Study on Preparation and Antibacterial Property of DOMA-SBMA Copolymer Coatings on Stainless Steel Surfaces
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Preparation of DOMA-SBMA Coating
2.4. Cell Adhesion
3. Results and Discussion
3.1. Synthesis and Characterization of DOMA-SBMA Copolymer
3.2. Wettability Characterization
3.3. Stability Analysis
3.4. Microstructural Analysis
3.5. Analysis of Antibacterial Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, Y.Q.; Yu, L.Z.; Mou, J.G.; Wu, D.H.; Xu, M.S.; Zhou, P.J.; Ren, Y. Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings. Mar. Drugs 2020, 18, 371. [Google Scholar] [CrossRef]
- Sahoo, J.; Sarkhel, S.; Mukherjee, N.; Jaiswal, A. Nanomaterial-Based Antimicrobial Coating for Biomedical Implants: New Age Solution for Biofilm-Associated Infections. ACS Omega 2022, 7, 45962–45980. [Google Scholar] [CrossRef]
- Mohandoss, S.; Velu, K.S.; Manoharadas, S.; Ahmad, N.; Palanisamy, S.; You, S.G.; Akhtar, M.S.; Lee, Y.R. Synthesis, Characterization, and Evaluation of Silver Nanoparticle-Loaded Carboxymethyl Chitosan with Sulfobetaine Methacrylate Hydrogel Nanocomposites for Biomedical Applications. Polymers 2024, 16, 1513. [Google Scholar] [CrossRef]
- Glinel, K.; Thebault, P.; Humblot, V.; Pradier, C.M.; Jouenne, T. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater. 2012, 8, 1670–1684. [Google Scholar] [CrossRef]
- Behzadinasab, S.; Hosseini, M.; Williams, M.D.; Ivester, H.M.; Allen, I.C.; Falkinham, J.O.; Ducker, W.A. Antimicrobial activity of cuprous oxide-coated and cupric oxide-coated surfaces. J. Hosp. Infect. 2022, 129, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.M.N.; Cheng, H.S.; Djurišić, A.B.; Ng, A.M.C.; Leung, F.C.C.; Chan, W.K. Multicomponent antimicrobial transparent polymer coatings. J. Appl. Polym. Sci. 2011, 122, 1572–1578. [Google Scholar] [CrossRef]
- Zhi, Z.L.; Su, Y.J.; Xi, Y.W.; Tian, L.; Xu, M.; Wang, Q.Q.; Padidan, S.; Li, P.; Huang, W. Dual-Functional Polyethylene Glycol-b-polyhexanide Surface Coating with In Vitro and In Vivo Antimicrobial and Antifouling Activities. ACS Appl. Mater. Interfaces 2017, 9, 10383–10397. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.y.; Jin, S.x.; Delgado, A.H.; Chen, Z.f.; Matinlinna, J.P.; Tsoi, J.K.H. Self-Assembled PHMB Titanium Coating Enables Anti-Fusobacterium nucleatum Strategy. Coatings 2021, 11, 1190. [Google Scholar] [CrossRef]
- Sofroniou, C.; Scacchi, A.; Le, H.; Espinosa Rodriguez, E.; D’Agosto, F.; Lansalot, M.; Dunlop, P.S.M.; Ternan, N.G.; Martín-Fabiani, I. Tunable Assembly of Photocatalytic Colloidal Coatings for Antibacterial Applications. ACS Appl. Polym. Mater. 2024, 6, 10298–10310. [Google Scholar] [CrossRef] [PubMed]
- Galvão, C.N.; Sanches, L.M.; Mathiazzi, B.I.; Ribeiro, R.T.; Petri, D.F.S.; Carmona-Ribeiro, A.M. Antimicrobial Coatings from Hybrid Nanoparticles of Biocompatible and Antimicrobial Polymers. Int. J. Mol. Sci. 2018, 19, 2965. [Google Scholar] [CrossRef]
