Boosting Visible Light Photocatalysis: Se Rods Decorated with SnO2 Nanoparticles
Abstract
1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Synthesis of SnO2-Se Composites
2.3. Material Characterizations
2.4. Indocyanine Green Assay
2.5. Terephthalic Acid Assay
2.6. Photodegradation Experiments of Rhodamine B
3. Results and Discussion
- Absorption and excitation:
- 2.
- Charge separation:
- 3.
- Electron transfer to Se (ROS formation):
- 4.
- Dye degradation via ROS:
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mura, S.; Greppi, G.; Roggio, A.M.; Malfatti, L.; Innocenzi, P. Polypeptide binding to mesostructured titania films. Microporous Mesoporous Mater. 2011, 142, 1–6. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Mura, S.; Greppi, G.; Innocenzi, P.; Piccinini, M.; Figus, C.; Marongiu, M.L.; Guo, C.; Irudayaraj, J. Nanostructured thin films as surface-enhanced Raman scattering substrates. J. Raman Spectrosc. 2013, 44, 35–40. [Google Scholar] [CrossRef]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef]
- Lv, Y.-R.; Liu, C.-J.; He, R.-K.; Li, X.; Xu, Y.-H. BiVO4/TiO2 heterojunction with enhanced photocatalytic activities and photoelectrochemical performances under visible light illumination. Mater. Res. Bull. 2019, 117, 35–40. [Google Scholar] [CrossRef]
- Etafo, N.O.; Bamidele, M.O.; Bamisaye, A.; Alli, Y.A. Revolutionizing photocatalysis: Unveiling efficient alternatives to titanium (IV) oxide and zinc oxide for comprehensive environmental remediation. J. Water Process Eng. 2024, 62, 105369. [Google Scholar] [CrossRef]
- Özdal, T.; Kavak, H. Fabrication and characterization of ZnO/Cu2O heterostructures for solar cells applications. Superlattices Microstruct. 2020, 146, 106679. [Google Scholar] [CrossRef]
- Abdi, F.F.; van de Krol, R. Nature and light dependence of bulk recombination in Co–Pi–catalyzed BiVO4 photoanodes. J. Phys. Chem. C 2012, 116, 9398–9404. [Google Scholar] [CrossRef]
- Cheng, L.; Quanjun, X.; Liao, Y.; Zhang, H. CdS-Based photocatalysts. Energy Environ. Sci. 2018, 11, 1754–1765. [Google Scholar] [CrossRef]
- Akhtar, N.; Choi, C.; Ateeq, M.; Fazil, P.; Shah, N.S.; Khan, J.A.; Al-Sehemi, A.G.; Zada, A.; Shah, M.I.A.; Ikram, R.; et al. Visible light active CdS/CuO nanocomposites for photocatalytic degradation of ciprofloxacin, H2 production and antimicrobial activity. Chem. Eng. J. 2025, 507, 160336. [Google Scholar] [CrossRef]
- Rahman, A.; Jennings, J.R.; Tan, A.L.; Khan, M.M. Molybdenum disulfide-based nanomaterials for visible-light-induced photocatalysis. ACS Omega 2022, 7, 22089–22110. [Google Scholar] [CrossRef]
- Muslih, E.Y.; Munir, B.; Khan, M.M. Advances in chalcogenides and chalcogenide-based nanomaterials such as sulfides, selenides, and tellurides. In Micro and Nano Technologies: Chalcogenide-Based Nanomaterials as Photocatalysts; Elsevier: Amsterdam, The Netherlands, 2021; pp. 7–31. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J.; Mao, Z.; An, N.; Wang, D.; Fahlman, B.D. Ultrathin g-C3N4 nanosheets with an extended visible-light-responsive range for significant enhancement of photocatalysis. RSC Adv. 2017, 7, 2333. [Google Scholar] [CrossRef]
- Alaya, Y.; Chouchene, B.; Medjahdi, G.; Balan, L.; Bouguila, N.; Schneider, R. Heterostructured S-TiO2/g-C3N4 photocatalysts with high visible light photocatalytic activity. Catalysts 2024, 14, 226. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: What is the actual active structure? Angew. Chem. 2012, 51, 68–89. [Google Scholar] [CrossRef] [PubMed]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, M.; Kim, S.J.; Kim, S.-Y.; Yu, S.; Hwang, W.; Kwon, E.; Lim, J.-H.; Kim, S.H.; Sung, Y.-E.; et al. Understanding the electrochemical processes of SeS2 positive electrodes for developing high-performance non-aqueous lithium sulfur batteries. Nat. Commun. 2024, 15, 7669. [Google Scholar] [CrossRef]
- Su, M.Y.; Li, X.Y.; Zhang, J.T. Telluride semiconductor nanocrystals: Progress on their liquid-phase synthesis and applications. Rare Met. 2022, 41, 2527–2551. [Google Scholar] [CrossRef]
