Stabilization of Clay Soils Using a Lime Derived from Seashell
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Soil Sample
2.1.2. Waste Seashell-Derived Lime
2.1.3. Sodium Hydroxide
2.2. Methodology
2.2.1. Specimen Molding and Preparation
2.2.2. UCS Test
2.2.3. Graphical and Statistical Analysis of the Influence of the WSL Content, NaOH Molarity, and Curing Time on the Strength of Stabilized Clay Soils
2.2.4. Microstructural Analysis
3. Results
3.1. Effect of Waste Shell Lime Content, Alkaline Activator Molarity (NaOH), and Curing Time on the Unconfined Compressive Strength of Compacted Mixtures
3.2. Comparison of the Efficiency of Clay Soil Stabilization Using Alkali-Activated WSL and Type III PC Cured at 7 and 28 Days
3.3. Statistical Analysis of the Influence of WSL Content, NaOH Molarity, and Curing Time on the Strength of Stabilized Clay Soils
3.4. SEM–EDS Analysis of the Stabilized Mixtures
4. Discussions
5. Conclusions
- Based on thermogravimetric analysis (TGA-DTG) and SEM-EDS observations, a recommended calcination condition for producing reactive waste seashell lime (WSL) is 800 °C for 2 h. This temperature–time combination was shown to enable the effective decomposition of calcium carbonate into calcium oxide while avoiding issues such as over-calcination or sintering, which may negatively impact reactivity. These conditions are therefore proposed as a practical guideline for future studies aiming to value seashell waste in sustainable construction materials.
- In terms of mechanical behavior, the highest unconfined compressive strength (UCS) was observed with an alkaline activation of 1 mol/L NaOH and 11% WSL content, reaching values up to 4605 kPa at 28 days of curing. This performance outperformed Portland cement at lower binder contents (3% and 7%), demonstrating that WSL can be a technically viable and sustainable alternative, particularly for applications with material or cost constraints. However, at the 11% dosage level, Portland cement exhibited slightly higher UCS values, albeit with more dispersion.
- Microstructural analysis revealed dense matrices rich in cementitious gels such as C–S–H and C–A–S–H in WSL-stabilized samples, confirming the effectiveness of alkali activation as a mechanism for producing binding phases. These findings were further supported by factorial ANOVA, which demonstrated that the WSL content, curing time, and NaOH molarity significantly influenced the compressive strength (p < 0.05), including notable interaction effects. The combination of 11% WSL with 1 mol/L NaOH at 28 days provided the most consistent and robust performance, aligning with the overall experimental trends.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WSL | Waste Seashell Lime |
PC | Portland Cement |
NaOH | Sodium Hydroxide |
TGA | Thermogravimetric analysis |
UCS | Unconfined Compressive Strength |
qu | Compressive Strength |
SEM | Scanning Electron Microscopy |
EDS | Energy Dispersive X-ray Spectroscopy |
C–S–H | Calcium Silicate Hydrate |
C–A–S–H | Calcium Aluminum Silicate Hydrate |
R2 | Coefficient of Determination |
SE | Secondary Electrons (SEM Detector) |
BSE | Backscattered Electrons (SEM Detector) |
wt.% | Weight Percent |
Appendix A
Calcination Temperature (°C) | Duration (h) | Calcium Content (wt.%) | Standard Deviation | ||
---|---|---|---|---|---|
Min | Mean | Max | |||
700 | 2 | 32.71 | 43.55 | 84.21 | 22.74 |
3 | 27.10 | 36.52 | 48.72 | 11.08 | |
4 | 32.87 | 39.33 | 45.78 | 9.13 | |
800 | 2 | 29.24 | 53.36 | 71.58 | 21.78 |
3 | 31.06 | 50.64 | 63.21 | 17.18 | |
4 | 23.71 | 32.10 | 23.71 | 8.25 | |
900 | 2 | 31.06 | 36.16 | 43.25 | 6.33 |
