A Control Method for Surge Prevention Under Load Disturbances in Closed Brayton Cycle TAC System
Abstract
1. Introduction
2. System Description
2.1. TAC System
2.1.1. Turbine Model
2.1.2. Compressor Model
2.1.3. Rotor Model
2.2. TAC Model Validation
3. Challenges and Solutions
3.1. Load Disturbance During TAC Model Operation
3.2. Control Model
- (1)
- The bypass valve control logic continuously monitors the system state. When the operating point is detected to be approaching the surge region, the bypass valve is promptly actuated to open, thereby diverting a portion of the flow. This adjustment increases the total mass flow rate through the compressor, rapidly shifting the operating point away from the surge boundary and restoring system stability.
- (2)
- The speed control model subsequently engages to adjust the target shaft speed of the alternator rotor, compensating for the dynamic deviations induced by the disturbance. This control action enhances the system’s recovery rate and improves steady-state accuracy, thereby reinforcing overall operational stability.
3.2.1. Bypass Valve Control
3.2.2. Shaft Speed Control
4. Results and Discussion
4.1. Selection of PID Parameters
4.1.1. Method of Selecting Parameter
4.1.2. PID Parameter Results
4.1.3. Comparison with Other Optimization Methods
4.2. Robustness Analysis of the Control Model
4.2.1. Parameter Uncertainty Analysis
4.2.2. Compressor Map Variation Analysis
4.2.3. Sensor Noise Analysis
4.3. Optimization Results of the Control Model
4.4. Prospects and Future Work
5. Conclusions
- (1)
- A high-fidelity steady-state model of the TAC-based closed Brayton cycle system was developed in the Simulink environment. This model incorporates key components, including the compressor, turbine, and alternator rotor, and serves as a reliable platform for analyzing system dynamics under both nominal and disturbed conditions.
- (2)
- To overcome the limitations of conventional PID controllers, such as sluggish response, excessive overshoot, and Integral of absolute error, a multi-objective performance index was formulated by integrating rise time, overshoot, and Integral of absolute error deviation. GA was employed to globally optimize the PID parameters. The optimized controller achieved a 70% improvement in rotational speed regulation performance, significantly enhancing dynamic responsiveness and control precision.
- (3)
- A dual-control strategy was implemented by integrating a shaft speed control model with a bypass valve control model. This coordinated control approach enables real-time adjustment of both shaft speed and mass flow rate. Simulation results confirm that the proposed method effectively mitigates system oscillations, ensures rapid system recovery, and maintains the compressor operating point consistently outside the surge region throughout the entire disturbance scenario.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Temperature, [] | |
Entropy, [] | |
Pressure, [] | |
Heat capacity at constant pressure, [] | |
Average heat capacity at constant pressure from i to j, [] | |
Heat capacity at constant volume, [] | |
Turbine inlet temperature, [] | |
Turbine outlet temperature, [] | |
Ideal turbine outlet temperature, [] | |
Compressor inlet temperature, [] | |
