Optimization of Activated Rubber Asphalt Production Parameters Based on Rheological Properties and Multi-Index Evaluation
Abstract
1. Introduction
2. Experimental Design
2.1. Materials and Methods
2.1.1. Raw Materials
2.1.2. Sample Preparation
2.1.3. Main Experimental Methods
2.2. Experimental Scheme
3. Results and Discussion
3.1. Influence of Process Parameters on Viscosity of Activated Rubber Asphalt
3.1.1. Preparation Temperature
3.1.2. Stirring Rate
3.2. Influence of Process Parameters on Viscoelasticity of Activated Rubber Asphalt
3.2.1. Complex Modulus G* and Phase Angle δ
3.2.2. G*/sinδ and Failure Temperature
3.2.3. Effect of Process Parameters on High-Temperature Sensitivity of Activated Rubber Asphalt
3.2.4. Gray Correlation Analysis
3.3. Optimization of Rubber Asphalt Production Parameters Based on RSR Model
3.3.1. Basic Principles of Parameter Optimization Based on RSR Model Theory
3.3.2. Optimization of Process Parameters for Activated Rubber Powder-Modified Asphalt
4. Conclusions
- (1)
- Reaction temperature, stirring rate, and reaction time significantly affect the rheological properties of activated rubber asphalt. Among these parameters, reaction temperature exerts the most substantial influence, showing the highest gray correlation degree (>0.85) with asphalt performance indicators, followed by stirring rate and reaction time.
- (2)
- Optimal parameters identified in this study are as follows: a reaction temperature of 220 °C, a stirring rate of 1000 rpm, and a reaction time of 120 min. Under these conditions, activated rubber asphalt exhibited superior high-temperature performance, reduced temperature sensitivity, and improved rheological stability.
- (3)
- The rank-sum ratio (RSR) model combined with gray correlation analysis effectively integrates multiple rheological indexes, providing a comprehensive and objective evaluation of asphalt performance. This integrated evaluation approach successfully overcomes the limitations of single-indicator assessments, enhancing reliability and applicability in practical engineering.
- (4)
- Future research is recommended to verify the long-term durability and fatigue resistance of the activated rubber asphalt produced under optimal parameters, promoting its broader applications in sustainable road construction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rath, P.; Love, J.E.; Buttlar, W.G.; Reis, H. Performance analysis of asphalt mixtures modified with ground tire rubber modifiers and recycled materials. Sustainability 2019, 11, 1792. [Google Scholar] [CrossRef]