3 | 28.77 | 37.11 | 50.07 | 11.37 | |
4 | 32.80 | 58.24 | 83.01 | 25.11 |
References
- Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2018, 10, 195–217. [Google Scholar] [CrossRef]
- Uwasu, M.; Hara, K.; Yabar, H. World Cement Production and Environmental Implications. Environ. Dev. 2015, 10, 36–47. [Google Scholar] [CrossRef]
- Adeyemi, O.O.; Adeboje, A.O.; Adeoye, M.O. Effect of Crab Shell Powder on the Engineering Properties of Soil. J. Mater. Environ. Sci. 2015, 6, 3494–3502. [Google Scholar]
- Chang, I.; Lee, M.; Cho, G.-C. Global CO2 Emission-Related Geotechnical Engineering Hazards and the Mission for Sustainable Geotechnical Engineering. Energies 2019, 12, 2567. [Google Scholar] [CrossRef]
- Khayat, N.; Nasiri, H. Study of Strength Characteristics and Micro-structure Analysis of Soil Stabilized with Wastewater and Polymer. Int. J. Pavement Res. Technol. 2024, 17, 1213–1224. [Google Scholar] [CrossRef]
- Raza, A.; Alashker, Y.; Azab, M.; Abdallah, M.; Barakat, O.; Elhadi, K.M. Development of eco-friendly alkali-activated nanocomposites comprising micro-fibers at ambient curing conditions. Case Stud. Constr. Mater. 2022, 17, e01540. [Google Scholar] [CrossRef]
- Torres-Ortega, R.; Torres-Sánchez, D.; Saba, M. Impact of Physical Processes and Temperatures on the Composition, Microstructure, and Pozzolanic Properties of Oil Palm Kernel Ash. ChemEngineering 2024, 8, 122. [Google Scholar] [CrossRef]
- Bassani, M.; Tefa, L.; Coppola, B.; Palmero, P. Alkali-activation of aggregate fines from construction and demolition waste: Valorisation in view of road pavement subbase applications. J. Clean. Prod. 2019, 234, 71–84. [Google Scholar] [CrossRef]
- Liang, G.; Liu, T.; Li, H.; Dong, B.; Shi, T. A novel synthesis of lightweight and high-strength green geopolymer foamed material by rice husk ash and ground-granulated blast-furnace slag. Resour. Conserv. Recycl. 2022, 176, 105922. [Google Scholar] [CrossRef]
- Moreira, E.B.; Baldovino, J.A.; Rose, J.L.; dos Santos Izzo, R.L. Effects of porosity, dry unit weight, cement content and void/cement ratio on unconfined compressive strength of roof tile waste-silty soil mixtures. J. Rock Mech. Geotech. Eng. 2019, 11, 369–378. [Google Scholar] [CrossRef]
- de Araújo, M.T.; Ferrazzo, S.T.; Chaves, H.M.; da Rocha, C.G.; Consoli, N.C. Mechanical behavior, mineralogy, and microstructure of alkali-activated wastes-based binder for a clayey soil stabilization. Constr. Build. Mater. 2023, 362, 129757. [Google Scholar] [CrossRef]
- Monneron-Gyurits, M.; Joussein, E.; Soubrand, M.; Fondanèche, P.; Rossignol, S. Valorization of mussel and oyster shells toward metakaolin-based alkaline activated material. Appl. Clay Sci. 2018, 162, 15–26. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, X.; Wang, L.; Yin, Z.; Da, B.; Chen, D. Effect of waste oyster shell powder content on properties of cement-metakaolin mortar. Case Stud. Constr. Mater. 2022, 16, e01088. [Google Scholar] [CrossRef]
- Mi, R.; Yu, T.; Poon, C.S. Feasibility of utilising porous aggregates for carbon sequestration in concrete. Environ. Res. 2023, 228, 115924. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, P.; Pan, T.; Liao, Y.; Zhao, H. Evaluation of the eco-friendly crushed waste oyster shell mortars containing supplementary cementitious materials. J. Clean. Prod. 2019, 237, 117811. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, J.; Nie, Y.; He, W. Effect of seashell powder as binder material on the performance and microstructure of low-carbon sustainable alkali-activated concrete. J. Build. Eng. 2024, 90, 109442. [Google Scholar] [CrossRef]
