The Influence of Bitumen Nature and Production Conditions on the Mechanical and Chemical Properties of Asphalt Mixtures Containing Reclaimed Asphalt Pavement
Abstract
1. Introduction
2. Materials and Methods
2.1. Objective and Experimental Program
2.2. Materials
- A: A mix of different chemicals, containing modified polyamines and vegetal oils.
- B: A miscible crude tall oil derived from the processing of pine wood in the paper industry, containing fatty acids, resin acids and unsaponifiable matter.
2.3. Test Methods
3. Results and Discussion
3.1. Mechanical Tests on the Mixtures
3.2. Statistical Analysis
3.3. Variation in Temperature Index
3.4. Analysis of FTIR Spectra
4. Conclusions
- The use of SR virgin bitumen allowed the achievement of better mechanical mix behavior (lower ITS and ITSM, higher CT-Index) compared to VB virgin bitumen. This result can likely be traced back to the higher stability of the SR binder, related to its different petroleum refining process. However, the FTIR analysis of the bitumen extracted from the mixtures gave unreliable results (the IC=O was lower in the case of the SR binder for the mix without RAP, and vice versa for the mixtures with 50% RAP).
- When increasing the HMA production temperature from 140 °C to 170 °C, there was an increase in ITSM, ITS and IC=O and a decrease in CT-Index. This penalization of the binder/mix properties was related to the more severe short-term aging that both the virgin and RAP bitumen experienced at the higher production temperature. Therefore, in HMA plant manufacturing, the adoption of the lowest temperature that achieves good mix compactability is suggested in order to preserve the binder’s original properties.
- The longer the conditioning time in the oven at high temperature between mixing and compaction, the worse the behavior of the mixtures. When virgin and RAP bitumen were kept at high temperature for a long time, aging phenomena, particularly oxidation and volatile evaporation, were emphasized, resulting in a higher stiffness and brittleness (lower ITS, ITSM and IC=O, lower CT-Index). This allows us to recommend avoiding long hauling distances in full-scale pavement construction and limiting mix reheating times in the laboratory during HMA quality controls.
- The Temperature Index (TI) proved to be a useful tool to evaluate the detrimental effect of high production temperatures and prolonged storage times of the mix at high temperature. Moreover, it can allow the estimation of whether a rejuvenating agent can suffer from a reduction in efficacy when the hot recycling of RAP is carried out at high temperatures.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Behnood, A. Application of rejuvenators to improve the rheological and mechanical properties of asphalt binders and mixtures: A review. J. Clean. Prod. 2019, 231, 171–182. [Google Scholar] [CrossRef]
- Ingrassia, L.P.; Lu, X.; Ferrotti, G.; Canestrari, F. Renewable materials in bituminous binders and mixtures: Speculative pretext or reliable opportunity? Resour. Conserv. Recycl. 2019, 144, 209–222. [Google Scholar] [CrossRef]
- Bocci, E.; Prosperi, E. Recycling of reclaimed fibers from end-of-life tires in hot mix asphalt. J. Traffic Transp. Eng. (Engl. Ed.) 2020, 7, 678–687. [Google Scholar] [CrossRef]
- Rathore, M.; Zaumanis, M.; Haritonovs, V. Asphalt Recycling Technologies: A Review on Limitations and Benefits. IOP Conf. Ser. Mater. Sci. Eng. 2019, 660, 012046. [Google Scholar] [CrossRef]
- Filho, W.U.; Gutiérrez Klinsky, L.M.; Motta, R.; Bariani Bernucci, L.L. Cold Recycled Asphalt Mixture using 100% RAP with Emulsified Asphalt-Recycling Agent as a New Pavement Base Course. Adv. Mater. Sci. Eng. 2020, 2020, 5863458. [Google Scholar] [CrossRef]
- Bocci, E.; Prosperi, E. Analysis of different reclaimed asphalt pavements to assess the potentiality of RILEM cohesion test. Mater. Struct./Mater. Constr. 2020, 53, 117. [Google Scholar] [CrossRef]
- Chaitanya, G.; Ramya Sri, M.; Sudhakar Reddy, K. Fatigue performance of bituminous mixes containing reclaimed asphalt pavement (RAP) material. In Proceedings of the 3rd Conference of Transportation Research Group of India (3rd CTRG), Kolkata, India, 17–20 December 2015; Available online: https://www.researchgate.net/publication/283291906_Fatigue_performance_of_bituminous_mixes_containing_reclaimed_asphalt_pavement_RAP_material (accessed on 8 April 2025).
