Scalable Graphene–MoS2 Lateral Contacts for High-Performance 2D Electronics
Abstract
1. Introduction
2. Experimental Section
2.1. Device Fabrication Process
2.2. Electrical Property Characterization
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Waldrop, M.M. The chips are down for Moore’s law. Nat. News 2016, 530, 144. [Google Scholar] [CrossRef] [PubMed]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Desai, S.B.; Madhvapathy, S.R.; Sachid, A.B.; Llinas, J.P.; Wang, Q.; Ahn, G.H.; Pitner, G.; Kim, M.J.; Bokor, J.; Hu, C. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102. [Google Scholar] [CrossRef]
- Xie, L.; Liao, M.; Wang, S.; Yu, H.; Du, L.; Tang, J.; Zhao, J.; Zhang, J.; Chen, P.; Lu, X. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 2017, 29, 1702522. [Google Scholar] [CrossRef]
- Ryou, J.; Kim, Y.-S.; Kc, S.; Cho, K. Monolayer MoS2 bandgap modulation by dielectric environments and tunable bandgap transistors. Sci. Rep. 2016, 6, 29184. [Google Scholar] [CrossRef]
- Pradhan, N.R.; Rhodes, D.; Zhang, Q.; Talapatra, S.; Terrones, M.; Ajayan, P.; Balicas, L. Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2. Appl. Phys. Lett. 2013, 102, 123105. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H.L.; Huang, S.; Hossain, M.A.; van der Zande, A.M. Enhancing carrier mobility in monolayer MoS2 transistors with process-induced strain. ACS Nano 2024, 18, 12377–12385. [Google Scholar]
- Kang, M.; Hong, W.; Lee, I.; Park, S.; Park, C.; Bae, S.; Lim, H.; Choi, S.-Y. Tunable doping strategy for few-layer MoS2 field-effect transistors via NH3 plasma treatment. ACS Appl. Mater. Interfaces 2024, 16, 43849–43859. [Google Scholar] [CrossRef]
- Shen, P.-C.; Su, C.; Lin, Y.; Chou, A.-S.; Cheng, C.-C.; Park, J.-H.; Chiu, M.-H.; Lu, A.-Y.; Tang, H.-L.; Tavakoli, M.M. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 2021, 593, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Kim, S.Y.; Cai, J.; Shen, J.; Lan, H.-Y.; Tan, Y.; Wang, X.; Shen, C.; Wang, H.; Chen, Z. Low contact resistance on monolayer MoS2 field-effect transistors achieved by CMOS-compatible metal contacts. ACS Nano 2024, 18, 22444–22453. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.D.; Huynh, T.; Jung, H.; Ali, F.; Jeon, J.; Choi, M.S.; Yoo, W.J. Modulation of Contact Resistance of Dual-Gated MoS2 FETs Using Fermi-Level Pinning-Free Antimony Semi-Metal Contacts. Adv. Sci. 2023, 10, 2301400. [Google Scholar] [CrossRef]
- Li, H.; Cheng, M.; Wang, P.; Du, R.; Song, L.; He, J.; Shi, J. Reducing contact resistance and boosting device performance of monolayer MoS2 by in situ Fe doping. Adv. Mater. 2022, 34, 2200885. [Google Scholar] [CrossRef]
- Liu, X.; Choi, M.S.; Hwang, E.; Yoo, W.J.; Sun, J. Fermi level pinning dependent 2D semiconductor devices: Challenges and prospects. Adv. Mater. 2022, 34, 2108425. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Patoary, N.M.; Zhou, G.; Sayyad, M.Y.; Tongay, S.; Esqueda, I.S. Analysis of Schottky barrier heights and reduced Fermi-level pinning in monolayer CVD-grown MoS2 field-effect-transistors. Nanotechnol 2022, 33, 225702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, Q.; Hu, L.; Wu, J.; Shi, X. Electrical contacts to few-layer MoS2 with phase-engineering and metal intercalation for tuning the contact performance. J. Chem. Phys. 2021, 154, 184705. [Google Scholar] [CrossRef]
