Scaling Up from LV to MV Cable Splice Design Through the Innovative Three-Leg Approach: PD-Free and Life-Compliant Design
Abstract
1. Introduction
2. Splice Structure
3. Electric Field Simulation for the Test Cell and Cable Splice Arrangement (Leg 1 of the Three-Leg Approach)
4. Modeling of the PD-Inception Field and Voltage, PDIE and PDIV (Leg 2 of the Three-Leg Approach)
5. Design Field and Insulation Thickness Calculation (Leg 2 of the Three-Leg Approach)
5.1. Electrical Insulation Intrinsic Life Models
5.2. Insulation Thickness Estimation
6. PDIV Measurements Under AC Voltage for Validation of Results Predicted (Leg 3 of the Three-Leg Approach)
6.1. Test Arrangement
6.2. PD Measurement Results and Analysis
7. Accelerated Aging till Breakdown of LV Cable Splice, Design and Forensic Considerations
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| LV | Low Voltage |
| MV | Medium Voltage |
| HV | High Voltage |
| PD | Partial Discharge |
| PDIV | Partial Discharge Inception Voltage |
| PDIE | Partial Discharge Inception Field |
| SAP | Standard Atmospheric Pressure |
| XLPE | Cross-Linked Polyethylene |
| HFCT | High-Frequency Current Transformer |
| BV | Breakdown Voltage |
| BS | Breakdown Strength |
References
- The Advanced Research Projects Agency-Energy (ARPA-E). Available online: https://arpa-e.energy.gov/programs-and-initiatives/view-all-programs/gophurrs (accessed on 1 July 2024).
- Jahromi, A.N.; Pattabi, P.K.; Lo, S.; Densley, J. Approaches to the forensic failure investigation of medium voltage polymeric cables. In Proceedings of the IEEE Electrical Insulation Conference (EIC), Knoxville, TN, USA, 22 June–3 July 2020; pp. 85–89. [Google Scholar]
- Pompili, M.; Calcara, L.; Sangiovanni, S. MV Underground Power Cable Joints Premature Failures. In Proceedings of the AEIT International Annual Conference (AEIT), Catania, Italy, 23–25 September 2020; pp. 1–4. [Google Scholar]
- Mingotti, A.; Babaei, F.; Tinarelli, R.; Peretto, L. Medium-Voltage AC Cable Joints: A Review of Testing Methods, Standards, and Emerging Trends. Sensors 2025, 25, 3843. [Google Scholar] [CrossRef] [PubMed]
- Emdadi, K.; Gandomkar, M.; Aranizadeh, A.; Vahidi, B.; Mirmozaffari, M. Overview of Monitoring, Diagnostics, Aging Analysis, and Maintenance Strategies in High-Voltage AC/DC XLPE Cable Systems. Sensors 2025, 25, 7096. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Liu, K.; Cheng, P.; Wang, S.; Wang, X.; Gao, B.; Fang, Y.; Xia, R.; Ullah, I. The coupling fields characteristics of cable joints and application in the evaluation of crimping process defects. Energies 2016, 9, 932. [Google Scholar] [CrossRef]
- Mesino, E.G.; Caicedo, J.; Mamani, M.; Quete, D.R.; Piamba, A.C.; Gomez, D.G.; Mayor, G.A.; Erazo, J.C.; Lopez, W.M.; Jay, E.; et al. Condition Assessment of Medium Voltage Assets: A Review. Adv. Sci. Technol. Eng. Syst. J. 2023, 8, 35–54. [Google Scholar] [CrossRef]
- IEC 60505; Evaluation and Qualification of Electrical Insulation Systems. 4th ed. IEC: Geneva, Switzerland, 2011.
- IEC 60034-27-1; Rotating Electrical Machines. Off-Line Partial Discharge Measurements on the Winding Insulation. IEC: Geneva, Switzerland, 2019.
- Densley, J. Review of international standards and practices for medium voltage power cable diagnostics. In Proceedings of the IEEE International Conference on Solid Dielectrics, Winchester, UK, 8–13 July 2007; pp. 711–716. [Google Scholar]
- IEEE Std 1434-2014; IEEE Guide for the Measurement of Partial Discharges in AC Electric Machinery. Institute of Electrical and Electronics Engineers: New York, NY, USA, 2014.
