 5.0. 2008. Available online: https://nfi.nfis.org/resources/groundplot/Gp_guidelines_v5.0.pdf (accessed on 15 August 2020).
- Temesgen, H.; Gadow, K.V. Generalized height–diameter models—an application for major tree species in complex stands of interior British Columbia. Eur. J. For. Res. 2004, 123, 45–51. [Google Scholar] [CrossRef]
- Ferster, C.J.; Coops, N.C.; Trofymow, J. Aboveground large tree mass estimation in a coastal forest in British Columbia using plot-level metrics and individual tree detection from LiDAR. Can. J. Remote Sens. 2009, 35, 270–275. [Google Scholar] [CrossRef]
- Hilker, T.; Lepine, L.; Coops, N.C.; Jassal, R.S.; Black, T.A.; Wulder, M.A.; Day, M. Assessing the impact of N-fertilization on biochemical composition and biomass of a Douglas-fir canopy—A remote sensing approach. Agric. For. Meteorol. 2011, 153, 124–133. [Google Scholar] [CrossRef]
- Roussel, J.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.; Meador, A.S.; Achim, A. LidR: An R package for analysis of airborne laser scanning (ALS) data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Timber Pricing Branch. Scaling Manual. Ministry of Forests Lands and Natural Resource Operations. 2011. Available online: https://www.for.gov.bc.ca/ftp/hva/external/!publish/web/manuals/Scaling/2011/Scaling2011NovMaster.pdf (accessed on 8 November 2019).
- Prescott, C.; DeMontigny, L.; Harper, G. Eighteen-year growth responses to thinning and fertilization of a height-repressed lodgepole pine stand in interior British Columbia. For. Chron. 2019, 95, 207–221. [Google Scholar] [CrossRef]
- Dalponte, M.; Coomes, D.A. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. MEE 2016, 7, 1236–1245. [Google Scholar] [CrossRef]
- White, J.C.; Tompalski, P.; Vastaranta, M.; Wulder, M.A.; Saarinen, S.; Coops, N.C. A Best Practices Guide for Generating Forest Inventory Attributes from Airborne Laser Scanning Data Using the Area-Based Approach; Information Report FI-X-018; Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, Pacific Forestry Centre: Victoria, BC, Canada, 2017; 38p. Available online: http://cfs.nrcan.gc.ca/publications?id=38945 (accessed on 8 November 2019).
- Acharjee, A.; Larkman, J.; Xu, Y.; Cardoso, V.R.; Gkoutos, G.V. A random forest based biomarker discovery and power analysis framework for diagnostics research. BMC Med. Genom. 2020, 13, 178. [Google Scholar] [CrossRef]
- Velusamy, D.; Ramasamy, K. Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease with reduced feature subset. Comput. Methods Programs Biomed. 2020, 198, 105770. [Google Scholar] [CrossRef]
- Chiteka, K.; Arora, R.; Sridhara, S.N. Method to predict solar photovoltaic soiling using artificial neural networks and multiple linear regression models. Energy Syst. 2019, 11, 981–1002. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36. [Google Scholar] [CrossRef]
- Kuhn, M. Building predictive models in r using the caret package. J. Stat. Softw. 2008, 28. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R. News 2002, 2, 18–22. [Google Scholar]
