Structural and Optical Modifications in the BaO-ZnO-LiF-B2O3-Yb2O3 Glass System after γ-Irradiation
Abstract
:1. Introduction
2. Materials and Methods
- Irradiation:
- b.
- TL:
- c.
- Density:
- d.
- XRD:
- e.
- FTIR spectroscopy:
- f.
- UV/Vis/NIR absorption spectroscopy:
- g.
- ESR:
3. Results and Discussion
3.1. Thermoluminescence (TL)
3.2. X-ray Diffraction (XRD)
3.3. Density
3.4. Fourier Transform Infrared (FTIR) Spectroscopy
3.5. Optical Absorption Spectroscopy
3.6. Electron Spin Resonance (ESR)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weber, W.J.; Ewing, R.C.; Angell, C.A.; Arnold, G.W.; Delaye, J.M.; Hobbs, L.W.; Price, D.L. Waste and Plutonium Disposition. J. Mater. Res. 1997, 12, 1946–1978. [Google Scholar]
- Griscom, D.L.; Friebele, E.J. Effects of Ionizing Radiation on Amorphous Insulators. Radiat. Eff. 1982, 65, 63–72. [Google Scholar] [CrossRef]
- Shelby, J.E. Effect of radiation on the physical properties of borosilicate glasses. J. Appl. Phys. 1980, 51, 2561–2565. [Google Scholar] [CrossRef]
- Delaye, J.M.; Peuget, S.; Bureau, G.; Calas, G. Molecular dynamics simulation of radiation damage in glasses. J. Non. Cryst. Solids 2011, 357, 2763–2768. [Google Scholar] [CrossRef]
- Weber, W.J. Radiation effects in nuclear waste glasses. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1988, 32, 471–479. [Google Scholar] [CrossRef]
- Elalaily, N.A.; Abou-Hussien, E.M.; Saad, E.A. Bismuth silicate glass containing heavy metal oxide as a promising radiation shielding material. Radiat. Eff. Defects Solids 2016, 171, 840–854. [Google Scholar] [CrossRef]
- El-Alaily, N.A.; Mohamed, R.M. Effect of irradiation on some optical properties and density of lithium borate glass. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2003, 98, 193–203. [Google Scholar] [CrossRef]
- Kaur, R.; Singh, S.; Pandey, O.P. UV-vis spectroscopic studies of gamma irradiated lead sodium borosilicate glasses. J. Mol. Struct. 2014, 1060, 251–255. [Google Scholar] [CrossRef]
- Abdelghany, A.M.; Elbatal, H.A. Effect of TiO2 doping and gamma ray irradiation on the properties of SrO-B2O2 glasses. 2013, 379, 214–219. [Google Scholar] [CrossRef]
- Kutub, A.A.; Elmanhawaawy, M.S.; Babateen, M.O. Studies on Gamma—Irradiated Sodium Tetraborate Glasses Containing Ytterbium. Solid State Sci. Technol. 2007, 15, 191–202. [Google Scholar]
- Fu, X.; Song, L.; Li, J. Radiation induced color centers in silica glasses of different OH content. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2014, 330, 7–10. [Google Scholar] [CrossRef]