Compressor outlet temperature, [] | |
Ideal compressor outlet temperature, [] | |
Turbine inlet pressure, [] | |
Turbine outlet pressure, [] | |
Ideal turbine outlet pressure, [] | |
Compressor inlet pressure, [] | |
Compressor outlet pressure, [] | |
Ideal compressor outlet pressure, [] | |
Pressure ratio | |
Expansion ratio | |
Ratio of specific heat | |
Adiabatic index | |
Average pressure loss ratio from i to j | |
Isentropic efficiency of the turbine | |
Isentropic efficiency of the compressor | |
Turbine output power, [] | |
Compressor output power, [] | |
Load power, [] | |
Excess power, [] | |
Auxiliary power, [] | |
m | Mass flow rate, [] |
Mass flow rate under safe operating conditions, [] | |
N | Rotor shaft speed, [] |
Rotor shaft speed under safe operating conditions, [] | |
Rotational moment of inertia for the TAC and shaft, [] | |
Bypass valve opening parameter | |
Density of the working fluid, [] | |
Bypass valve coefficient | |
Shaft speed model coefficient | |
Integral of absolute error | |
Rise time | |
Overshoot | |
Surge margin threshold | |
Current mass flow rate, [] | |
Mass flow rate at the surge line, [] | |
Pressure difference across the bypass valve, [] |
Abbreviations
CBC | Closed Brayton Cycle |
TAC | Turbine–Alternator–Compressor |
GA | Genetic Algorithm |
PID | Proportional-Integral-Derivative |
Appendix A
Appendix A.1. Virial Coefficient of He-Xe Mixture
Appendix A.2. Specific Heat Capacity of He-Xe Mixture
References
- Ayodele, O.L.; Luta, D.N.; Kahn, M.T. A Micro-Nuclear Power Generator for Space Missions. Energies 2023, 16, 4422. [Google Scholar] [CrossRef]
- Ashe, T.L.; Baggenstoss, W.G.; Bons, R. Nuclear Reactor Closed Brayton Cycle Power Conversion System Optimization Trends for Extra-Terrestrial Applications. In Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, Reno, NV, USA, 12–17 August 1990; Volume 1, pp. 125–134. [Google Scholar]
- El-Genk, M.S. Space Nuclear Reactor Power System Concepts with Static and Dynamic Energy Conversion. Energy Convers. Manag. 2008, 49, 402–411. [Google Scholar] [CrossRef]
- Cheng, K.; Li, J.; Yu, J.; Qin, J.; Jing, W. Dynamic Characteristics Analysis for a Novel Double-Rotor He-Xe Closed-Brayton-Cycle Space Nuclear Power Generation System. Energies 2023, 16, 6620. [Google Scholar] [CrossRef]
- Chen, W.; Song, M.; Qian, Y.; Yu, H.; Yan, J. Research and Development of Helium-Xenon Brayton Cycle Technology: A Review. Natl. Sci. Open 2024, 3, 20230089. [Google Scholar] [CrossRef]
- Greitzer, E.M. Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model. J. Eng. Power 1976, 98, 190–198. [Google Scholar] [CrossRef]
- Lang, L.; Jiang, F.; Cheng, K.; Liu, Z.; Wang, S.; Dang, C.; Qin, J.; Huang, H.; Zhang, X. Dynamic Characteristics Analysis of Supercritical CO2 Closed Brayton Power Generation System for Hypersonic Vehicles. Appl. Therm. Eng. 2025, 269, 126016. [Google Scholar] [CrossRef]
- Arnulfi, G.L.; Blanchini, F.; Giannattasio, P.; Micheli, D.; Pinamonti, P. Extensive Study on the Control of Centrifugal Compressor Surge. Proc. Inst. Mech. Eng. Part A J. Power Energy 2006, 220, 289–304. [Google Scholar] [CrossRef]
