You are currently on the new version of our website. Access the old version .
EnergiesEnergies
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

14 January 2026

Investigation of the Effects of Ambient Conditions and Injection Strategies on Methanol Spray Characteristics

,
,
,
,
,
,
and
1
Weichai Power Co., Ltd., Weifang 261001, China
2
State Key Laboratory of Engine and Powertrain System, Weifang 261001, China
3
School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
*
Author to whom correspondence should be addressed.

Abstract

To reveal the physical evolution of methanol spray under different environmental conditions and injection strategies, this study focuses on the atomization and evaporation behavior of low-pressure methanol spray. The coupled effects of temperature, pressure, and injection parameters are systematically investigated based on constant-volume combustion chamber experiments and three-dimensional CFD simulations. The formation, evolution, and interaction mechanisms of the liquid column core and cooling core are revealed. The results indicate that temperature is the dominant factor influencing methanol spray atomization. When the temperature increases from 255 K to 333 K, the spray penetration distance increases by approximately 70%, accompanied by a pronounced shortening of the liquid-core length and enhanced evaporation and air entrainment. Under low-temperature conditions, a stable liquid-core structure and a strong cooling core are formed, characterized by a high-density, long-axis morphology and an extensive low-temperature region, which suppress fuel–air mixing and ignition. Increasing the ambient pressure improves spray–air mixing but reduces penetration; at 255 K, increasing the ambient pressure from 0.05 MPa to 0.2 MPa increases the spray cone angle by approximately 10% while reducing the penetration distance by about 50%. Furthermore, optimizing the injection pressure or shortening the injection pulse width effectively enhances atomization performance: increasing the injection pressure from 0.4 MPa to 0.6 MPa and reducing the pulse width from 5 ms to 2 ms increases the penetration distance by approximately 30% and reduces the mean droplet diameter by about 20%.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.