- Almuaythir, S.; Zaini, M.S.I.; Hasan, M.; Hoque, M.I. Stabilization of expansive clay soil using shells based agricultural waste ash. Sci. Rep. 2025, 15, 10186. [Google Scholar] [CrossRef]
- Nujid, M.; Idrus, J.; Tholibon, D.A.; Bawadi, N.F.; Firoozi, A.A. Bearing capacity of soft marine soil stabilization with cockel shell powder (CSP). Int. J. Eng. Adv. Technol. 2020, 9, 1490–1497. [Google Scholar] [CrossRef]
- Moghimi, F.; Noorzad, R.; Shirvani, R.A. Stabilization of Amol fat clay using seashell ash. Bull. Eng. Geol. Environ. 2022, 81, 326. [Google Scholar] [CrossRef]
- Etim, R.K.; Attah, I.C.; Yohanna, P. Experimental study on potential of oyster shell ash in structural strength improvement of lateritic soil for road construction. Int. J. Pavement Res. Technol. 2020, 13, 341–351. [Google Scholar] [CrossRef]
- Suwito, A.R.; Hasan, M.; Zaini, M.S.I. Basic Geotechnical Characteristic of Soft Clay Stabilised with Cockle Shell Ash and Silica Fume. Construction 2024, 4, 255–260. [Google Scholar] [CrossRef]
- Anggraini, V.; Dassanayake, S.; Emmanuel, E.; Yong, L.L.; Kamaruddin, F.A.; Syamsir, A. Response Surface Methodology: The Improvement of Tropical Residual Soil Mechanical Properties Utilizing Calcined Seashell Powder and Treated Coir Fibre. Sustainability 2023, 15, 3588. [Google Scholar] [CrossRef]
- Zhang, Z.; Omine, K.; Li, C.; Shi, S.; Oye, F.S. Improvement effects of treating with calcined oyster shell and carbonized cow dung compost on clay with high water content. Case Stud. Constr. Mater. 2022, 17, e01654. [Google Scholar] [CrossRef]
- Jeong, I.; Hibino, T.; Yoon, S.; Kim, K. The Effects of Calcined Waste Oyster Shells on Physicochemical Changes in Coastal Sediments. J. Mar. Sci. Eng. 2025, 13, 469. [Google Scholar] [CrossRef]
- Petti, R.; Vitone, C.; Marchi, M.I.; Plötze, M.; Puzrin, A.M. On the use of seashells as green solution to mechanically stabilise dredged sediments. E3S Web Conf. 2024, 544, 11007. [Google Scholar] [CrossRef]
- Ruiz, G.; Farfán, P. Use of crushed seashell by-products for sandy subgrade stabilization for pavement purpose. In Proceedings of the 14th LACCEI International Multi-Conference for Engineering, Education, and Technology: Engineering Innovations for Global Sustainability, San Jose, Costa Rica, 20–22 July 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Gharzouni, A.; Diliberto, C.; Rossignol, S. Valorization of oyster and mussel shells into geopolymers. Constr. Build. Mater. 2018, 160, 247–257. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Bourguiba, A.; El Mendili, Y.; Sebaibi, N.; Boutouil, M. A preliminary investigation of a novel mortar based on alkali-activated seashell waste powder. Powder Technol. 2021, 389, 471–481. [Google Scholar] [CrossRef]
- Acuña, C.; Betancur, J.; Baldovino, J.A.; Barboza, G.; Saba, M. Analysis of Dispersivity in Marine Clays of Cartagena de Indias, 559 Colombia. Geosciences 2023, 13, 162. [Google Scholar] [CrossRef]
- Román Martínez, C.; Nuñez de la Rosa, Y.E.; Estrada Luna, D.; Baldovino, J.A.; Jordi Bruschi, G. Strength, Stiffness, and Microstructure of Stabilized Marine Clay-Crushed Limestone Waste Blends: Insight on Characterization through Porosity-to-Cement Index. Materials 2023, 16, 4983. [Google Scholar] [CrossRef]
- Baldovino, J.d.J.A.; de la Rosa, Y.E.N.; Calabokis, O.P.; Vergara, J.A.A.; López, L.C.S. Geotechnical Behavior of Xanthan Gum-Stabilized Clay Reinforced with Polypropylene Fibers. Polymers 2025, 17, 363. [Google Scholar] [CrossRef]
- ASTM 4318; Standard Test Methods for Liquid Limit, Plastic Limit and Plasticity Index of Soils. ASTM International: West Conshohocken, PA, USA, 2010.