- Sheng, H.; Chen, Q.; Zhang, J.; Zhang, T. A High-Safety Active/Passive Hybrid Control Approach for Compressor Surge Based on Nonlinear Model Predictive Control. Chin. J. Aeronaut. 2023, 36, 396–412. [Google Scholar] [CrossRef]
- Mousavi, H.; Nekoui, M.A.; Derakhshan, G.; Hakimi, S.M.; Imani, H. A Novel Robust MPC Scheme Established on LMI Formulation for Surge Instability of Uncertain Compressor System with Actuator Constraint and Piping Acoustic. Automatika 2024, 65, 1259–1270. [Google Scholar] [CrossRef]
- Schulze, R.; Richter, H. Model Based MIN/MAX Override Control of Centrifugal Compressor Systems. Frankl. Open 2023, 7, 100084. [Google Scholar] [CrossRef]
- Li, C.; Guo, L.; Huang, S.; Deng, J. Optimization and Simulation of Startup Control for Space Nuclear Power Systems with Closed Brayton Cycle Based on NuHeXSys. Prog. Nucl. Energy 2025, 180, 105610. [Google Scholar] [CrossRef]
- Kail, S.; Bekri, A.; Hazzab, A. Tuned PID by Genetic Algorithm for AGC with Different Wind Penetration. In Smart Energy Empowerment in Smart and Resilient Cities; Hatti, M., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 228–235. [Google Scholar]
- Naderi, S.; Blondin, M.J.; Rezaie, B. Optimizing an Adaptive Fuzzy Logic Controller of a 3-DOF Helicopter with a Modified PSO Algorithm. Int. J. Dyn. Control. 2023, 11, 1895–1913. [Google Scholar] [CrossRef]
- Ma, X.; Jiang, P.; Zhu, Y. Dynamic Simulation and Analysis of Transient Characteristics of a Thermal-to-Electrical Conversion System Based on Supercritical CO2 Brayton Cycle in Hypersonic Vehicles. Appl. Energy 2024, 359, 122686. [Google Scholar] [CrossRef]
- Xu, C. Optimization Design and Operation Characteristic Analysis of He-Xe Brayton Power System for Space Lithium-Cooled Reactor, 630. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2022. [Google Scholar]
- Tournier, J.-M.; El-Genk, M.; Gallo, B. Best Estimates of Binary Gas Mixtures Properties for Closed Brayton Cycle Space Applications. In Proceedings of the 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), San Diego, CA, USA, 26–29 June 2006. [Google Scholar]
- Deng, J.; Guan, C.; Liu, X.; Chai, X. Dynamic Modeling of a HeXe-Cooled Mobile Nuclear Reactor with Closed Brayton Cycle. Energies 2024, 17, 5396. [Google Scholar] [CrossRef]
- Xu, C.; Kong, F.; Yu, D.; Yu, J.; Khan, M.S. Influence of Non-Ideal Gas Characteristics on Working Fluid Properties and Thermal Cycle of Space Nuclear Power Generation System. Energy 2021, 222, 119881. [Google Scholar] [CrossRef]
- El-Genk, M.S.; Tournier, J.-M. Noble-Gas Binary Mixtures for Closed-Brayton-Cycle Space Reactor Power Systems. J. Propuls. Power 2007, 23, 863–873. [Google Scholar] [CrossRef]
- Tournier, J.-M.; El-Genk, M.S. Axial Flow, Multi-Stage Turbine and Compressor Models. Energy Convers. Manag. 2010, 51, 16–29. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, T.; Qi, L.; Sun, L.; Yang, H.; Wu, M. Dynamic Simulation of a Space Lithium-Cooled Reactor System Coupled with a He–Xe Closed Brayton Cycle. Prog. Nucl. Energy 2024, 170, 105132. [Google Scholar] [CrossRef]
- Meng, T.; Cheng, K.; Zhao, F.; Xia, C.; Tan, S. Dynamic Simulation of the Gas-Cooled Space Nuclear Reactor System Using SIMCODE. Ann. Nucl. Energy 2021, 159, 108293. [Google Scholar] [CrossRef]