- Kappera, R.; Voiry, D.; Yalcin, S.E.; Branch, B.; Gupta, G.; Mohite, A.D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kim, U.J.; Chung, J.; Nam, H.; Jeong, H.Y.; Han, G.H.; Kim, H.; Oh, H.M.; Lee, H.; Kim, H. Large work function modulation of monolayer MoS2 by ambient gases. ACS Nano 2016, 10, 6100–6107. [Google Scholar] [CrossRef]
- Baik, S.S.; Im, S.; Choi, H.J. Work function tuning in two-dimensional MoS2 field-effect-transistors with graphene and titanium source-drain contacts. Sci. Rep. 2017, 7, 45546. [Google Scholar] [CrossRef]
- Park, W.; Min, J.W.; Shaikh, S.F.; Hussain, M.M. Stable MoS2 Field-Effect Transistors Using TiO2 Interfacial Layer at Metal/MoS2 Contact. Phys. Status Solidi (A) 2017, 214, 1700534. [Google Scholar] [CrossRef]
- Wang, J.; Yao, Q.; Huang, C.W.; Zou, X.; Liao, L.; Chen, S.; Fan, Z.; Zhang, K.; Wu, W.; Xiao, X. High Mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302–8308. [Google Scholar] [CrossRef]
- Lee, Y.T.; Choi, K.; Lee, H.S.; Min, S.W.; Jeon, P.J.; Hwang, D.K.; Choi, H.J.; Im, S. Graphene Versus Ohmic Metal as Source-Drain Electrode for MoS2 Nanosheet Transistor Channel. Small 2014, 10, 2356–2361. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Liu, C.; Huang, X.; Zeng, S.; Liu, L.; Li, J.; Jiang, Y.-G.; Zhang, D.W.; Zhou, P. A steep-slope MoS2/graphene Dirac-source field-effect transistor with a large drive current. Nano Lett. 2021, 21, 1758–1764. [Google Scholar] [CrossRef]
- Zou, Y.; Li, P.; Su, C.; Yan, J.; Zhao, H.; Zhang, Z.; You, Z. Flexible high-temperature MoS2 field-effect transistors and logic gates. ACS Nano 2024, 18, 9627–9635. [Google Scholar] [CrossRef]
- Subramanian, S.; Xu, K.; Wang, Y.; Moser, S.; Simonson, N.A.; Deng, D.; Crespi, V.H.; Fullerton-Shirey, S.K.; Robinson, J.A. Tuning transport across MoS2/graphene interfaces via as-grown lateral heterostructures. npj 2D Mater. Appl. 2020, 4, 9. [Google Scholar] [CrossRef]
- Behranginia, A.; Yasaei, P.; Majee, A.K.; Sangwan, V.K.; Long, F.; Foss, C.J.; Foroozan, T.; Fuladi, S.; Hantehzadeh, M.R.; Shahbazian-Yassar, R. Direct growth of high mobility and low-noise lateral MoS2–Graphene heterostructure electronics. Small 2017, 13, 1604301. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Chen, Y.; You, C.; Liu, B.; Yang, Y.; Shen, G.; Li, S.; Sun, L.; Zhang, Y.; Yan, H. High detectivity from a lateral graphene–MoS2 Schottky photodetector grown by chemical vapor deposition. Adv. Electron. Mater. 2018, 4, 1800069. [Google Scholar] [CrossRef]
- Schneider, D.S.; Lucchesi, L.; Reato, E.; Wang, Z.; Piacentini, A.; Bolten, J.; Marian, D.; Marin, E.G.; Radenovic, A.; Wang, Z. CVD graphene contacts for lateral heterostructure MoS2 field effect transistors. npj 2D Mater. Appl. 2024, 8, 35. [Google Scholar] [CrossRef]
- Houssa, M.; Iordanidou, K.; Dabral, A.; Lu, A.; Meng, R.; Pourtois, G.; Afanas’ev, V.; Stesmans, A. Contact resistance at graphene/MoS2 lateral heterostructures. Appl. Phys. Lett. 2019, 114, 163101. [Google Scholar] [CrossRef]
- Houssa, M.; Meng, R.; Afanas’ev, V.; Stesmans, A. First-principles study of the contact resistance at 2D metal/2D semiconductor heterojunctions. Appl. Sci. 2020, 10, 2731. [Google Scholar] [CrossRef]