- Sienkiewicz, M.; Borzędowska-Labuda, K.; Wojtkiewicz, A.; Janik, H. Development of methods improving storage stability of bitumen modified with ground tire rubber: A review. Fuel Process. Technol. 2017, 159, 272–279. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, Y.; Yang, Y.; Ma, Y.; Li, J.; Huang, M. The effect of activation method of rubber on the performance of modified asphalt binder. Materials 2020, 13, 3679. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Yang, Y.; Lv, S.; Peng, X.; Zhang, Y. Investigation on preparation process and storage stability of modified asphalt binder by grafting activated crumb rubber. Materials 2019, 12, 2014. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, H.; Wei, Y.; Zhang, X.; Wei, D.; Li, J. Microscopic properties of hydrogen peroxide activated crumb rubber and its influence on the rheological properties of crumb rubber modified asphalt. Materials 2019, 12, 1434. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xu, Y.; Wang, H.; Shu, B.; Barbieri, D.M.; Norambuena-Contreras, J. Enhanced storage stability and rheological properties of asphalt modified by activated waste rubber powder. Materials 2021, 14, 2693. [Google Scholar] [CrossRef] [PubMed]
- Hosseinnezhad, S.; Kabir, S.F.; Oldham, D.; Mousavi, M.; Fini, E.H. Surface functionalization of rubber particles to reduce phase separation in rubberized asphalt for sustainable construction. J. Clean. Prod. 2019, 225, 82–89. [Google Scholar] [CrossRef]
- Szerb, E.I.; Nicotera, I.; Teltayev, B.; Vaiana, R.; Rossi, C.O. Highly stable surfactant-crumb rubber-modified bitumen: NMR and rheological investigation. Road Mater. Pavement Des. 2018, 19, 1192–1202. [Google Scholar] [CrossRef]
- Li, H.; Dong, B.; Zhao, D.; Guo, P.; Zhang, J. Physical, rheological and stability properties of desulfurized rubber asphalt and crumb rubber asphalt. Arab. J. Sci. Eng. 2019, 44, 5043–5056. [Google Scholar] [CrossRef]
- Dong, R.; Li, J.; Wang, S. Laboratory evaluation of pre-devulcanized crumb rubber–modified asphalt as a binder in hot-mix asphalt. J. Mater. Civ. Eng. 2011, 23, 1138–1144. [Google Scholar] [CrossRef]
- Ibrahim, I.M.; Fathy, E.S.; El-Shafie, M.; Elnaggar, M.Y. Impact of incorporated gamma irradiated crumb rubber on the short-term aging resistance and rheological properties of asphalt binder. Constr. Build. Mater. 2015, 81, 42–46. [Google Scholar] [CrossRef]
- Jeong, K.D.; Lee, S.J.; Amirkhanian, S.N.; Kim, K.W. Interaction effects of crumb rubber modified asphalt binders. Constr. Build. Mater. 2010, 24, 824–831. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, L.; Wang, H.; Wang, Z.; Ren, R. Investigation of the wetting behavior and evaluation of the warm mixing effects of high viscosity modified asphalt with bio-based warm mixing agent. J. Phys. Conf. Series 2025, 3009, 012069. [Google Scholar] [CrossRef]
Test Item | SK90# | Specification Limits | Test Method | |
---|---|---|---|---|
Penetration (25 °C, 100 g, 5 s) | 92.2 | 80~100 | T 0604 | |