- Hidalgo, A.E.; Moreno-Navarro, F.; Tauste, R.; Rubio-Gámez, M.C. The Influence of Reclaimed Asphalt Pavement on the Mechanical Performance of Bituminous Mixtures. An Analysis at the Mortar Scale. Sustainability 2020, 12, 8343. [Google Scholar] [CrossRef]
- Xie, Z.; Rizvi, H.; Purdy, C.; Ali, A.; Mehta, Y. Effect of rejuvenator types and mixing procedures on volumetric properties of asphalt mixtures with 50% RAP. Constr. Build. Mater. 2019, 218, 457–464. [Google Scholar] [CrossRef]
- Mogawer, W.S.; Booshehrian, A.; Vahidi, S.; Austerman, A.J. Evaluating the effect of rejuvenators on the degree of blending and performance of high RAP, RAS, and RAP/RAS mixtures. Road Mater. Pavement Des. 2013, 14, 193–213. [Google Scholar] [CrossRef]
- Loise, V.; Caputo, P.; Porto, M.; Calandra, P.; Angelico, R.; Oliviero Rossi, C. A review on Bitumen Rejuvenation: Mechanisms, materials, methods and perspectives. Appl. Sci. 2019, 9, 4316. [Google Scholar] [CrossRef]
- Li, H.; Xing, C.; Zhu, B.; Zhang, X.; Gao, Y.; Tang, S.; Cheng, H. Comparative analysis of four styrene-butadiene-styrene (SBS) structure repair agents in the rejuvenation of aged SBS-modified bitumen. Constr. Build. Mater. 2025, 476, 141232. [Google Scholar] [CrossRef]
- Tabatabaee, H.A.; Kurth, T.L. Analytical investigation of the impact of a novel bio-based recycling agent on the colloidal stability of aged bitumen. Road Mater. Pavement Des. 2017, 18, 131–140. [Google Scholar] [CrossRef]
- De Bock, L.; Piérard, N.; Vansteenkiste, S.; Vanelstraete, A. Categorisation and Analysis of Rejuvenators for Asphalt Recycling–Dossier 21. Brussels. May 2020. Available online: https://brrc.be/sites/default/files/2020-05/dossier21_en.pdf (accessed on 8 April 2025).
- Dony, A.; Colin, J.; Bruneau, D.; Drouadaine, I.; Navaro, J. Reclaimed asphalt concretes with high recycling rates: Changes in reclaimed binder properties according to rejuvenating agent. Constr. Build. Mater. 2013, 41, 175–181. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B.; Frank, R. Evaluation of different recycling agents for restoring aged asphalt binder and performance of 100 % recycled asphalt. Mater. Struct./Mater. Constr. 2015, 48, 2475–2488. [Google Scholar] [CrossRef]
- Ameri, M.; Mansourkhaki, A.; Daryaee, D. Evaluation of fatigue behavior of high reclaimed asphalt binder mixes modified with rejuvenator and softer bitumen. Constr. Build. Mater. 2018, 191, 702–712. [Google Scholar] [CrossRef]
- Gong, M.; Yang, J.; Zhang, J.; Zhu, H.; Tong, T. Physical–chemical properties of aged asphalt rejuvenated by bio-oil derived from biodiesel residue. Constr. Build. Mater. 2016, 105, 35–45. [Google Scholar] [CrossRef]
- Li, H.; Dong, B.; Wang, W.; Zhao, G.; Guo, P.; Ma, Q. Effect of Waste Engine Oil and Waste Cooking Oil on Performance Improvement of Aged Asphalt. Appl. Sci. 2019, 9, 1767. [Google Scholar] [CrossRef]