- Tang, Z.W.; Ma, C.Y.; Wu, H.X.; Tan, L.; Xiao, J.Y.; Zhuo, R.X.; Liu, C.J. Antiadhesive zwitterionic poly-(sulphobetaine methacrylate) brush coating functionalized with triclosan for high-efficiency antibacterial performance. Prog. Org. Coat. 2016, 97, 277–287. [Google Scholar] [CrossRef]
- Zhao, C.X.; Yuan, X.Y.; Bai, S.; Sun, P.C.; Zhao, Y.H.; Zhu, K.Y.; Ren, L.X.; Li, X.H. Antifogging and antibacterial properties of amphiphilic coatings based on zwitterionic copolymers. Sci. China Technol. Sci. 2021, 64, 817–826. [Google Scholar] [CrossRef]
- Yu, X.B.; Hu, S.Y.; Zhou, Y.H.; Yu, Z.C.; He, H.J.; Lin, S.; Long, Y. Green synthesis of electrospun composite material loaded with ultrasmall Ag nanoparticles. Inorg. Chem. Commun. 2025, 179, 114681. [Google Scholar] [CrossRef]
- Li, W.T.; Zhang, Y.F.; Ding, J.Y.; Zhang, S.; Hu, T.Y.; Li, S.; An, X.Y.; Ren, Y.F.; Fu, Q.W.; Jiang, X.C.; et al. Temperature-triggered fluorocopolymer aggregate coating switching from antibacterial to antifouling and superhydrophobic hemostasis. Colloids Surf. B 2022, 215, 112496. [Google Scholar] [CrossRef] [PubMed]
- Guyomard, A.; Dé, E.; Jouenne, T.; Malandain, J.J.; Muller, G.; Glinel, K. Incorporation of a Hydrophobic Antibacterial Peptide into Amphiphilic Polyelectrolyte Multilayers: A Bioinspired Approach to Prepare Biocidal Thin Coatings. Adv. Funct. Mater. 2008, 18, 758–765. [Google Scholar] [CrossRef]
- Yagci, M.; Bolca, S.; Heuts, J.; Ming, W.; De With, G. Self-stratifying antimicrobial polyurethane coatings. Prog. Org. Coat. 2011, 72, 305–314. [Google Scholar] [CrossRef]
- Ishihara, K. Blood-compatible surfaces with phosphorylcholine-based polymers for cardiovascular medical devices. Langmuir 2018, 35, 1778–1787. [Google Scholar] [CrossRef]
- Zhang, T.L.; Liu, Q.; Meng, F.D.; Hou, Y.; Leung, M.K.; Wen, Y.Q.; Zhang, Q.H. Recent advances in stimuli-responsive antibacterial coatings: Bacteria-killing and releasing mechanism, design strategies, and potential applications. Prog. Org. Coat. 2024, 186, 107923. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, P.; Xie, J.; Li, J.S. Recent advances of zwitterionic-based topological polymers for biomedical applications. J. Mater. Chem. B 2022, 10, 2338–2356. [Google Scholar] [CrossRef]
- Ghosh, R.; Wong, W.W.; Reimers, T.; Radzanowski, A.; Ruiz, J.C.; Coughlin, E.B. Amphiphilic–zwitterionic block polymers. Polym. Chem. 2024, 15, 622–630. [Google Scholar] [CrossRef]
- Yang, J.; Lin, L.G.; Tang, F.L.; Zhao, J.Q. Superwetting membrane by co-deposition technique using a novel N-oxide zwitterionic polymer assisted by bioinspired dopamine for efficient oil–water separation. Sep. Purif. Technol. 2023, 318, 123965. [Google Scholar] [CrossRef]
- Kim, I.; Kang, S.M. Formation of amphiphilic zwitterionic thin poly (SBMA-co-TFEMA) brushes on solid surfaces for marine antifouling applications. Langmuir 2024, 40, 3213–3221. [Google Scholar] [CrossRef]