Softening point/°C | 46.2 | ≥45 | T 0605 | |
Ductility (15 °C, 5 cm/min) | >100 | ≥100 | T 0606 | |
After RTFOT | Quality change (%) | 0.07 | ≤±0.8 | 0.04 |
Residual penetration ratio (25 °C) (%) | 70 | ≥57 | 67.2 | |
Residual ductility (5 °C) (cm) | 59.0 | ≥20 | 11.4 |
Test Item | Bulk Density (kg/m3) | Moisture/% | Metal Content/% | Fiber Content/% |
---|---|---|---|---|
Technical index | 260–460 | <1 | <0.03 | <1 |
Test result | 305.6 | 0 | 0.011 | 0.076 |
Test Item | Ash Content/% | Heating Loss/% | Acetone Extract/% | Carbon Black Content/% | Rubber Hydrocarbon Content/% |
---|---|---|---|---|---|
Technical index | ≤8 | ≤1.0 | ≤22 | ≥28 | ≥42 |
Test result | 7.5 | 0.76 | 7.5 | 30 | 49 |
No. | CRM (%) | Stirring Rate (r/min) | Temperature (°C) | Time (min) |
---|---|---|---|---|
1# | 10 | 1000 | 160 | 15 |
10 | 1000 | 160 | 60 | |
10 | 1000 | 160 | 120 | |
10 | 1000 | 160 | 240 | |
2# | 10 | 2000 | 160 | 15 |
10 | 2000 | 160 | 60 | |
10 | 2000 | 160 | 120 | |
10 | 2000 | 160 | 240 | |
3# | 10 | 1000 | 190 | 15 |
10 | 1000 | 190 | 60 | |
10 | 1000 | 190 | 120 | |
10 | 1000 | 190 | 240 | |
4# | 10 | 2000 | 190 | 15 |
10 | 2000 | 190 | 60 | |
10 | 2000 | 190 | 120 | |
10 | 2000 | 190 | 240 | |
5# | 10 | 2000 | 190 | 15 |
10 | 2000 | 190 | 60 | |
10 | 3000 | 190 | 120 | |
10 | 3000 | 190 | 240 | |
6# | 10 | 3000 | 220 | 15 |
10 | 3000 | 220 | 60 | |
10 | 1000 | 220 | 120 | |
10 | 1000 | 220 | 240 | |
7# | 10 | 1000 | 220 | 15 |
10 | 1000 | 220 | 60 | |
10 | 3000 | 220 | 120 | |
10 | 3000 | 220 | 240 |
No. | Time (min) | Stirring Rate (r/min) | Temperature (°C) | Viscosity/kPa·s | G*/sinδ/kPa | GTS | Failure Temperature/°C |
---|---|---|---|---|---|---|---|
1#-1 | 15 | 1000 | 160 | 0.224 | 1.4 | 5.2835 | 73.51 |
1#-2 | 60 | 1000 | 160 | 0.225 | 1.663 | 5.0891 | 75.06 |
1#-3 | 120 | 1000 | 160 | 0.251 | 1.792 | 4.9462 | 75.85 |
1#-4 | 240 | 1000 | 160 | 0.271 | 1.95 | 4.8456 | 76.7 |
2#-1 | 15 | 2000 | 160 | 0.251 | 1.694 | 5.0486 | 76.34 |
2#-2 | 60 | 2000 | 160 | 0.237 | 2.001 | 4.7611 | 75.22 |
2#-3 | 120 | 2000 | 160 | 0.26 | 1.914 | 4.9698 | 76.76 |
2#-4 | 240 | 2000 | 160 | 0.279 | 2.014 | 4.9353 | 76.88 |
3#-1 | 15 | 1000 | 190 | 0.292 | 1.778 | 4.8882 | 75.81 |
3#-2 | 60 | 1000 | 190 | 0.31 | 1.987 | 4.5079 | 76.59 |
3#-3 | 120 | 1000 | 190 | 0.327 | 1.927 | 4.602 | 76.7 |
3#-4 | 240 | 1000 | 190 | 0.342 | 1.809 | 4.4642 | 76.41 |
4#-1 | 15 | 2000 | 190 | 0.295 | 1.798 | 4.8335 | 75.68 |
4#-2 | 60 | 2000 | 190 | 0.305 | 2.002 | 4.7711 | 76.9 |
4#-3 | 120 | 2000 | 190 | 0.311 | 1.932 | 4.6937 | 76.63 |
4#-4 | 240 | 2000 | 190 | 0.36 | 1.866 | 4.4284 | 76.63 |
5#-1 | 15 | 3000 | 190 | 0.295 | 1.817 | 4.8514 | 76.02 |
5#-2 | 60 | 3000 | 190 | 0.351 | 2.044 | 4.4594 | 77.49 |
5#-3 | 120 | 3000 | 190 | 0.349 | 1.959 | 4.5876 | 76.77 |