- Kreuger, F.H. Partial Discharge Detection in High-Voltage Equipment; Butterworth-Heinemann: London, UK, 1990. [Google Scholar]
- Dissado, L.A.; Fothergill, J.C. Electrical Degradation and Breakdown in Polymer; Peter Peregrinus Press: London, UK, 1992. [Google Scholar]
- Morshuis, P.H. Degradation of solid dielectrics due to internal partial discharge: Some thoughts on progress made and where to go now. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 905–913. [Google Scholar] [CrossRef]
- Hu, X.; Yang, S.; Du, Q.; Chen, X.; Tang, F. Radio-Frequency Detection of Partial Discharge in Power Cable Joints. IEEE Trans. Power Deliv. 2024, 39, 317–324. [Google Scholar] [CrossRef]
- Dang, C.; Côté, J. Performance and Diagnosis of Aluminum Connectors Tested Inside MV Cable Splices. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 2098–2106. [Google Scholar] [CrossRef]
- Cambareri, P.; Montanari, G.C. Derivation of a Surface Discharge Model for the Design of the Surface Components of Insulation Systems used in Industrial Electronics Environments. IEEE J. Emerg. Sel. Top. Ind. Electron. 2022, 4, 698–706. [Google Scholar] [CrossRef]
- Montanari, G.C.; Nath, D.; Cambareri, P. A new approach to the design of surface subsystems of polymeric insulators for HV and MV apparatus under AC voltage. High Volt. 2023, 8, 651–658. [Google Scholar] [CrossRef]
- Montanari, G.C.; Cambareri, P. PD-Free Design of Insulation Systems: An Application to Laminated Busbars. Appl. Sci. 2024, 14, 10171. [Google Scholar] [CrossRef]
- Montanari, G.C.; Bononi, S.F.; Albertini, M.; Siripurapu, S.; Seri, P. The Dimensional Approach in the Design and Qualification Tests of AC and DC HV Cables: The Occhini Approach Revisited. IEEE Trans. Power Deliv. 2020, 35, 2119–2126. [Google Scholar] [CrossRef]
- Montanari, G.C.; Cacciari, M. A probabilistic insulation life model for combined thermal-electrical stresses. IEEE Trans. Elect. Insul. 1985, EI-20, 519–522. [Google Scholar] [CrossRef]
- Myneni, S.B.; Montanari, G.C. Accelerated aging tests to evaluate partial discharge endurance of insulating materials for HV electric aircraft assets. In Proceedings of the AIAA Aviation Forum and ASCEND co-located Conference, Las Vegas, NV, USA, 9 July–2 August 2024. [Google Scholar]
- IEEE Std 930-2005; IEEE Guide for the Statistical Analysis of Electrical Insulation Breakdown Data. Institute of Electrical and Electronics Engineers: New York, NY, USA, 2005.
- Montanari, G.C.; Mazzanti, G.; Simoni, L. Progress in electrothermal life modeling of electrical insulation during the last decades. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 730–745. [Google Scholar] [CrossRef]
- IEC 60270; High-Voltage Test Techniques—Partial Discharge Measurements. 3rd ed. International Electrotechnical Commission: Geneva, Switzerland, 2015.
- Seri, P.; Ghosh, R.; Montanari, G.C. An unsupervised approach to partial discharge monitoring in rotating machines: Detection to diagnosis with reduced need of expert support. IEEE Trans. Energy Conv. 2021, 36, 2485–2492. [Google Scholar] [CrossRef]
- Contin, A.; Cavallini, A.; Montanari, G.C.; Pasini, G.; Puletti, F. Digital detection and fuzzy classification of partial discharge signal. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 335–348. [Google Scholar] [CrossRef]









| Component | Material | Relative Permittivity | Minimum Thickness (mm) |
|---|---|---|---|
| Conductor | Aluminum | 1 | 4.3 |
| Spiral spring | Aluminum | 1 | 3.4 |
| Ground electrode | Aluminum | 1 | 6 |
| Cable insulation | XLPE | 2.3 | 11 |
| Splice body | GF30 | 3.8 | 5.6 |
| Inner ring | Silicone rubber | 4 | 1.8 |
| Outer ring | Silicone rubber | 4 | 2.5 |
| Compression bushing | Silicone rubber | 4 | 6.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Montanari, G.C.; Uwiringiyimana, J.P.; Myneni, S.B.; Williams, C.; Melni, M. Scaling Up from LV to MV Cable Splice Design Through the Innovative Three-Leg Approach: PD-Free and Life-Compliant Design. Energies 2026, 19, 449. https://doi.org/10.3390/en19020449
Montanari GC, Uwiringiyimana JP, Myneni SB, Williams C, Melni M. Scaling Up from LV to MV Cable Splice Design Through the Innovative Three-Leg Approach: PD-Free and Life-Compliant Design. Energies. 2026; 19(2):449. https://doi.org/10.3390/en19020449
Chicago/Turabian StyleMontanari, Gian Carlo, Jean Pierre Uwiringiyimana, Sukesh Babu Myneni, Cameron Williams, and Mark Melni. 2026. "Scaling Up from LV to MV Cable Splice Design Through the Innovative Three-Leg Approach: PD-Free and Life-Compliant Design" Energies 19, no. 2: 449. https://doi.org/10.3390/en19020449
APA StyleMontanari, G. C., Uwiringiyimana, J. P., Myneni, S. B., Williams, C., & Melni, M. (2026). Scaling Up from LV to MV Cable Splice Design Through the Innovative Three-Leg Approach: PD-Free and Life-Compliant Design. Energies, 19(2), 449. https://doi.org/10.3390/en19020449