- ASTM D2487-11; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM Stand. Guide.; ASTM International: West Conshohocken, PA, USA, 2017; p. 11.
- ASTM D1557-12; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 or 2700 kN-m/m3). ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM D854; Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International: West Conshohocken, PA, USA, 2014.
- Eskisar, T.; Rahat, E. Stabilization of recycled and pure soils using mussel shell powder and cement: Experimental evaluation of strength and durability. Eng. Sci. Technol. Int. J. 2025, 67, 102073. [Google Scholar] [CrossRef]
- Muñoz-Pérez, S.P.; Aguilar-Morante, J.G.; Díaz-Flores, I.P. Uso de los residuos marinos para estabilizaciones de suelo con fines de pavimentación: Una revisión literaria. Rev. Fac. Ing. Univ. Antioq. 2022, 109, 25–34. [Google Scholar] [CrossRef]
- García, M. Assessment of Mussel Shells for the Development of Different Bio-Based Building Materials. Ph.D. Thesis, Universidad de A Coruña, A Coruña, Spain, 2020. [Google Scholar]
- Hamada, H.M.; Al-Attar, A.; Askar, M.K.; Beddu, S.; Majdi, A.; Humada, A.M. Recycled Seashells as Sustainable Aggregates in Concrete: Advancing Waste Management and Enhancing Performance: A Comprehensive Review. J. Build. Eng. 2025, 110, 113067. [Google Scholar] [CrossRef]
- Md Nujid, M.; Tholibon, D.A.; Kushairi Rahman, M.H. Effect of cockle shell powder as sustainable additive on geotechnical engineering properties of stabilized soil. Arab. J. Geosci. 2022, 15, 1306. [Google Scholar] [CrossRef]
- Mohamed, M.; Yusup, S.; Maitra, S. Decomposition study of calcium carbonate in cockle shell. J. Eng. Sci. Technol. 2012, 7, 1–10. [Google Scholar]
- Suleiman, I.E.; Abubakar, A.; Otuoze, H.S.; Suleiman, M.A.; Momoh, R.O.; Aliyu, S.N. Effects of particle size distribution on the burn ability of limestone. Leonardo Electron. J. Pract. Technol. 2013, 12, 115–130. [Google Scholar]
- ASTM D1631; Standard Practice for Making and Curing Soil-Cement Compression and Flexure Test Specimens in the Laboratory. ASTM International: West Conshohocken, PA, USA, 2007.
- Gebresamuel, H.T.; Melese, D.T.; Boru, Y.T.; Legese, A.M. Effect of Specimens’ Height to Diameter Ratio on Unconfined Compressive Strength of Cohesive Soil. Stud. Geotech. Mech. 2023, 45, 112–132. [Google Scholar] [CrossRef]
- Russell, A.R. (Ed.) Unsaturated Soils: Research & Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar] [CrossRef]
- Baldovino, J.A.; Moreira, E.B.; Teixeira, W.; Izzo, R.L.; Rose, J.L. Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil. J. Rock Mech. Geotech. Eng. 2018, 10, 188–194. [Google Scholar] [CrossRef]
- Baldovino, J.A.; Nuñez de la Rosa, Y.E.; Namdar, A. Sustainable Cement Stabilization of Plastic Clay Using Ground Municipal Solid Waste: Enhancing Soil Properties for Geotechnical Applications. Sustainability 2024, 16, 5195. [Google Scholar] [CrossRef]
- López, L.C.S.; Vergara, J.A.A.; de la Rosa, Y.E.N.; Arrieta, A.; Baldovino, J.D.J.A. Effect of Grain Size and Porosity/Binder Index on the Unconfined Compressive Strength, Stiffness and Microstructure of Cemented Colombian Sands. Materials 2024, 17, 5193. [Google Scholar] [CrossRef]
- ASTM D 2166-03; Standard Test Method for Unconfined Compressive Strength of Cohesive Soil 1. ASTM International: West Conshohocken, PA, USA, 2003; p. 4.