5#-4 | 240 | 3000 | 190 | 0.365 | 1.652 | 4.4909 | 75.62 |
6#-1 | 15 | 1000 | 220 | 0.335 | 1.968 | 4.611 | 76.82 |
6#-2 | 60 | 1000 | 220 | 0.394 | 1.936 | 4.4347 | 77.1 |
6#-3 | 120 | 1000 | 220 | 0.281 | 2.073 | 4.7318 | 77.29 |
6#-4 | 240 | 1000 | 220 | 0.242 | 2.497 | 5.0272 | 78.1 |
7#-1 | 15 | 3000 | 220 | 0.374 | 1.694 | 4.556 | 75.68 |
7#-2 | 60 | 3000 | 220 | 0.256 | 1.535 | 4.9476 | 74.42 |
7#-3 | 120 | 3000 | 220 | 0.229 | 2.497 | 5.0272 | 78.19 |
7#-4 | 240 | 3000 | 220 | 0.23 | 3.023 | 4.9411 | 79.85 |
Parameters | Viscosity | G*/sinδ | GTS | Failure Temperature |
---|---|---|---|---|
Temperature | 0.8638 | 0.8686 | 0.8539 | 0.8851 |
Stirring rate | 0.6738 | 0.6804 | 0.6563 | 0.6409 |
Time | 0.5754 | 0.5863 | 0.5585 | 0.5492 |
No. | X1: G*/sinδ/kPa | X2: Failure Temperature/°C | X3: Viscosity/kPa·s | X4: GTS |
---|---|---|---|---|
1#-1 | 0.00006 | 0.00002 | 0.99941 | 0.00012 |
1#-2 | 0.16209 | 0.24449 | 0.99354 | 0.22741 |
1#-3 | 0.24156 | 0.36909 | 0.84078 | 0.39448 |
1#-4 | 0.33890 | 0.50315 | 0.72327 | 0.51210 |
2#-1 | 0.18119 | 0.44637 | 0.84078 | 0.27476 |
2#-2 | 0.37032 | 0.26972 | 0.92303 | 0.61090 |
2#-3 | 0.31672 | 0.51262 | 0.78790 | 0.36689 |
2#-4 | 0.37833 | 0.53154 | 0.67626 | 0.40723 |
3#-1 | 0.23293 | 0.36278 | 0.59988 | 0.46229 |
3#-2 | 0.36169 | 0.48580 | 0.49412 | 0.90693 |
3#-3 | 0.32473 | 0.50315 | 0.39424 | 0.79691 |
3#-4 | 0.25203 | 0.45741 | 0.30611 | 0.95803 |
4#-1 | 0.24526 | 0.34228 | 0.58226 | 0.52625 |
4#-2 | 0.37093 | 0.53470 | 0.52350 | 0.59920 |
4#-3 | 0.32781 | 0.49211 | 0.48825 | 0.68970 |
4#-4 | 0.28715 | 0.49211 | 0.20035 | 0.99988 |
5#-1 | 0.25696 | 0.39590 | 0.58226 | 0.50532 |
5#-2 | 0.39681 | 0.62776 | 0.25323 | 0.96364 |
5#-3 | 0.34444 | 0.51420 | 0.26498 | 0.81375 |
5#-4 | 0.15531 | 0.33281 | 0.17098 | 0.92681 |
6#-1 | 0.34999 | 0.52208 | 0.34724 | 0.78639 |
6#-2 | 0.33027 | 0.56624 | 0.00059 | 0.99252 |
6#-3 | 0.41467 | 0.59621 | 0.66451 | 0.64515 |
6#-4 | 0.67589 | 0.72397 | 0.89365 | 0.29978 |
7#-1 | 0.18119 | 0.34228 | 0.11810 | 0.85070 |
7#-2 | 0.08323 | 0.14354 | 0.81140 | 0.39284 |
7#-3 | 0.67589 | 0.73816 | 0.97004 | 0.29978 |
7#-4 | 0.99994 | 0.99998 | 0.96416 | 0.40044 |
No. | R1 | R2 | R3 | R4 | RSR | Rank |
---|---|---|---|---|---|---|
1#-1 | 1.00166 | 1.00043 | 27.98414 | 1.00316 | 0.27669 | 28 |
1#-2 | 5.37636 | 7.60116 | 27.82550 | 7.13995 | 0.42806 | 24 |
1#-3 | 7.52212 | 10.96541 | 23.70094 | 11.65100 | 0.48071 | 19 |
1#-4 | 10.15026 | 14.58517 | 20.52820 | 14.82673 | 0.53652 | 8 |
2#-1 | 5.89200 | 13.05210 | 23.70094 | 8.41845 | 0.45592 | 20 |
2#-2 | 10.99858 | 8.28253 | 25.92186 | 17.49421 | 0.55980 | 7 |
2#-3 | 9.55144 | 14.84068 | 22.27321 | 10.90600 | 0.51403 | 14 |
2#-4 | 11.21482 | 15.35171 | 19.25911 | 11.99509 | 0.51626 | 13 |