- Mamun, A.A.; Al-Abdul Wahhab, H.I.; Dalhat, M.A. Comparative Evaluation of Waste Cooking Oil and Waste Engine Oil Rejuvenated Asphalt Concrete Mixtures. Arab. J. Sci. Eng. 2020, 45, 7987–7997. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B.; Poulikakos, L.; Frank, R. Influence of six rejuvenators on the performance properties of Reclaimed Asphalt Pavement (RAP) binder and 100% recycled asphalt mixtures. Constr. Build. Mater. 2014, 71, 538–550. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.; Frank, R. Evaluation of Rejuvenator’s Effectiveness with Conventional Mix Testing for 100% Reclaimed Asphalt Pavement Mixtures. Transp. Res. Rec. 2013, 2370, 17–25. [Google Scholar] [CrossRef]
- Bocci, E.; Grilli, A.; Bocci, M.; Gomes, V. Recycling of high percentages of reclaimed asphalt using a bio-rejuvenator—A case study. In Proceedings of the 6th Eurasphalt & Eurobitume Congress, Prague, Czech Republic, 1–3 June 2016. [Google Scholar] [CrossRef]
- Farooq, M.A.; Mir, M.S.; Sharma, A. Laboratory study on use of RAP in WMA pavements using rejuvenator. Constr. Build. Mater. 2018, 168, 61–72. [Google Scholar] [CrossRef]
- Joni, H.H.; Al-Rubaee, R.H.A.; Al-zerkani, M.A. Rejuvenation of aged asphalt binder extracted from reclaimed asphalt pavement using waste vegetable and engine oils. Case Stud. Constr. Mater. 2019, 11, e00279. [Google Scholar] [CrossRef]
- Walther, A.; Cannone Falchetto, A.; Wang, D. Performance characteristics of in-plant-mixed stone mastic asphalt SMA using different rejuvenators. J. Assoc. Asph. Paving Technol. 2020, 89, 481–513. [Google Scholar]
- Karlsson, R.; Isacsson, U. Application of FTIR-ATR to Characterization of Bitumen Rejuvenator Diffusion. J. Mater. Civ. Eng. 2003, 15, 157–165. [Google Scholar] [CrossRef]
- Hou, X.; Lv, S.; Chen, Z.; Xiao, F. Applications of Fourier transform infrared spectroscopy technologies on asphalt materials. Measurement 2018, 121, 304–316. [Google Scholar] [CrossRef]
- Hofko, B.; Porot, L.; Cannone, A.F.; Poulikakos, L.; Huber, L.; Lu, X.; Mollenhauer, K. FTIR spectral analysis of bituminous binders: Reproducibility and impact of ageing temperature. Mater. Struct./Mater. Constr. 2018, 51, 45. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, Y.; Ran, M.; Zhou, X.; Zou, L.; Guo, M. Application of Infrared Spectroscopy in Prediction of Asphalt Aging Time History and Fatigue Life. Coatings 2020, 10, 959. [Google Scholar] [CrossRef]
- Nie, Y.; Gao, W.; Zhou, C.; Yu, P.; Song, X. Evaluation of ageing behaviors of asphalt binders using FTIR tests. Int. J. Pavement Res. Technol. 2021, 14, 615–624. [Google Scholar] [CrossRef]
- Noor, L.; Wasiuddin, N.M.; Mohammad, L.N.; Salomon, D. Use of Fourier Transform Infrared (FT-IR) Spectroscopy to Determine the Type and Quantity of Rejuvenator Used in Asphalt Binder. Sustain. Civ. Infrastruct. 2020, 70–84. [Google Scholar] [CrossRef]
- Grilli, A.; Bocci, M.; Cardone, F.; Conti, C.; Giorgini, E. Laboratory and in-plant validation of hot mix recycling using a rejuvenator. Int. J. Pavement Res. Technol. 2013, 6, 364–371. [Google Scholar]
- Prosperi, E.; Bocci, E. A Review on Bitumen Aging and Rejuvenation Chemistry: Processes, Materials and Analyses. Sustainability 2021, 13, 6523. [Google Scholar] [CrossRef]
- Bocci, E.; Prosperi, E.; Mair, V.; Bocci, M. Ageing and Cooling of Hot-Mix-Asphalt during Hauling and Paving—A Laboratory and Site Study. Sustainability 2020, 12, 8612. [Google Scholar] [CrossRef]