- Li, Q.S.; Wen, C.Y.; Yang, J.; Zhou, X.C.; Zhu, Y.N.; Zheng, J.; Cheng, G.; Bai, J.; Xu, T.; Ji, J. Zwitterionic biomaterials. Chem. Rev. 2022, 122, 17073–17154. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Tian, S.; Qi, X.Y.; Yang, J.; Li, Q.S.; Lin, C.G.; Zhang, J.W.; Zhang, L. A switchable zwitterionic ester and capsaicin copolymer for multifunctional marine antibiofouling coating. Chem. Eng. J. 2022, 436, 135072. [Google Scholar] [CrossRef]
- Xu, K.Y.; Xie, H.M.; Sun, C.Y.; Lin, W.Y.; You, Z.X.; Zheng, G.C.; Zheng, X.X.; Xu, Y.L.; Chen, J.P.; Lin, F.C. Sustainable Coating Based on Zwitterionic Functionalized Polyurushiol with Antifouling and Antibacterial Properties. Molecules 2023, 28, 8040. [Google Scholar] [CrossRef]
- Zhou, R.; Ren, P.F.; Yang, H.C.; Xu, Z.K. Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition. J. Membr. Sci. 2014, 466, 18–25. [Google Scholar] [CrossRef]
- Chien, H.W.; Lin, H.Y.; Tsai, C.Y.; Chen, T.Y.; Chen, W.N. Superhydrophilic Coating with Antibacterial and Oil-Repellent Properties via NaIO4-Triggered Polydopamine/Sulfobetaine Methacrylate Polymerization. Polymers 2020, 12, 2008. [Google Scholar] [CrossRef]
- Ko, S.; Lee, J.Y.; Park, D.; Kim, K. Antimicrobial polymer coatings on surfaces: Preparation and activity. Macromol. Res. 2025, 33, 137–151. [Google Scholar] [CrossRef]
- Inoue, Y.; Onodera, Y.; Ishihara, K. Initial cell adhesion onto a phospholipid polymer brush surface modified with a terminal cell adhesion peptide. ACS Appl. Mater. Interfaces 2018, 10, 15250–15257. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.T.; Ding, K.; Meng, F.N.; Bao, L.L.; Chai, Y.D.; Gong, Y.K. Anti-phagocytosis and tumor cell targeting micelles prepared from multifunctional cell membrane mimetic polymers. J. Mater. Chem. B 2016, 4, 5464–5474. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.j.; Fukazawa, K.; Ishihara, K. Photoreactive polymers bearing a zwitterionic phosphorylcholine group for surface modification of biomaterials. ACS Appl. Mater. Interfaces 2015, 7, 17489–17498. [Google Scholar] [CrossRef]
- Cui, Y.X.; Yin, L.Y.; Sun, X.Y.; Zhang, N.; Gao, N.; Zhu, G.S. A Universal and Reversible Wet Adhesive via Straightforward Aqueous Self-Assembly of Polyethylenimine and Polyoxometalate. ACS Appl. Mater. Interfaces 2021, 13, 47155–47162. [Google Scholar] [CrossRef]
- Liang, M.; He, C.P.; Dai, J.D.; Ren, P.F.; Fu, Y.F.; Wang, F.M.; Ge, X.; Zhang, T.Z.; Lu, Z.H. A high-strength double network polydopamine nanocomposite hydrogel for adhesion under seawater. J. Mater. Chem. B 2020, 8, 8232–8241. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Zhu, S.L.; Wang, C.Q.; Li, Y.; Leng, X.F. A Mussel-Inspired Design for Robust Catechol-Functionalized Cross-Linking Adhesives Uniting Water Resistance, Low-Temperature Stability, Recyclability, Degradability, and Fluorescence. ACS Appl. Mater. Interfaces 2025, 17, 43645–43654. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.; Shin, M.; Yang, B.; Kim, H.J.; Lim, S.; Cha, H.J. Junctional Role of Anionic Domain of Mussel Foot Protein Type 4 in Underwater Mussel Adhesion. Biomacromolecules 2025, 26, 1161–1170. [Google Scholar] [CrossRef]