- Imai, H.; Arai, K.; Isoya, J.; Hosono, H.; Abe, Y.; Imagawa, H. Generation of E’ centers and oxygen hole centers in synthetic silica glasses by y irradiation. Phys. Rev. B 1993, 48, 3116–3123. [Google Scholar] [CrossRef]
- Prabhu, N.S.; Sharmila, K.; Somashekarappa, H.M.; Al-ghamdi, H.; Almuqrin, A.H.; Sayyed, M.I.; Kamath, S.D. Enhanced thermoluminescence intensity, stability, and sensitivity of the Yb3+ doped BaO–ZnO–LiF–B2O2 glass by Sm3+ co-doping. Mater. Chem. Phys. 2021, 271, 1–11. [Google Scholar] [CrossRef]
- Sundara Rao, M.; Gandhi, Y.; Sanyal, B.; Bhargavi, K.; Piasecki, M.; Veeraiah, N. Studies on γ-ray induced structural changes in Nd3+doped lead alumino silicate glasses by means of thermoluminescence for dosimetric applications in high dose ranges. J. Alloys Compd. 2014, 616, 257–262. [Google Scholar] [CrossRef]
- Kalpana, T.; Sanyal, B.; Gandhi, Y.; Ravi Kumar, V.; Baskaran, G.S.; Bragiel, P.; Piasecki, M.; Veeraiah, N. Thermoluminescence features of alumina-mixed borophosphate glasses with Tb3+ ions for dosimetric applications. Int. J. Appl. Glas. Sci. 2017, 8, 188–195. [Google Scholar] [CrossRef]
- Sanyal, B.; Goswami, M.; Shobha, S.; Prakasan, V.; Chawla, S.P.; Krishnan, M.; Ghosh, S.K. Synthesis and characterization of Dy3+ doped lithium borate glass for thermoluminescence dosimetry. J. Non. Cryst. Solids 2017, 475, 184–189. [Google Scholar] [CrossRef]
- Babu, B.H.; Ravi Kanth Kumar, V.V. Fluorescence properties and electron paramagnetic resonance studies of γ-irradiated Sm3+-doped oxyfluoroborate glasses. J. Appl. Phys. 2012, 112, 093516. [Google Scholar] [CrossRef]
- Hari Babu, B.; Ollier, N.; Savelli, I.; El Hamzaoui, H.; Pastouret, A.; Poumellec, B.; Bouazaoui, M.; Bigot, L.; Lancry, M. Study of Radiation Effects on Er3+-Doped Nanoparticles Germano-Silica Fibers. J. Light. Technol. 2016, 34, 4981–4987. [Google Scholar] [CrossRef]
- Bishay, A. Radiation induced color centers in multicomponent glasses. J. Non. Cryst. Solids 1970, 3, 54–114. [Google Scholar] [CrossRef]
- Shivaramu, N.J.; Lakshminarasappa, B.N.; Coetsee, E.; Swart, H.C. Thermoluminescence behavior of gamma irradiated Y2O3:Sm3+ nanophosphor. J. Lumin. 2021, 232, 117855. [Google Scholar] [CrossRef]
- Shelby, J.E. Introduction to Glass Science and Technology, 2nd ed.; The Royal Society of Chemistry: Cambridge, UK, 2005; ISBN 0854046399. [Google Scholar]
- Ramana, M.V.; Sastry, G.S. Thermoluminescence in Oxy-Fluoro-Borate Glasses. Phys. Status Solidi 1989, 116, 205–207. [Google Scholar] [CrossRef]
- IAEA. Dosimetry for Food Irradiation; Technical Reports Series No. 409; IAEA: Vienna, Austria, 2002. [Google Scholar]