- Decky, M.; Papanova, Z.; Juhas, M.; Kudelcikova, M. Evaluation of the Effect of Average Annual Temperatures in Slovakia between 1971 and 2020 on Stresses in Rigid Pavements. Land 2022, 11, 764. [Google Scholar] [CrossRef]
- Baldovino, J.D.J.A.; Nuñez de la Rosa, Y.E.; Calabokis, O.P. Effect of porosity/binder index on strength, stiffness and microstructure of cemented clay: The impact of sustainable development geomaterials. Materials 2024, 17, 921. [Google Scholar] [CrossRef]
- Bamigboye, G.O.; Nworgu, A.T.; Odetoyan, A.O.; Kareem, M.; Enabulele, D.O.; Bassey, D.E. Sustainable use of seashells as binder in concrete production: Prospect and challenges. J. Build. Eng. 2021, 34, 101864. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Hasaniyah, M.W.; Zeyad, A.M.; Awad, M.M.; Alaskar, A.; Mohamed, A.M.; Alyousef, R. Durability and mechanical properties of seashell partially-replaced Cement. J. Build. Eng. 2020, 31, 101328. [Google Scholar] [CrossRef]
- Wang, J.; Liu, E.; Li, L. Characterization on the recycling of waste seashells with Portland cement towards sustainable cementitious materials. J. Clean. Prod. 2019, 220, 235–252. [Google Scholar] [CrossRef]
- Vélez-Henao, J.A.; Weinland, F.; Reintjes, N. Life cycle assessment of aquaculture bivalve shellfish production—A critical review of methodological trends. Int. J. Life Cycle Assess. 2021, 26, 1943–1958. [Google Scholar] [CrossRef]
- Topić Popović, N.; Lorencin, V.; Strunjak-Perović, I.; Čož-Rakovac, R. Gestión y utilización de residuos de Shell: Mitigar la contaminación orgánica y mejorar la sostenibilidad. Apl. Cienc. 2023, 13, 623. [Google Scholar] [CrossRef]
- Ishangulyyev, R.; Kim, S.; Lee, S.H. Understanding food loss and waste—Why are we losing and wasting food? Foods 2019, 8, 297. [Google Scholar] [CrossRef]
- Kobatake, H.; Kirihara, S. Lowering the incineration temperature of fishery waste to optimize the thermal decomposition of shells and spines. Fish. Sci. 2019, 85, 573–579. [Google Scholar] [CrossRef]
- Olivia, M.; Oktaviani, R. Properties of concrete containing ground waste cockle and clam seashells. Procedia Eng. 2017, 171, 658–663. [Google Scholar] [CrossRef]
- Djobo, Y.J.N.; Elimbi, A.; Manga, J.D.; Ndjock, I.D.L. Partial replacement of volcanic ash by bauxite and calcined oyster shell in the synthesis of volcanic ash-based geopolymers. Constr. Build. Mater. 2016, 113, 673–681. [Google Scholar] [CrossRef]
- Ez-Zaki, H.; Diouri, A.; Kamali-Bernard, S.; Sassi, O. Composite cement mortars based on marine sediments and oyster shell powder. Mater. Constr. 2016, 66, e080. [Google Scholar] [CrossRef]
- Ok, Y.S.; Oh, S.E.; Ahmad, M.; Hyun, S.; Kim, K.R.; Moon, D.H.; Lee, S.S.; Lim, K.J.; Jeon, W.-T.; Yang, J.E. Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environ. Earth Sci. 2010, 61, 1301–1308. [Google Scholar] [CrossRef]
- Bellei, P.; Torres, I.; Solstad, R.; Flores-Colen, I. Potential Use of Oyster Shell Waste in the Composition of Construction Composites: A Review. Buildings 2023, 13, 1546. [Google Scholar] [CrossRef]
