Fire Resistance of Alkali Activated Geopolymer Foams Produced from Metakaolin and Na2O2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Dry Bulk Density, Porosity and Mechanical Characterization
2.4. Thermal Conductivity
2.5. Fire-resistance Tests
2.6. Microstructural and Mineralogical Characterization
3. Results and Discussions
3.1. Dry Bulk Density, Porosity and Mechanical Characterization
3.2. Thermal Conductivity
3.3. Fire-Resistance Tests
3.4. Microscopic Structure and Mineralogical Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sakkas, K.; Sofianos, A.; Nomikos, P.; Panias, D. Behaviour of passive fire protection K-geopolymer under successive severe fire incidents. Materials 2015, 8, 6096–6104. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, K.; Panias, D.; Nomikos, P.P.; Sofianos, A.I. Potassium based geopolymer for passive fire protection of concrete tunnels linings. Tunn. Undergr. Space Technol. 2014, 43, 148–156. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Y.Z.; Kumm, M.; Ingason, H.; Liu, F. Re-direction of smoke flow in inclined tunnel fires. Tunn. Undergr. Space Technol. 2019, 86, 113–127. [Google Scholar] [CrossRef]
- Biondi, L.; Perry, M.; Vlachakis, C.; Wu, Z.; Hamilton, A.; McAlorum, J. Ambient cured fly ash geopolymer coatings for concrete. Materials 2019, 12, 923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giancaspro, J.; Balaguru, P.N.; Lyon, R.E. Use of inorganic polymer to improve the fire response of balsa sandwich structur. J. Mater. Civ. Eng. 2006, 18, 390–397. [Google Scholar] [CrossRef]
- Aguirre-Guerrero, A.M.; Robayo-Salazar, R.A.; de Gutiérrez, R.M. A novel geopolymer application: Coatings to protect reinforced concrete against corrosion. Appl. Clay Sci. 2017, 135, 437–446. [Google Scholar] [CrossRef]
- Sidky, P.S.; Hocking, M. G Review of inorganic coatings and coating processes for reducing wear and corrosion. Br. Corros. J. 2013, 34, 13. [Google Scholar] [CrossRef]
- Abdel-Ghani, N.T.; Elsayed, H.A.; AbdelMoied, S. Geopolymer synthesis by the alkali-activation of blastfurnace steel slag and its fire-resistance. HBRC J. 2019, 14, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Maciulaitis, R.; Grigonis, M.; Malaiskiene, J. The impact of the aging of intumescent fire protective coatings on fire resistance. Fire Saf. J. 2018, 98, 15–23. [Google Scholar] [CrossRef]
- Temuujin, J.; Minjigmaa, A.; Rickard, W.; Lee, M.; Williams, I.; van Riessen, A. Preparation of metakaolin based geopolymer coatings on metal substrates as thermal barriers. Appl. Clay Sci. 2009, 46, 265–270. [Google Scholar] [CrossRef]
- Temuujin, J.; Minjigmaa, A.; Rickard, W.; Lee, M.; Williams, I.; van Riessen, A. Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation. J. Hazard. Mater. 2010, 180, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Weil, E.D. Fire-protective and flame-retardant coatings-A state-of-the-art review. J. Fire Sci. 2011, 29, 259–296. [Google Scholar] [CrossRef]
- Batool, F.; Rafi, M.M.; Bindiganavile, V. Microstructure and thermal conductivity of cement-based foam: a review. J. Build. Eng. 2018, 20, 696–704. [Google Scholar] [CrossRef]
- Abdollahnejad, Z.; Pacheco-Torgal, F.; Félix, T.; Tahri, W.; Aguiar, J.B. Mix design, properties and cost analysis of fly ash-based geopolymer foam. Constr. Build. Mater. 2015, 80, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Wang, Z.; Zhou, T.; He, Y.; Huang, F. Preparation and properties of magnesium phosphate cement foam concrete with H2O2 as foaming agent. Constr. Build. Mater. 2019, 205, 566–573. [Google Scholar] [CrossRef]
- Petlitckaia, S.; Poulesquen, A. Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxide. Ceram. Int. 2019, 45, 1322–1330. [Google Scholar] [CrossRef]
- Masi, G.; Rickard, W.D.A.; Vickers, L.; Bignozzi, M.C.; van Riessen, A. A comparison between different foaming methods for the synthesis of light weight geopolymers. Ceram. Int. 2014, 40, 13891–13902. [Google Scholar] [CrossRef]
- Shuai, Q.; Xu, Z.; Yao, Z.; Chen, X.; Jiang, Z.; Peng, X.; An, R.; Li, Y.; Jiang, X.; Li, H. Fire resistance of phosphoric acid-based geopolymer foams fabricated from metakaolin and hydrogen peroxide. Mater. Lett. 2020, 263, 127228. [Google Scholar] [CrossRef]
Component | SiO2 | Al2O3 | Na2O | Fe2O3 | CaO | K2O | Others |
---|---|---|---|---|---|---|---|
54.25 | 43.92 | 0.14 | 0.39 | 0.13 | 0.41 | 0.76 |
Sample Name | Foaming Stabilizer/Na2O2 (g) | Alkali Activator (g) | Metakaolin (g) | Foaming Stabilizer/SDBS (g) | Distilled Water (mL) |
---|---|---|---|---|---|
1% N | 1.625 | 50 | 75 | 0.3 | 37.5 |
2% N | 3.250 | 50 | 75 | 0.3 | 37.5 |
3% N | 4.875 | 50 | 75 | 0.3 | 37.5 |
4% N | 6.500 | 50 | 75 | 0.3 | 37.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Li, H.; Shuai, Q.; Wang, L. Fire Resistance of Alkali Activated Geopolymer Foams Produced from Metakaolin and Na2O2. Materials 2020, 13, 535. https://doi.org/10.3390/ma13030535
Peng X, Li H, Shuai Q, Wang L. Fire Resistance of Alkali Activated Geopolymer Foams Produced from Metakaolin and Na2O2. Materials. 2020; 13(3):535. https://doi.org/10.3390/ma13030535
Chicago/Turabian StylePeng, Xi, Han Li, Qin Shuai, and Liancong Wang. 2020. "Fire Resistance of Alkali Activated Geopolymer Foams Produced from Metakaolin and Na2O2" Materials 13, no. 3: 535. https://doi.org/10.3390/ma13030535
APA StylePeng, X., Li, H., Shuai, Q., & Wang, L. (2020). Fire Resistance of Alkali Activated Geopolymer Foams Produced from Metakaolin and Na2O2. Materials, 13(3), 535. https://doi.org/10.3390/ma13030535