- Balu, L.; Amaravel, R.; Ezhil Pavai, R. Effect of Zno on Physical, Structural and Mechanical Properties of B2O3-Na2O—Zno Glasses. J. Appl. Phys. 2016, 8, 140–146. [Google Scholar]
- Mhareb, M.H.A.; Alqahtani, M.; Alshahri, F.; Alajerami, Y.S.M.; Saleh, N.; Alonizan, N.; Sayyed, M.I.; Ashiq, M.G.B.; Ghrib, T.; Al-Dhafar, S.I.; et al. The impact of barium oxide on physical, structural, optical, and shielding features of sodium zinc borate glass. J. Non. Cryst. Solids 2020, 541, 120090. [Google Scholar] [CrossRef]
- Dai, N.L.; Hu, L.; Yang, J.; Dai, S.; Lin, A. Spectroscopic properties of Yb3+-doped silicate glasses. J. Alloys Compd. 2004, 363, 1–5. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, H.; Zeng, Q.; Tang, X.; Gan, F. Yb:phosphate laser glass with high emission cross-section. J. Phys. Chem. Solids 2000, 61, 1217–1223. [Google Scholar] [CrossRef]
- Kitis, G.; Gomez-Ros, J.M.; Tuyn, J.W.N. Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics. J. Phys. D Appl. Phys. 1998, 31, 2636–2641. [Google Scholar] [CrossRef]
- Kumar, R.; Kanchan, T. Thermoluminescence behaviour of GdAlO3:Yb3+ under gamma exposure. Opt. Quantum Electron. 2018, 50, 1–13. [Google Scholar]
- Chen, R. Glow Curves with General Order Kinetics. J. Electrochem. Soc. 1969, 116, 1254–1257. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Lee, W.E. Immobilisation of Radioactive Waste in Glass. Introd. Nucl. Waste Immobil. 2005, 2, 245–282. [Google Scholar]
- Sangeetha, G.; Sekhar, K.C.; Hameed, A.; Ramadevudu, G.; Chary, M.N.; Shareefuddin, M. Influence of CaO on the structure of zinc sodium tetra borate glasses containing Cu2+ ions. J. Non. Cryst. Solids 2021, 563, 120784. [Google Scholar] [CrossRef]
- Davis, E.A.; Mott, N.F. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 1970, 22, 903–922. [Google Scholar] [CrossRef]
- Franz Urbach The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Phys. Rev. 1953, 92, 1324. [CrossRef]
- Engin, B.; Aydaş, C.; Demirtaş, H. ESR dosimetric properties of window glass. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2006, 243, 149–155. [Google Scholar] [CrossRef]
- Hassan, G.M.; Sharaf, M.A. ESR dosimetric properties of some biomineral materials. Appl. Radiat. Isot. 2005, 62, 375–381. [Google Scholar] [CrossRef]
Sample | Peak No. | (K) | (eV) | Frequency Factor (s−1) | Lifetime (Years) | ||
---|---|---|---|---|---|---|---|
ZLBBY0.1 [13] | 1 | 408 | 1.79 | 0.63 | 7.23 × 106 | 8.40 × 10−4 | 3.02 |
2 | 468 | 1.29 | 0.69 | 2.82 × 106 | 6.53 × 10−3 | ||
3 | 503 | 1.70 | 1.16 | 6.39 × 1010 | 55.50 | ||