- Wright, S.A.; Lipinski, R.J.; Vernon, M.E.; Sanchez, T. Closed Brayton Cycle Power Conversion Systems for Nuclear Reactors; NASA: Washington, DC, USA, 2010. [Google Scholar]
- Anderson, R.V.; Atkins, D.F.; Bost, D.S.; Berman, B.; Clinger, D.A.; Determan, W.R.; Drucker, G.S.; Glasgow, L.E.; Hartung, J.A.; Harty, R.B. Power Plant System Assessment. Final Report. SP-100 Program; Rockwell International Corp.: Canoga Park, CA, USA, 1983. [Google Scholar]
- Wu, Y.; Tang, S.; Zhu, L.; Lian, Q.; Zhang, L.; Ma, Z.; Sun, W.; Pan, L. Transient Analysis of Megawatt-Level Space Gas-Cooled Reactor Coupled with He-Xe Brayton Cycle System. Appl. Therm. Eng. 2025, 260, 124962. [Google Scholar] [CrossRef]
- El-Genk, M.S.; Tournier, J.-M.P.; Gallo, B.M. Dynamic Simulation of a Space Reactor System with Closed Brayton Cycle Loops. J. Propuls. Power 2010, 26, 394–406. [Google Scholar] [CrossRef]
- Zheng, X.; Zeng, H.; Wang, B.; Wen, M.; Yang, H.; Sun, Z. Numerical Simulation Method of Surge Experiments on Gas Turbine Engines. Chin. J. Aeronaut. 2023, 36, 107–120. [Google Scholar] [CrossRef]
- Galindo, J.; Serrano, J.R.; Margot, X.; Tiseira, A.; Schorn, N.; Kindl, H. Potential of Flow Pre-Whirl at the Compressor Inlet of Automotive Engine Turbochargers to Enlarge Surge Margin and Overcome Packaging Limitations. Int. J. Heat Fluid Flow 2007, 28, 374–387. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T. Practical Semi-Supervised Learning Framework for Real-Time Warning of Aerodynamic Instabilities: Applications from Compressors to Gas Turbine Engines. Reliab. Eng. Syst. Saf. 2025, 264, 111261. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, L. Approximate Nonlinear Modeling of Aircraft Engine Surge Margin Based on Equilibrium Manifold Expansion. Chin. J. Aeronaut. 2012, 25, 663–674. [Google Scholar] [CrossRef]
- Pakle, S.; Jiang, K. Design of a High-Performance Centrifugal Compressor with New Surge Margin Improvement Technique for High Speed Turbomachinery. Propuls. Power Res. 2018, 7, 19–29. [Google Scholar] [CrossRef]
- Galindo, J.; Tiseira, A.; Navarro, R.; Tarí, D.; Meano, C.M. Effect of the Inlet Geometry on Performance, Surge Margin and Noise Emission of an Automotive Turbocharger Compressor. Appl. Therm. Eng. 2017, 110, 875–882. [Google Scholar] [CrossRef]
- Ma, W.; Yang, X.; Wang, J. Power Regulation Methods and Regulation Characteristics of the Space Reactor Direct Brayton Cycle with Helium-Xenon Working Fluid. Energy 2024, 313, 134012. [Google Scholar] [CrossRef]
- Ma, W.; Ye, P.; Gao, Y.; Hao, Y.; Yao, Y.; Yang, X. Analysis of the Radiator Loss Safety Boundary of a Space Reactor Gas Turbine Cycle with Multiple PCU Modules. Energies 2024, 17, 597. [Google Scholar] [CrossRef]
- Mahfoud, S.; Derouich, A.; El Ouanjli, N.; Mossa, M.A.; Bhaskar, M.S.; Lan, N.K.; Quynh, N.V. A New Robust Direct Torque Control Based on a Genetic Algorithm for a Doubly-Fed Induction Motor: Experimental Validation. Energies 2022, 15, 5384. [Google Scholar] [CrossRef]
- Itaborahy Filho, M.A.; Puchta, E.; Martins, M.S.R.; Antonini Alves, T.; Tadano, Y.d.S.; Corrêa, F.C.; Stevan, S.L.; Siqueira, H.V.; Kaster, M.d.S. Bio-Inspired Optimization Algorithms Applied to the GAPID Control of a Buck Converter. Energies 2022, 15, 6788. [Google Scholar] [CrossRef]