- Pal, T.S.; Raut, S.K.; Singha, N.K. Mussel-Inspired Catechol-Functionalized EVA Elastomers for Specialty Adhesives; Based on Triple Dynamic Network. Chem. Mater. 2025, 37, 2516–2534. [Google Scholar] [CrossRef]
- Saiz-Poseu, J.; Mancebo-Aracil, J.; Nador, F.; Busqué, F.; Ruiz-Molina, D. The Chemistry behind Catechol-Based Adhesion. Angew. Chem. Int. Ed. 2019, 58, 696–714. [Google Scholar] [CrossRef]
- Tang, Z.W.; Zhang, M.; Xiao, H.; Liu, K.; Li, X.L.; Du, B.H.; Huang, L.L.; Chen, L.H.; Wu, H. A Green Catechol-Containing Cellulose Nanofibrils-Cross-Linked Adhesive. ACS Biomater. Sci. Eng. 2022, 8, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.Y.; Yang, P.; Li, J.G.; Li, S.Q.; Li, P.C.; Zhao, Y.C.; Huang, N. Immobilization of poly (MPC) brushes onto titanium surface by combining dopamine self-polymerization and ATRP: Preparation, characterization and evaluation of hemocompatibility in vitro. Appl. Surf. Sci. 2015, 349, 445–451. [Google Scholar] [CrossRef]
- Mu, Y.B.; Wu, X.; Pei, D.F.; Wu, Z.; Zhang, C.; Zhou, D.S.; Wan, X.B. Contribution of the Polarity of Mussel-Inspired Adhesives in the Realization of Strong Underwater Bonding. ACS Biomater. Sci. Eng. 2017, 3, 3133–3140. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Ye, Q.; Liu, J.X.; Liu, X.J.; Zhou, F. Low surface energy surfaces from self-assembly of perfluoropolymer with sticky functional groups. J. Colloid Interface Sci. 2010, 351, 261–266. [Google Scholar] [CrossRef] [PubMed]








| Copolymer | Feed % mol DOMA | Feed % mol SBMA | Polymer Composition DOMA/SBMA | Mn (g/mol) | PDI | Yield (%) |
|---|---|---|---|---|---|---|
| DOMA-SBMA4/6 | 40 | 60 | 33:67 | 22,300 | 1.60 | 62 |
| DOMA-SBMA2/8 | 20 | 80 | 21:79 | 26,100 | 1.65 | 71 |
| DOMA-SBMA1/9 | 10 | 90 | 9:91 | 26,900 | 1.66 | 74 |
| Copolymer | D (nm) | Atomic Composition (%) | |||
|---|---|---|---|---|---|
| C1s | O1s | N1s | S2p | ||
| DOMA-SBMA4/6 | 241.2 ± 1.9 | 67.45 | 23.31 | 4.76 | 4.48 |
| DOMA-SBMA2/8 | 232.1 ± 2.3 | 64.76 | 25.03 | 4.65 | 5.56 |
| DOMA-SBMA1/9 | 227.8 ± 2.5 | 63.51 | 25.82 | 4.54 | 6.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wan, F.; Zhang, L.; Feng, C.; Yan, W.; Gerdes, A.H.; Tong, R.; Zhou, Z. Study on Preparation and Antibacterial Property of DOMA-SBMA Copolymer Coatings on Stainless Steel Surfaces. Materials 2026, 19, 242. https://doi.org/10.3390/ma19020242
Wan F, Zhang L, Feng C, Yan W, Gerdes AH, Tong R, Zhou Z. Study on Preparation and Antibacterial Property of DOMA-SBMA Copolymer Coatings on Stainless Steel Surfaces. Materials. 2026; 19(2):242. https://doi.org/10.3390/ma19020242
Chicago/Turabian StyleWan, Fei, Linlin Zhang, Chao Feng, Wenwen Yan, Andreas Hermann Gerdes, Ruixuan Tong, and Zhengyang Zhou. 2026. "Study on Preparation and Antibacterial Property of DOMA-SBMA Copolymer Coatings on Stainless Steel Surfaces" Materials 19, no. 2: 242. https://doi.org/10.3390/ma19020242
APA StyleWan, F., Zhang, L., Feng, C., Yan, W., Gerdes, A. H., Tong, R., & Zhou, Z. (2026). Study on Preparation and Antibacterial Property of DOMA-SBMA Copolymer Coatings on Stainless Steel Surfaces. Materials, 19(2), 242. https://doi.org/10.3390/ma19020242