- Bocci, E.; Mazzoni, G.; Canestrari, F. Ageing of rejuvenated bitumen in hot recycled bituminous mixtures: Influence of bitumen origin and additive type. Road Mater. Pavement Des. 2019, 20, S127–S148. [Google Scholar] [CrossRef]
- Dos Santos, S.; Partl, M.N.; Poulikakos, L.D. From virgin to recycled bitumen: A microstructural view. Compos. B Eng. 2015, 80, 177–185. [Google Scholar] [CrossRef]
- Mogawer, W.S.; Stuart, K.D.; Austerman, A.; Ahmed, S. Influence of Reclaimed Asphalt Pavement (RAP) Source and Virgin Binder Source on RAP Specifications and Balanced Mix Design. J. Assoc. Asph. Paving Technol. 2020, 89, 95–136. [Google Scholar]
- Giavarini, C. Stability of bitumens produced by thermal processes. Fuel 1981, 60, 401–404. [Google Scholar] [CrossRef]
- Speight, J.G. Visbreaking: A technology of the past and the future. Sci. Iran. 2012, 19, 569–573. [Google Scholar] [CrossRef]
- Giavarini, C. Visbreaker and straight-run bitumens. Fuel 1984, 63, 1515–1517. [Google Scholar] [CrossRef]
- Giavarini, C. , Saporito, S. Oxidation of visbreaker bitumens. Fuel 1989, 68, 943–946. [Google Scholar] [CrossRef]
- Rathore, M.; Zaumanis, M. Impact of laboratory mixing procedure on the properties of reclaimed asphalt pavement mixtures. Constr. Build. Mater. 2020, 264, 120709. [Google Scholar] [CrossRef]
- Lolly, R.; Zeiada, W.; Souliman, M.; Kaloush, K. Effects of Short-Term Aging on Asphalt Binders and Hot Mix Asphalt at Elevated Temperatures and Extended Aging Time. MATEC Web Conf. 2017, 120, 07010. [Google Scholar] [CrossRef]
- Khan, R.; Grenfell, J.; Collop, A.; Airey, G.; Gregory, H. Moisture damage in asphalt mixtures using the modified SATS test and image analysis. Constr. Build. Mater. 2013, 43, 165–173. [Google Scholar] [CrossRef]
- ASTM D8228-19; Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature. ASTM: West Conshohocken, PA, USA, 2019. [CrossRef]
- Prosperi, E.; Bocci, E.; Bocci, M. Effect of Bitumen Production Process and Mix Heating Temperature on the Rheological Properties of Hot Recycled Mix Asphalt. Sustainability 2022, 14, 9677. [Google Scholar] [CrossRef]
- Graziani, A.; Bocci, E.; Canestrari, F. Bulk and shear characterization of bituminous mixtures in the linear viscoelastic domain. Mech. Time Depend. Mater. 2014, 18, 527–554. [Google Scholar] [CrossRef]
- Zhou, F.; Im, S.; Sun, L.; Scullion, T. Development of an IDEAL cracking test for asphalt mix design and QC/QA. Road Mater. Pavement Des. 2017, 86, 549–577. [Google Scholar] [CrossRef]
- Avsenik, L.; Klinar, D.; Tušar, M.; Perše, L.S. Use of modified slow tire pyrolysis product as a rejuvenator for aged bitumen. Constr. Build. Mater. 2016, 120, 605–616. [Google Scholar] [CrossRef]
- Khodadadi, M.; Moradi, L.; Dabir, B.; Nejad, F.M.; Khodaii, A. Reuse of drill cuttings in hot mix asphalt mixture: A study on the environmental and structure performance. Constr. Build. Mater. 2020, 256, 119453. [Google Scholar] [CrossRef]
- ANAS (Azienda Nazionale Autonoma Strade). Capitolato Speciale D’appalto–Norme Tecniche per L’esecuzione del Contratto (in Italian); ANAS: Roma, Italy, 2021. [Google Scholar]
- Singh, B.; Saboo, N.; Kumar, P. Use of Fourier transform infrared spectroscopy to study ageing characteristics of asphalt binders. Pet. Sci. Technol. 2017, 35, 1648–1654. [Google Scholar] [CrossRef]