- Yang, S.Y.; Oh, J.G.; Jung, D.Y.; Choi, H.; Yu, C.H.; Shin, J.; Choi, C.G.; Cho, B.J.; Choi, S.Y. Metal-etching-free direct delamination and transfer of single-layer graphene with a high degree of freedom. Small 2015, 11, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Song, S.M.; Park, J.K.; Sul, O.J.; Cho, B.J. Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Lett. 2012, 12, 3887–3892. [Google Scholar] [CrossRef]
- Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B.I. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef]
- Majee, B.P.; Jangra, P.; Mishra, A.K. CVD grown bi-layer MoS2 as SERS substrate: Nanomolar detection of R6G and temperature response. Mater. Lett. X 2024, 22, 100229. [Google Scholar]
- Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80. [Google Scholar] [CrossRef]
- Senthilkumar, V.; Tam, L.C.; Kim, Y.S.; Sim, Y.; Seong, M.-J.; Jang, J.I. Direct vapor phase growth process and robust photoluminescence properties of large area MoS2 layers. Nano Res. 2014, 7, 1759–1768. [Google Scholar] [CrossRef]
- Yin, Y.; Miao, P.; Zhang, Y.; Han, J.; Zhang, X.; Gong, Y.; Gu, L.; Xu, C.; Yao, T.; Xu, P. Significantly increased Raman enhancement on MoX2 (X = S, Se) monolayers upon phase transition. Adv. Funct. Mater. 2017, 27, 1606694. [Google Scholar] [CrossRef]
- Hong, W.; Park, C.; Shim, G.W.; Yang, S.Y.; Choi, S.-Y. Wafer-scale uniform growth of an atomically thin MoS2 film with controlled layer numbers by metal—organic chemical vapor deposition. ACS Appl. Mater. Interfaces 2021, 13, 50497–50504. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Zhang, Z.; Chen, B.; Xu, H.; Yu, D.; Huang, L.; Peng, L. Realization of low contact resistance close to theoretical limit in graphene transistors. Nano Res. 2015, 8, 1669–1679. [Google Scholar] [CrossRef]
- Hong, W.; Park, C.; Shim, G.W.; Yang, S.Y.; Choi, S.Y. Enhanced Electrical Properties of Metal-Organic Chemical Vapor Deposition-Grown MoS2 Thin Films through Oxygen-Assisted Defect Control. Adv. Electron. Mater. 2022, 8, 2101325. [Google Scholar] [CrossRef]
- Choi, D.; Jeon, J.; Park, T.-E.; Ju, B.-K.; Lee, K.-Y. Schottky barrier height engineering on MoS2 field-effect transistors using a polymer surface modifier on a contact electrode. Discov. Nano 2023, 18, 80. [Google Scholar] [CrossRef] [PubMed]
- Vaknin, Y.; Dagan, R.; Rosenwaks, Y. Schottky barrier height and image force lowering in monolayer MoS2 field effect transistors. Nanomaterials 2020, 10, 2346. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Zhu, W.; Akinwande, D. On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals. Appl. Phys. Lett. 2014, 104, 113504. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, W. Scalable Graphene–MoS2 Lateral Contacts for High-Performance 2D Electronics. Materials 2025, 18, 4689. https://doi.org/10.3390/ma18204689
Hong W. Scalable Graphene–MoS2 Lateral Contacts for High-Performance 2D Electronics. Materials. 2025; 18(20):4689. https://doi.org/10.3390/ma18204689
Chicago/Turabian StyleHong, Woonggi. 2025. "Scalable Graphene–MoS2 Lateral Contacts for High-Performance 2D Electronics" Materials 18, no. 20: 4689. https://doi.org/10.3390/ma18204689
APA StyleHong, W. (2025). Scalable Graphene–MoS2 Lateral Contacts for High-Performance 2D Electronics. Materials, 18(20), 4689. https://doi.org/10.3390/ma18204689