- White, J.C.; Stepper, C.; Tompalski, P.; Coops, N.C.; Wulder, M.A. Comparing ALS and image-iased point cloud metrics and modelled forest inventory attributes in a complex coastal forest environment. Forests 2015, 6, 3704–3732. [Google Scholar] [CrossRef]
- Littke, K.M.; Harrison, R.B.; Zabowski, D.; Briggs, D.G. Assessing nitrogen fertilizer response of coastal douglas-fir in the Pacific northwest using a paired-tree experimental design. For. Ecol. Manag. 2014, 330, 137–143. [Google Scholar] [CrossRef]
- Hudak, A.T.; Strand, E.K.; Vierling, L.A.; Byrne, J.C.; Eitel, J.U.H.; Martinuzzi, S.; Falkowski, M.J. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys. Remote Sens. Environ. 2012, 123, 25–40. [Google Scholar] [CrossRef]
- Alexander, M.R.; Rollinson, C.R.; Babst, F.; Trouet, V.; Moore, D.J. Relative influences of multiple sources of uncertainty on cumulative and incremental tree-ring-derived aboveground biomass estimates. Trees 2017, 32, 265–276. [Google Scholar] [CrossRef]
- Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Loudermilk, E.L.; O’Brien, J.J.; Hiers, J.K.; Khosravipour, A. Imputation of individual longleaf pine (Pinus palustris Mill.) tree attributes from field and LiDAR data. Can. J. Remote Sens. 2016, 42, 554–573. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Buckmaster, G. Validating estimates of merchantable volume from airborne laser scanning (ALS) data using weight scale data. For. Chron. 2014, 90, 378–385. [Google Scholar] [CrossRef]
- Van Ewijk, K.; Treitz, P.; Woods, M.; Jones, T.; Caspersen, J. Forest site and type variability in ALS-based forest resource inventory attribute predictions over three Ontario forest sites. Forests 2019, 10, 226. [Google Scholar] [CrossRef]
- Hu, T.; Sun, X.; Su, Y.; Guan, H.; Sun, Q.; Kelly, M.; Guo, Q. Development and performance evaluation of a very low-cost UAV-LiDAR system for forestry applications. Remote Sens. 2020, 13, 77. [Google Scholar] [CrossRef]
AU | Leading Species | Established | Site Index | Number of Paired Blocks |
---|---|---|---|---|
146 | Douglas-fir | 1940–1949 | 30–35 | 13 |
148 | Douglas-fir | 1940–1949 | 40+ | 3 |
445 | Fir/Hemlock | 1940–1949 | 25–30 | 3 |
526 | Hemlock/Fir | 1960–1969 | 30–35 | 10 |
Plot | Treat | Subset Trees | All Trees | ||||||
---|---|---|---|---|---|---|---|---|---|
2004 Volume | 2005–2008 Inc | 2005–2011 Inc | 2005–2016 Inc | 2004 Volume | 2005–2008 Inc | 2005–2011 Inc | 2005–2016 Inc | ||
1.1 | C | 516.8 | 34.8 | 82.2 | 173.1 | 651.1 | 40.0 | 91.2 | 38.8 |
8.3 | C | 338.8 | 26.4 | 58.6 | 139.7 | 446.5 | 34.5 | 73.4 | 31.9 |
10.2 | C | 491.1 | 41.1 | 94.3 | 117.8 | 580.6 | 48.3 | 107.4 | 28.4 |
Average (SE) | C | 448.9 (55.6) | 34.1 (4.2) | 78.4 (10.5) | 143.5 (16.1) | 559.4 (60.2) | 40.9 (4.0) | 90.7 (9.8) | 33.0 (3.0) |
4.1 | F | 520.0 | 34.2 | 81.9 | 146.3 | 588.9 | 41.8 | 95.4 | 77.4 |
5.1 | F | 461.9 | 39.1 | 91.5 | 176.4 | 576.1 | 46.0 | 104.0 | 62.2 |
6.1 | F | 487.6 | 38.4 | 93.4 | 122.4 | 641.3 | 46.4 | 108.2 | −31.3 |
Average (SE) | F | 489.9 (16.8) | 37.2 (1.5) | 88.9 (3.6) | 148.4 (15.6) | 602.1 (19.9) | 44.7 (1.5) | 102.5 (3.8) | 36.1 (34.0) |
Plot | Treat | Subset Trees | All Trees | ||||||
---|---|---|---|---|---|---|---|---|---|
2004 Biomass | 2005–2008 Inc | 2005–2011 Inc | 2005–2016 Inc | 2004 Biomass | 2005–2008 Inc | 2005–2011 Inc | 2005–2016 Inc | ||