- Leone, R.; Calà, A.; Capela, M.N.; Colajanni, S.; Campisi, T.; Saeli, M. Recycling Mussel Shells as Secondary Sources in Green Construction Materials: A Preliminary Assessment. Sustainability 2023, 15, 3547. [Google Scholar] [CrossRef]
Property of Soil | Standard | Value |
---|---|---|
Consistency limits | ||
Plasticity limit, P.L. | [32] | 26.05 |
Plastic index, P.I. | [32] | 15.95 |
Grain-size distribution | ||
Fine Sand (0.075–0.425 mm) % | [33] | 12 |
Silt (0.002–0.075 mm) % | [33] | 78 |
Clay (<0.002 mm) % | [33] | 10 |
Mean diameter (d50) mm | [33] | 0.011 |
Effective diameter (d10) mm | [33] | 0.0021 |
Compaction characteristics (Standard Effort) | ||
Optimum moisture content (%) | [34] | 18.2 |
Maximum dry unit weight (kN/ m3) | [34] | 17.6 |
USCS Classification | [33] | CL |
Specific gravity | [35] | 2.8 |
Materials | SiO2 | Al2O3 | SO3 | K2O | CaO | Fe2O3 | TiO2 | LOI * |
---|---|---|---|---|---|---|---|---|
Soil (CL) | 66 | 21.1 | 4 | 3.1 | 3 | 0.9 | 0.3 | 1.6 |
Mix | Weight (%) | Molarity (NaOH) (mol/L) | Curing Time (d) | Number of Specimens | ||
---|---|---|---|---|---|---|
Soil | Cement | WSL | ||||
Soil–Cement | 100 | 3 | - | - | 7, 28 | 10 |
100 | 5 | - | - | 7, 28 | 10 | |
100 | 7 | - | - | 7, 28 | 10 | |
100 | 9 | - | - | 7, 28 | 10 | |
100 | 11 | - | - | 7, 28 | 10 | |
Soil–WSL | 100 | - | 3 | 0.5, 1, 1.5, 2 | 7, 28 | 24 |
100 | - | 7 | 0.5, 1, 1.5, 2 | 7, 28 | 24 | |
100 | - | 11 | 0.5, 1, 1.5, 2 | 7, 28 | 24 |
Source | Sum of Squares | Degrees of Freedom | Mean Squares | Z | p-Value | Significance (p-Value < 0.05) |
---|---|---|---|---|---|---|
Corrected Model | 28,600,608.958 a | 17 | 1,682,388.762 | 5.592 | <0.001 | yes |
Intersection | 512,442,762.3 | 1 | 512,442,762.3 | 1703.215 | <0.001 | yes |
WSL Content | 18,393,803.36 | 2 | 9,196,901.681 | 30.568 | <0.001 | yes |
Molarity (NaOH) | 5,019,283.153 | 3 | 1,673,094.384 | 5.561 | 0.002 | yes |
Curing Time (t) | 350,982.347 | 1 | 350,982.347 | 1.167 | 0.285 | no |
WSL * NaOH | 1,489,206.972 | 6 | 248,201.162 | 0.825 | 0.556 | no |
WSL * t | 809,789.528 | 2 | 404,894.763 | 1.346 | 0.269 | no |
NaOH * t | 2,537,543.597 | 3 | 845,847.865 | 2.811 | 0.048 | yes |
Error | 16,246,869.69 | 54 | 300,867.957 | |||
Total | 557,290,241 | 72 | ||||
Corrected Total | 44,847,478.65 | 71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López, L.C.S.; Ramos, J.C.L.; de la Rosa, Y.E.N.; Bruschi, G.J.; Baldovino, J.d.J.A. Stabilization of Clay Soils Using a Lime Derived from Seashell. Materials 2025, 18, 2723. https://doi.org/10.3390/ma18122723
López LCS, Ramos JCL, de la Rosa YEN, Bruschi GJ, Baldovino JdJA. Stabilization of Clay Soils Using a Lime Derived from Seashell. Materials. 2025; 18(12):2723. https://doi.org/10.3390/ma18122723
Chicago/Turabian StyleLópez, Luis Carlos Suárez, Juan Carlos López Ramos, Yamid E. Nuñez de la Rosa, Giovani Jordi Bruschi, and Jair de Jesús Arrieta Baldovino. 2025. "Stabilization of Clay Soils Using a Lime Derived from Seashell" Materials 18, no. 12: 2723. https://doi.org/10.3390/ma18122723
APA StyleLópez, L. C. S., Ramos, J. C. L., de la Rosa, Y. E. N., Bruschi, G. J., & Baldovino, J. d. J. A. (2025). Stabilization of Clay Soils Using a Lime Derived from Seashell. Materials, 18(12), 2723. https://doi.org/10.3390/ma18122723