4 | 539 | 1.59 | 1.23 | 4.49 × 1010 | 872 | ||
5 | 569 | 1.39 | 1.24 | 1.25 × 1010 | 3.11 × 103 | ||
6 | 612 | 1.22 | 1.29 | 4.95 × 109 | 4.26 × 104 | ||
ZLBBY0.5 | 1 | 412 | 1.79 | 0.62 | 4.41 × 106 | 9.34 × 10−4 | |
2 | 468 | 1.29 | 0.69 | 2.82 × 106 | 6.53 × 10−3 | ||
3 | 498 | 1.70 | 1.14 | 5.26 × 1010 | 31.10 | 3.59 | |
4 | 541 | 1.61 | 1.21 | 2.58 × 1010 | 735 | ||
5 | 568 | 1.39 | 1.24 | 1.31 × 1010 | 2.97 × 103 | ||
6 | 611 | 1.12 | 1.27 | 3.50 × 109 | 2.46 × 104 | ||
ZLBBY0.7 | 1 | 419 | 1.79 | 0.61 | 2.37 × 106 | 1.18 × 10−3 | |
2 | 468 | 1.29 | 0.67 | 1.66 × 106 | 5.10 × 10−3 | ||
3 | 500 | 1.70 | 1.11 | 2.27 × 1010 | 22.52 | 3.18 | |
4 | 540 | 1.71 | 1.19 | 1.72 × 1010 | 682 | ||
5 | 575 | 1.02 | 1.24 | 9.64 × 109 | 2.5 × 103 | ||
6 | 623 | 1.01 | 1.26 | 1.76 × 109 | 2.95 × 104 | ||
ZLBBY1 | 1 | 410 | 1.80 | 0.60 | 2.65 × 106 | 7.51 × 10−4 | |
2 | 468 | 1.20 | 0.62 | 4.48 × 105 | 2.42 × 10−3 | ||
3 | 500 | 1.70 | 1.09 | 1.40 × 1010 | 16.85 | 4.00 | |
4 | 529 | 1.55 | 1.17 | 1.96 × 1010 | 178 | ||
5 | 560 | 1.02 | 1.23 | 1.60 × 1010 | 1.02 × 103 | ||
6 | 611 | 1.01 | 1.25 | 2.38 × 109 | 1.48 × 104 |
Sample | Peak No. | (K) | Activation Energy (eV) | Frequency Factor (s−1) | Lifetime (Years) | ×103 (cm−3) | ||||
---|---|---|---|---|---|---|---|---|---|---|
ZLBBY0.1 [13] | 1 | 408 | 0.48 | 0.56 | 0.62 | 0.59 | 0.59 | 2.11 × 106 | 1.28 × 10−2 | 4.16 |
2 | 468 | 0.46 | 0.69 | 0.76 | 0.73 | 0.73 | 7.50 × 106 | 8.21 × 10−1 | 4.57 | |
3 | 503 | 0.49 | 1.13 | 1.16 | 1.15 | 1.15 | 4.92 × 1010 | 1.47 × 103 | 3.48 | |
4 | 539 | 0.47 | 1.18 | 1.23 | 1.21 | 1.21 | 2.78 × 1010 | 2.66 × 104 | 3.73 | |
5 | 569 | 0.48 | 1.20 | 1.25 | 1.23 | 1.23 | 9.62 × 109 | 1.67 × 105 | 1.47 | |
6 | 612 | 0.45 | 1.30 | 1.35 | 1.33 | 1.33 | 1.03 × 1010 | 7.53 × 106 | 2.16 | |
ZLBBY0.5 | 1 | 412 | 0.52 | 0.61 | 0.66 | 0.64 | 0.64 | 7.86 × 106 | 2.39 × 10−2 | 2.24 |
2 | 468 | 0.46 | 0.64 | 0.72 | 0.68 | 0.68 | 2.00 × 106 | 4.43 × 10−1 | 1.39 | |
3 | 498 | 0.50 | 1.08 | 1.11 | 1.10 | 1.10 | 1.95 × 1010 | 5.35 × 102 | 2.21 | |
4 | 541 | 0.48 | 1.15 | 1.20 | 1.18 | 1.18 | 1.28 × 1010 | 1.80 × 104 | 0.97 | |
5 | 568 | 0.49 | 1.17 | 1.22 | 1.20 | 1.20 | 5.32 × 109 | 9.44 × 104 | 0.64 | |
6 | 611 | 0.46 | 1.22 | 1.28 | 1.26 | 1.25 | 2.19 × 109 | 1.59 × 106 | 1.74 | |
ZLBBY0.7 | 1 | 419 | 0.51 | 0.61 | 0.66 | 0.64 | 0.63 | 4.18 × 106 | 3.05 × 10−2 | 0.24 |
2 | 468 | 0.45 | 0.65 | 0.72 | 0.69 | 0.69 | 2.61 × 106 | 5.01 × 10−1 | 0.52 | |
3 | 500 | 0.49 | 1.03 | 1.08 | 1.06 | 1.06 | 6.60 × 109 | 3.34 × 102 | 0.45 | |
4 | 540 | 0.48 | 1.11 | 1.16 | 1.14 | 1.13 | 4.38 × 109 | 7.60 × 103 | 0.35 | |