- Mirwald, J.; Nura, D.; Hofko, B. Recommendations for handling bitumen prior to FTIR spectroscopy. Mater. Struct./Mater. Constr. 2022, 55, 26. [Google Scholar] [CrossRef]
- Prosperi, E.; Bocci, E.; Bocci, M. Evaluation of the rejuvenating effect of different additives on bituminous mixtures including hot-recycled RA as a function of the production temperature. Road Mater. Pavement Des. 2022, 23, 2798–2817. [Google Scholar] [CrossRef]
Property | Unit | Norm | VB | SR |
---|---|---|---|---|
Penetration at T = 25 °C | 10−1 mm | EN 1426 | 62 | 63 |
Ring & ball softening point | °C | EN 1427 | 50 | 49 |
Temperature G */sinδ > 1 kPa | °C | EN 14770 | 64 | 64 |
Glover–Rowe parameter at T = 15 °C, ω = 0.005 rad/s | Pa | - | 189 | 75 |
ID | Type | Density @ T = 20 °C [g/cm3] | Flash Point [°C] | Kinematic Viscosity @ T = 25 °C [mPa∙s] |
---|---|---|---|---|
A | rejuvenator | 0.80 | >150 | 45 |
B | rejuvenator | 0.93 | >295 | 98 |
ITSM | ITS | CT-Index | |
---|---|---|---|
30 min vs. 90 min | 0.00001 | 0.00001 | 0.0003 |
90 min vs. 180 min | 0.0005 | 0.001 | 0.0308 |
ITSM | ITS | CT-Index | ||||
---|---|---|---|---|---|---|
Bitumen Factor | T Factor | Bitumen Factor | T Factor | Bitumen Factor | T Factor | |
00RAP-30 min | 0.3474 | 0.0947 | 0.0049 | 0.1041 | 0.0010 | 0.0688 |
00RAP-90 min | 0.0074 | 0.0008 | 0.0003 | 0.0020 | 0.0583 | 0.0251 |
00RAP-180 min | 0.0001 | 0.0001 | 0.0001 | 0.0004 | 0.0008 | 0.0157 |
50RAP-30 min | 0.0331 | 0.0087 | 0.0479 | 0.0046 | 0.0196 | 0.0193 |
50RAP-90 min | 0.0048 | 0.0006 | 0.0406 | 0.0182 | 0.0341 | 0.0150 |
50RAP-180 min | 0.0008 | 0.0001 | 0.0344 | 0.0016 | 0.0141 | 0.0113 |
50RAP+A-30 min | 0.0405 | 0.0045 | 0.0107 | 0.0007 | 0.0156 | 0.0123 |
50RAP+A-90 min | 0.0240 | 0.0004 | 0.0363 | 0.0036 | 0.0006 | 0.0015 |
50RAP+A-180 min | 0.0300 | 0.0004 | 0.0013 | 0.0001 | 0.0045 | 0.0035 |
50RAP+B-30 min | 0.0017 | 0.0003 | 0.0361 | 0.0115 | 0.0001 | 0.0106 |
50RAP+B-90 min | 0.0008 | 0.0001 | 0.0014 | 0.0003 | 0.0009 | 0.0026 |
50RAP+B-180 min | 0.0011 | 0.0001 | 0.0221 | 0.0005 | 0.0240 | 0.0345 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prosperi, E.; Bocci, E.; Marchegiani, G. The Influence of Bitumen Nature and Production Conditions on the Mechanical and Chemical Properties of Asphalt Mixtures Containing Reclaimed Asphalt Pavement. Materials 2025, 18, 3713. https://doi.org/10.3390/ma18153713
Prosperi E, Bocci E, Marchegiani G. The Influence of Bitumen Nature and Production Conditions on the Mechanical and Chemical Properties of Asphalt Mixtures Containing Reclaimed Asphalt Pavement. Materials. 2025; 18(15):3713. https://doi.org/10.3390/ma18153713
Chicago/Turabian StyleProsperi, Emiliano, Edoardo Bocci, and Giovanni Marchegiani. 2025. "The Influence of Bitumen Nature and Production Conditions on the Mechanical and Chemical Properties of Asphalt Mixtures Containing Reclaimed Asphalt Pavement" Materials 18, no. 15: 3713. https://doi.org/10.3390/ma18153713
APA StyleProsperi, E., Bocci, E., & Marchegiani, G. (2025). The Influence of Bitumen Nature and Production Conditions on the Mechanical and Chemical Properties of Asphalt Mixtures Containing Reclaimed Asphalt Pavement. Materials, 18(15), 3713. https://doi.org/10.3390/ma18153713