- Dutta, D.P.; Tyagi, A.K.; Raj, B. MoS2 as a new efficient visible-light driven photocatalyst. Catal. Today 2011, 161, 276–280. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, W. Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles. Opt. Mater. 2006, 28, 536–550. [Google Scholar] [CrossRef]
- Liu, G.; Wang, L.; Yang, H.G.; Cheng, H.-M.; Lu, G.Q. Titanium dioxide crystals with tailored facets. Chem. Rev. 2014, 114, 9559–9612. [Google Scholar] [CrossRef]
- Li, X.; Ge, W.; Wang, P.; Han, K.; Zhao, H.; Zhang, Q.; Diwu, H.; Liu, Z. Near-infrared enhanced SnO2/SnSe2 heterostructures for room-temperature NO2 detection: Experiments and DFT calculations. Sens. Actuators B Chem. 2023, 397, 134643. [Google Scholar] [CrossRef]
- Huang, Y.; Su, E.; Ren, J.; Qu, X. The recent biological applications of selenium-based nanomaterials. Nano Today 2021, 38, 101205. [Google Scholar] [CrossRef]
- Alamo-Nole, L.; Bailon-Ruiz, S.J. Photocatalytic Degradation of Methylene Blue by Surface-Modified SnO2/Se-Doped QDs. Micro 2024, 4, 721–733. [Google Scholar] [CrossRef]
- Shen, A.; Shi, Z.; Zhang, W.; Zhai, Y.; Feng, Y.; Gong, W.; Xu, P.; Li, Q. Constructing SnO2/SnSe2 heterostructures anchored on reduced graphene oxide for advanced lithium-ion batteries. J. Colloid Interface Sci. 2025, 700, 138460. [Google Scholar] [CrossRef] [PubMed]
- Paolucci, V.; D’Olimpio, G.; Kuo, C.N.; Lue, C.S.; Boukhvalov, D.W.; Cantalini, C.; Politano, A. Self-assembled SnO2/SnSe2 heterostructures: A suitable platform for ultrasensitive NO2 and H2S sensing. ACS Appl. Mater. Interfaces 2020, 12, 34362–34369. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, C.; Wang, Y.; Liang, Y. Photocatalytic performance of SnO2/Se heterojunctions for dye degradation under visible light. Appl. Surf. Sci. 2020, 506, 144923. [Google Scholar] [CrossRef]
- Park, J.Y.; Lee, C.Y.; Choi, J.Y.; Kim, D.H. SnO2–Se composites for selective gas sensing applications at low temperatures. Sens. Actuators B Chem. 2019, 283, 100–107. [Google Scholar] [CrossRef]
- Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced Photocatalytic CO2-Reduction Activity of Anatase TiO2 by Coexposed {001} and {101} Facets. J. Am. Chem. Soc. 2014, 136, 8839–8842. [Google Scholar] [CrossRef]
- Swamy Reddy, B.K.; Veeralingam, S.; Borse, P.H.; Badhulika, S. A flexible, rapid response, hybrid inorganic–organic SnSe2–PEDOT:PSS bulk heterojunction based high performance broadband photodetector. Mater. Chem. Front. 2022, 6, 341–351. [Google Scholar] [CrossRef]
- Lutterotti, L. Maud: A Rietveld analysis program designed for the internet and experiment integration. Acta Crystallogr. A 2000, 56, s54. [Google Scholar] [CrossRef]
- Graulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.F.T.; Quirós, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database—An Open-Access Collection of Crystal Structures. J. Appl. Crystallogr. 2009, 42, 726–729. [Google Scholar] [CrossRef]
- Engel, E.; Schraml, R.; Maisch, T.; Kobuch, K.; König, B.; Szeimies, R. -M.; Hillenkamp, J.; Bäumler, W.; Vasold, R. Light-induced decomposition of indocyanine green. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1777–1783. [Google Scholar] [CrossRef] [PubMed]
- Barreto, J.C.; Smith, G.S.; Strobel, N.H.; McQuillin, P.A.; Miller, T.A. Terephthalic acid: A dosimeter for the detection of hydroxyl radicals in vitro. Life Sci. 1995, 56, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Singh, R.; Singh, H.; Singh, T.; Singh, P.; Thakur, A.; Tripathi, S.K. Synthesis of SnSe2 thin films by thermally induced phase transition in SnSe. J. Alloys Compd. 2017, 724, 62–66. [Google Scholar] [CrossRef]
- Chen, H.; Shin, D. -W.; Nam, J.-G.; Kwon, K.-W.; Yoo, J.-B. Selenium nanowires and nanotubes synthesized via a facile template-free solution method. Mater. Res. Bull. 2010, 45, 699–704. [Google Scholar] [CrossRef]
- Dieguez, A.; Romano-Rodriguez, A.; Vilà, A.; Morante, J. The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys. 2001, 90, 1550–1557. [Google Scholar] [CrossRef]
- Akram, M.; Wan, I.; Wan, A.; Awan, A.; Hussain, R. Continuous microwave flow synthesis (CMFS) of nano-sized tin oxide: Effect of precursor concentration. Ceram. Int. 2016, 42, 8613. [Google Scholar] [CrossRef]