5 | 575 | 0.44 | 1.23 | 1.26 | 1.25 | 1.25 | 1.10 × 1010 | 3.16 × 105 | 0.09 | |
6 | 623 | 0.42 | 1.44 | 1.43 | 1.45 | 1.44 | 5.38 × 1010 | 1.02 × 108 | 0.38 | |
ZLBBY1 | 1 | 410 | 0.53 | 0.59 | 0.63 | 0.62 | 0.61 | 3.51 × 106 | 1.67 × 10−2 | 0.34 |
2 | 468 | 0.47 | 0.62 | 0.69 | 0.66 | 0.66 | 1.18 × 106 | 3.46 × 10−1 | 0.49 | |
3 | 500 | 0.50 | 1.09 | 1.12 | 1.11 | 1.11 | 2.22 × 1010 | 6.91 × 102 | 0.30 | |
4 | 529 | 0.46 | 1.10 | 1.15 | 1.13 | 1.13 | 7.59 × 109 | 4.39 × 103 | 0.22 | |
5 | 560 | 0.43 | 1.23 | 1.24 | 1.24 | 1.24 | 1.85 × 1010 | 1.28 × 105 | 0.16 | |
6 | 611 | 0.45 | 1.24 | 1.29 | 1.27 | 1.27 | 3.27 × 109 | 2.32 × 106 | 0.43 |
Assignment | Peak Center (cm−1) | |
---|---|---|
Non-Irradiated | 1 kGy | |
Zn2+, Li+, Ba2+, or any metal cations | 595 | - |
B-O-B linkages bending vibrations | 774 | 752 |
[BO4] units stretching vibrations | 888 | 891 |
Stretching of B–O–M | 960 | 962 |
-O3-B-F vibrations | 1093 | 1067 |
B-O- stretching vibrations in [BO3] units | 1245 | 1247 |
B–O stretching vibrations in [BO3] units of metaborate, pyroborate, and orthoborate groups | 1343 | 1348 |
Stretching of NBOs in [BO3] units | 1438 | 1425 |
B-F vibrations in [BF3] units | - | 1457 |
B-O anti-symmetric stretching vibrations in [BO3] units | 1516 | 1509 |
-H stretching in OH- groups | 2685 | 2698 |
OH- groups and B-O-H vibrations | 3357 3561 | 3592 3740 3844 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prabhu, N.S.; Somashekarappa, H.M.; Sayyed, M.I.; Osman, H.; Alamri, S.; Khandaker, M.U.; Kamath, S.D. Structural and Optical Modifications in the BaO-ZnO-LiF-B2O3-Yb2O3 Glass System after γ-Irradiation. Materials 2021, 14, 6955. https://doi.org/10.3390/ma14226955
Prabhu NS, Somashekarappa HM, Sayyed MI, Osman H, Alamri S, Khandaker MU, Kamath SD. Structural and Optical Modifications in the BaO-ZnO-LiF-B2O3-Yb2O3 Glass System after γ-Irradiation. Materials. 2021; 14(22):6955. https://doi.org/10.3390/ma14226955
Chicago/Turabian StylePrabhu, Nimitha S., Hiriyur Mallaiah Somashekarappa, M. I. Sayyed, Hamid Osman, Sultan Alamri, Mayeen Uddin Khandaker, and Sudha D. Kamath. 2021. "Structural and Optical Modifications in the BaO-ZnO-LiF-B2O3-Yb2O3 Glass System after γ-Irradiation" Materials 14, no. 22: 6955. https://doi.org/10.3390/ma14226955
APA StylePrabhu, N. S., Somashekarappa, H. M., Sayyed, M. I., Osman, H., Alamri, S., Khandaker, M. U., & Kamath, S. D. (2021). Structural and Optical Modifications in the BaO-ZnO-LiF-B2O3-Yb2O3 Glass System after γ-Irradiation. Materials, 14(22), 6955. https://doi.org/10.3390/ma14226955