1.1 | C | 149.7 | 13.2 | 31.5 | 46.8 | 189.2 | 15.4 | 35.4 | 7.2 |
8.3 | C | 94.0 | 8.7 | 19.4 | 33.6 | 125.3 | 11.7 | 25.1 | 2.3 |
10.2 | C | 139.7 | 13.7 | 31.9 | 31.8 | 164.6 | 16.3 | 36.9 | 6.9 |
Average (SE) | C | 127.8 (17.2) | 11.8 (1.6) | 27.6 (4.1) | 37.4 (4.7) | 159.7 (18.6) | 14.5 (1.4) | 32.4 (3.7) | 5.5 (1.6) |
4.1 | F | 128.9 | 11.1 | 26.8 | 46.5 | 146.2 | 13.3 | 31.0 | 29.1 |
5.1 | F | 108.9 | 11.0 | 26.3 | 51.2 | 136.1 | 12.9 | 29.9 | 24.0 |
6.1 | F | 124.4 | 11.9 | 29.9 | 37.0 | 161.6 | 14.4 | 34.4 | −0.2 |
Average (SE) | F | 120.7 (6.1) | 11.3 (0.3) | 27.7 (1.1) | 44.9 (4.2) | 148.0 (7.4) | 13.5 (0.4) | 31.7 (1.4) | 17.6 (9.0) |
Predictor Class | Description | Vol Rank | Bio Rank |
---|---|---|---|
Canopy Cover | 3 | 5 | |
Canopy Cover | 1 | 1 | |
Canopy Cover | 6 | - | |
Canopy Cover | 4 | 3 | |
Canopy Cover | 2 | 2 | |
Statistical | Average absolute deviation (AD) of ht | - | 7 |
Statistical | Interquartile distance | - | 9 |
Statistical | Second L moment | - | 12 |
Statistical | Median of the AD from the overall mode | - | 6 |
Statistical | Mode ht | - | 10 |
Density | Cumulative percentage of returns in the Xth decile Volume—none; B = 6,7 | - | 7th: 4 6th: 11 |
Height | Xth percentile of height distribution V = 10h; B = 95 | 5 | 8 |
Source | Attribute | Period | Pre-Treat | Post-Treat |
---|---|---|---|---|
Plot subset trees | Stem volume gain | Pre: 2005–2008 Post: 2005–2011 | 9% | 13% |
Stem biomass gain | Pre: 2005–2008 Post: 2005–2011 | −4% | 0.4% | |
Lidar all blocks | Stem volume gain | Pre: 2005–2008 Post: 2005–2011 | 50% | 83% |
Stem biomass gain | Pre: 2005–2008 Post: 2005–2011 | −7% | 7% | |
Height gain | Pre: 2005–2008 Post: 2005–2011 | 5% | 9% | |
Plot tree-ring growth curves | Biomass carbon gain | Pre: 2005–2008 Post: 2005–2011 | 7% | 14% |
Biomass carbon PAI | Pre: 2002–2006 Post: 2007–2011 | −10% | 20% | |
Plot crop trees [22] | Volume growth PAI | Pre: 2002–2006 Post: 2007–2011 | −8% | 22% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelley, J.; Trofymow, J.A.; Metsaranta, J.M.; Filipescu, C.N.; Bone, C. Use of Multi-Temporal LiDAR to Quantify Fertilization Effects on Stand Volume and Biomass in Late-Rotation Coastal Douglas-Fir Forests. Forests 2021, 12, 517. https://doi.org/10.3390/f12050517
Kelley J, Trofymow JA, Metsaranta JM, Filipescu CN, Bone C. Use of Multi-Temporal LiDAR to Quantify Fertilization Effects on Stand Volume and Biomass in Late-Rotation Coastal Douglas-Fir Forests. Forests. 2021; 12(5):517. https://doi.org/10.3390/f12050517
Chicago/Turabian StyleKelley, Jason, John A. (Tony) Trofymow, Juha M. Metsaranta, Cosmin N. Filipescu, and Christopher Bone. 2021. "Use of Multi-Temporal LiDAR to Quantify Fertilization Effects on Stand Volume and Biomass in Late-Rotation Coastal Douglas-Fir Forests" Forests 12, no. 5: 517. https://doi.org/10.3390/f12050517
APA StyleKelley, J., Trofymow, J. A., Metsaranta, J. M., Filipescu, C. N., & Bone, C. (2021). Use of Multi-Temporal LiDAR to Quantify Fertilization Effects on Stand Volume and Biomass in Late-Rotation Coastal Douglas-Fir Forests. Forests, 12(5), 517. https://doi.org/10.3390/f12050517