- Malik, R.; Rana, P.; Duhan, S.; Nehra, S. One-pot hydrothermal synthesis of porous SnO2 nanostructures for photocatalytic degradation of organic pollutants. Energy Environ. Focus 2015, 4, 340–345. [Google Scholar] [CrossRef]
- Ayeshamariam, A.; Ramalingam, S.; Bououdina, M.; Jayachandran, M. Preparation and characterizations of SnO2 nanopowder and spectroscopic (FT-IR, FT-Raman, UV–Visible and NMR) analysis using HF and DFT calculations. Spectrochim. Acta A. 2014, 118, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumari, S. FTIR and Raman analysis of SnO2 nanostructures: Size dependence of vibrational modes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 200, 115–121. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, H.; Liu, Y. Effect of particle size on the FTIR and Raman spectra of SnO2: Influence of particle size and morphology on vibrational modes. J. Raman Spectrosc. 2017, 48, 536–543. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S. FTIR and Raman spectral analysis of SnO2 and SnO2-based composites. Mater. Sci. Eng. B 2015, 192, 1–8. [Google Scholar] [CrossRef]
- Winyayong, A.; Wongsaprom, K. Nanostructures of tin oxide by a simple chemical route: Synthesis and characterization. J. Phys. Conf. Ser. 2019, 1380, 012002. [Google Scholar] [CrossRef]
- Daimon, T.; Hirakawa, T.; Nosaka, Y. Monitoring the formation and decay of singlet molecular oxygen in TiO2 photocatalytic systems and the reaction with organic molecules. Electrochemistry 2008, 76, 136–139. [Google Scholar] [CrossRef]
- Tang, C.Y.; Wu, F.Y.; Yang, M.K.; Guo, Y.M.; Lu, G.H.; Yang, Y.H. A classic near-infrared probe indocyanine green for detecting singlet oxygen. Int. J. Mol. Sci. 2016, 17, 219. [Google Scholar] [CrossRef]
- Bhagwansingh, R.; Kale, R. Hydro/solvothermally synthesized visible light driven modified SnO2 heterostructure as a photocatalyst for water remediation: A review. Environ. Adv. 2021, 5, 100081. [Google Scholar] [CrossRef]
- Carboni, D.; Marongiu, D.; Rassu, P.; Pinna, A.; Amenitsch, H.; Casula, M.; Marcelli, A.; Cibin, G.; Falcaro, P.; Malfatti, L.; et al. Enhanced Photocatalytic Activity in Low-Temperature Processed Titania Mesoporous Films. J. Phys. Chem. C 2014, 118, 12000–12009. [Google Scholar] [CrossRef]
- Charbouillot, T.; Brigante, M.; Mailhot, G.; Maddigapu, P.R.; Minero, C.; Vione, D. Performance and selectivity of the terephthalic acid probe for OH as a function of temperature, pH and composition of atmospherically relevant aqueous media. J. Photochem. Photobiol. A Chem. 2011, 222, 70–76. [Google Scholar] [CrossRef]
- Lesniewicz, A.; Lewandowska-Andralojc, A. Probing mechanism of Rhodamine B decolorization under homogeneous conditions via pH-controlled photocatalysis with anionic porphyrin. Sci. Rep. 2024, 14, 22600. [Google Scholar] [CrossRef] [PubMed]
- Franchi, D.; Zacharias, A. Applications of sensitized semiconductors as heterogeneous visible-light photocatalysts in organic synthesis. ACS Sustain. Chem. Eng. 2020, 8, 15405–15429. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mura, S.; Rassu, P.; Fiori, F.; Masia, G.; Garroni, S.; Marceddu, S.; Spissu, Y.; Malfatti, L.; Innocenzi, P. Boosting Visible Light Photocatalysis: Se Rods Decorated with SnO2 Nanoparticles. Materials 2025, 18, 4300. https://doi.org/10.3390/ma18184300
Mura S, Rassu P, Fiori F, Masia G, Garroni S, Marceddu S, Spissu Y, Malfatti L, Innocenzi P. Boosting Visible Light Photocatalysis: Se Rods Decorated with SnO2 Nanoparticles. Materials. 2025; 18(18):4300. https://doi.org/10.3390/ma18184300
Chicago/Turabian StyleMura, Stefania, Pietro Rassu, Federico Fiori, Gabriele Masia, Sebastiano Garroni, Salvatore Marceddu, Ylenia Spissu, Luca Malfatti, and Plinio Innocenzi. 2025. "Boosting Visible Light Photocatalysis: Se Rods Decorated with SnO2 Nanoparticles" Materials 18, no. 18: 4300. https://doi.org/10.3390/ma18184300
APA StyleMura, S., Rassu, P., Fiori, F., Masia, G., Garroni, S., Marceddu, S., Spissu, Y., Malfatti, L., & Innocenzi, P. (2025). Boosting Visible Light Photocatalysis: Se Rods Decorated with SnO2 Nanoparticles. Materials, 18(18), 4300. https://doi.org/10.3390/ma18184300