3#-1 | 7.28924 | 10.79507 | 17.19683 | 13.48194 | 0.43538 | 23 |
3#-2 | 10.76571 | 14.11673 | 14.34136 | 25.48720 | 0.57778 | 5 |
3#-3 | 9.76768 | 14.58517 | 11.64454 | 22.51666 | 0.52245 | 10 |
3#-4 | 7.80489 | 13.35019 | 9.26498 | 26.86671 | 0.51149 | 16 |
4#-1 | 7.62192 | 10.24146 | 16.72092 | 15.20870 | 0.44458 | 22 |
4#-2 | 11.01522 | 15.43688 | 15.13455 | 17.17853 | 0.52469 | 9 |
4#-3 | 9.85085 | 14.28707 | 14.18273 | 19.62189 | 0.51734 | 12 |
4#-4 | 8.75302 | 14.28707 | 6.40952 | 27.99684 | 0.51291 | 15 |
5#-1 | 7.93796 | 11.68936 | 16.72092 | 14.64363 | 0.45528 | 21 |
5#-2 | 11.71384 | 17.94942 | 7.83725 | 27.01824 | 0.57606 | 6 |
5#-3 | 10.29996 | 14.88327 | 8.15452 | 22.97124 | 0.50276 | 17 |
5#-4 | 5.19338 | 9.98595 | 5.61633 | 26.02385 | 0.41803 | 25 |
6#-1 | 10.44967 | 15.09620 | 10.37544 | 22.23255 | 0.51923 | 11 |
6#-2 | 9.91739 | 16.28859 | 1.01586 | 27.79797 | 0.49125 | 18 |
6#-3 | 12.19622 | 17.09771 | 18.94183 | 18.41915 | 0.59513 | 4 |
6#-4 | 19.24895 | 20.54713 | 25.12867 | 9.09400 | 0.66088 | 3 |
7#-1 | 5.89200 | 10.24146 | 4.18860 | 23.96878 | 0.39545 | 26 |
7#-2 | 3.24723 | 4.87570 | 22.90776 | 11.60680 | 0.38069 | 27 |
7#-3 | 19.24895 | 20.93040 | 27.19095 | 9.09400 | 0.68272 | 2 |
7#-4 | 27.99834 | 27.99957 | 27.03231 | 11.81200 | 0.84681 | 1 |
No. | RSR | Frequence | Cumulative Frequency Σf | Evaluation Rank Number | Evaluation Rank Number/n00% | Probit |
---|---|---|---|---|---|---|
1#-1 | 0.27669 | 1 | 1 | 1 | 3.57143 | 3.19726 |
7#-2 | 0.38069 | 1 | 2 | 2 | 7.14286 | 3.53477 |
7#-1 | 0.39545 | 1 | 3 | 3 | 10.71429 | 3.75813 |
5#-4 | 0.41803 | 1 | 4 | 4 | 14.28571 | 3.93243 |
1#-2 | 0.42806 | 1 | 5 | 5 | 17.85714 | 4.07918 |
3#-1 | 0.43538 | 1 | 6 | 6 | 21.42857 | 4.20836 |
4#-1 | 0.44458 | 1 | 7 | 7 | 25.00000 | 4.32551 |
5#-1 | 0.45528 | 1 | 8 | 8 | 28.57143 | 4.43405 |
2#-1 | 0.45592 | 1 | 9 | 9 | 32.14286 | 4.53629 |
1#-3 | 0.48071 | 1 | 10 | 10 | 35.71429 | 4.63389 |
6#-2 | 0.49125 | 1 | 11 | 11 | 39.28571 | 4.72812 |
5#-3 | 0.50276 | 1 | 12 | 12 | 42.85714 | 4.81999 |
3#-4 | 0.51149 | 1 | 13 | 13 | 46.42857 | 4.91036 |
4#-4 | 0.51291 | 1 | 14 | 14 | 50.00000 | 5.00000 |
2#-3 | 0.51403 | 1 | 15 | 15 | 53.57143 | 5.08964 |
2#-4 | 0.51626 | 1 | 16 | 16 | 57.14286 | 5.18001 |
4#-3 | 0.51734 | 1 | 17 | 17 | 60.71429 | 5.27188 |
6#-1 | 0.51923 | 1 | 18 | 18 | 64.28571 | 5.36611 |
3#-3 | 0.52245 | 1 | 19 | 19 | 67.85714 | 5.46371 |
4#-2 | 0.52469 | 1 | 20 | 20 | 71.42857 | 5.56595 |
1#-4 | 0.53652 | 1 | 21 | 21 | 75.00000 | 5.67449 |
2#-2 | 0.55980 | 1 | 22 | 22 | 78.57143 | 5.79164 |
5#-2 | 0.57606 | 1 | 23 | 23 | 82.14286 | 5.92082 |
3#-2 | 0.57778 | 1 | 24 | 24 | 85.71429 | 6.06757 |
6#-3 | 0.59513 | 1 | 25 | 25 | 89.28571 | 6.24187 |
6#-4 | 0.66088 | 1 | 26 | 26 | 92.85714 | 6.46523 |
7#-3 | 0.68272 | 1 | 27 | 27 | 96.42857 | 6.80274 |
7#-4 | 0.84681 | 1 | 28 | 28 | 99.10714 | 7.36857 |
No. | Stirring Rate (r/min) | Temperature (°C) | Time (min) | Rank | Probit | Fitted Value | Final Ranking |
---|---|---|---|---|---|---|---|
7#-4 | 3000 | 220 | 240 | 1 | 7.36857 | 0.74432 | 1 |
7#-3 | 3000 | 220 | 120 | 2 | 6.80274 | 0.68679 | 2 |
3#-2 | 1000 | 190 | 60 | 5 | 6.06757 | 0.61205 | 3 |
6#-4 | 1000 | 220 | 240 | 3 | 6.46523 | 0.65248 | 4 |
6#-3 | 1000 | 220 | 120 | 4 | 6.24187 | 0.62977 | 5 |
6#-1 | 1000 | 220 | 15 | 11 | 5.36611 | 0.54073 | 6 |
5#-2 | 3000 | 190 | 60 | 6 | 5.92082 | 0.59713 | 7 |
4#-2 | 2000 | 190 | 60 | 9 | 5.56595 | 0.56105 | 8 |
3#-3 | 1000 | 190 | 120 | 10 | 5.46371 | 0.55065 | 9 |
4#-3 | 2000 | 190 | 120 | 12 | 5.27188 | 0.53115 | 10 |
2#-2 | 2000 | 160 | 60 | 7 | 5.79164 | 0.58399 | 11 |
2#-4 | 2000 | 160 | 240 | 13 | 5.18001 | 0.52181 | 12 |
1#-4 | 1000 | 160 | 240 | 8 | 5.67449 | 0.57208 | 13 |
2#-3 | 2000 | 160 | 120 | 14 | 5.08964 | 0.51262 | 14 |
3#-1 | 1000 | 190 | 15 | 23 | 4.20836 | 0.42301 | 15 |
1#-3 | 1000 | 160 | 120 | 19 | 4.63389 | 0.46628 | 16 |
7#-2 | 3000 | 220 | 60 | 27 | 3.53477 | 0.35453 | 17 |
7#-1 | 3000 | 220 | 15 | 26 | 3.75813 | 0.37724 | 18 |
2#-1 | 2000 | 160 | 15 | 20 | 4.53629 | 0.45636 | 19 |
6#-2 | 1000 | 220 | 60 | 18 | 4.72812 | 0.47586 | 20 |
5#-4 | 3000 | 190 | 240 | 25 | 3.93243 | 0.39496 | 21 |
3#-4 | 1000 | 190 | 240 | 16 | 4.91036 | 0.49439 | 22 |
5#-3 | 3000 | 190 | 120 | 17 | 4.81999 | 0.48520 | 23 |
5#-1 | 3000 | 190 | 15 | 21 | 4.43405 | 0.44596 | 24 |
4#-4 | 2000 | 190 | 240 | 15 | 5.00000 | 0.50350 | 25 |
1#-2 | 1000 | 160 | 60 | 24 | 4.07918 | 0.40988 | 26 |
4#-1 | 2000 | 190 | 15 | 22 | 4.32551 | 0.43493 | 27 |
1#-1 | 1000 | 160 | 15 | 28 | 3.19726 | 0.32021 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Zhao, X.; Li, B.; Wang, Y.; Zhao, H.; Kang, K. Optimization of Activated Rubber Asphalt Production Parameters Based on Rheological Properties and Multi-Index Evaluation. Materials 2025, 18, 3712. https://doi.org/10.3390/ma18153712
Zhao J, Zhao X, Li B, Wang Y, Zhao H, Kang K. Optimization of Activated Rubber Asphalt Production Parameters Based on Rheological Properties and Multi-Index Evaluation. Materials. 2025; 18(15):3712. https://doi.org/10.3390/ma18153712
Chicago/Turabian StyleZhao, Jing, Xiangqing Zhao, Bo Li, Yongning Wang, Huan Zhao, and Kai Kang. 2025. "Optimization of Activated Rubber Asphalt Production Parameters Based on Rheological Properties and Multi-Index Evaluation" Materials 18, no. 15: 3712. https://doi.org/10.3390/ma18153712
APA StyleZhao, J., Zhao, X., Li, B., Wang, Y., Zhao, H., & Kang, K. (2025). Optimization of Activated Rubber Asphalt Production Parameters Based on Rheological Properties and Multi-Index Evaluation. Materials, 18(15), 3712. https://doi.org/10.3390/ma18153712