- Mousakazemi, S.M.H. Comparison of the Error-Integral Performance Indexes in a GA-Tuned PID Controlling System of a PWR-Type Nuclear Reactor Point-Kinetics Model. Prog. Nucl. Energy 2021, 132, 103604. [Google Scholar] [CrossRef]
- Mousakazemi, S.M.H. Control of a PWR Nuclear Reactor Core Power Using Scheduled PID Controller with GA, Based on Two-Point Kinetics Model and Adaptive Disturbance Rejection System. Ann. Nucl. Energy 2019, 129, 487–502. [Google Scholar] [CrossRef]
- Besarati, S.M.; Atashkari, K.; Jamali, A.; Hajiloo, A.; Nariman-zadeh, N. Multi-Objective Thermodynamic Optimization of Combined Brayton and Inverse Brayton Cycles Using Genetic Algorithms. Energy Convers. Manag. 2010, 51, 212–217. [Google Scholar] [CrossRef]
- Feng, H.; Yin, C.-B.; Weng, W.; Ma, W.; Zhou, J.; Jia, W.; Zhang, Z. Robotic Excavator Trajectory Control Using an Improved GA Based PID Controller. Mech. Syst. Signal Process. 2018, 105, 153–168. [Google Scholar] [CrossRef]
State Parameters | P/MPa | T/K | ||||
---|---|---|---|---|---|---|
SP-100 [25] | Simulation | Error | SP-100 [25] | Simulation | Error | |
Turbine inlet | 2.214 | 2.214 | 0.00% | 1400.0 | 1400.0 | 0.00% |
Turbine outlet | 1.201 | 1.187 | 1.16% | 1127.0 | 1101.9 | 2.23% |
Compressor inlet | 1.167 | 1.167 | 0.00% | 514.0 | 514.0 | 0.00% |
Compressor outlet | 2.241 | 2.240 | 0.04% | 695.0 | 701.9 | 0.99% |
Parameters | Ref Design [16] | Simulation | Relative Error | Ref [22] | Ref [26] |
---|---|---|---|---|---|
Turbine inlet temperature () | 1522.0 | 1500.0 | 1.44% | 1153.0 | No part |
Turbine inlet pressure () | 1.54 | 1.50 | 2.59% | 2.96 | 3.30 |
Turbine outlet temperature () | 1163.0 | 1165.3 | 0.19% | 915.0 | 1123.0 |
Turbine outlet pressure () | 0.670 | 0.662 | 1.23% | 1.510 | 1.380 |
Compressor inlet temperature () | 405.0 | 400.0 | 1.23% | 463.0 | No part |
Compressor inlet pressure () | 0.650 | 0.650 | 0.00% | 1.500 | 1.380 |
Compressor outlet temperature () | 601.0 | 599.5 | 0.24% | 507.0 | 640.0 |
Compressor outlet pressure () | 1.55 | 1.49 | 3.87% | 3.00 | 3.30 |
Turbine power () | 2253.00 | 2240.47 | 0.60% | No part | No part |
Compressor power () | 1233.00 | 1240.03 | 0.57% | No part | No part |
Alternator power () | 1000.00 | 1000.44 | 0.04% | 161.00 | 273.00 |
shaft speed () | 55,000 | 55,000 | 0.00% | No part | No part |
Relevant Parameters | Value | |
---|---|---|
Simulation Settings | Simulation Time | 500 s |
Time Step | 0.5 s | |
GA Parameters | Population Size | 30 |
Evolution Number | 15 | |
Crossover Probability | 0.8 | |
Mutation Probability | 0.2 |
Weight | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
500 | 475 | 525 | 500 | 475 | 525 | 500 | 475 | 525 | 500 | 475 | 525 | |
1:1:1 | 0.33059 | 0.33059 | 0.33014 | 0.0037542 | 0.0037542 | 0.0037542 | 1.6117 | 1.6117 | 1.6117 | 500.0721 | 475.1281 | 524.0049 |
1:1:2 | 0.57169 | 0.57169 | 0.57131 | 0.0039344 | 0.0039344 | 0.0040229 | 1.4991 | 1.4993 | 1.4993 | 515.6806 | 491.8284 | 539.7478 |
1:2:1 | 0.33059 | 0.33059 | 0.33014 | 0.0037542 | 0.0037542 | 0.0037542 | 1.6117 | 1.6117 | 1.6117 | 501.0721 | 476.1281 | 525.0049 |
2:1:1 | 0.22444 | 0.22444 | 0.22444 | 0.0026444 | 0.0026444 | 0.0026444 | 1.6117 | 1.6117 | 1.6117 | 939.3408 | 892.4431 | 986.2355 |
1:3:2 | 0.57169 | 0.57169 | 0.57131 | 0.0039344 | 0.0039344 | 0.0040229 | 1.4991 | 1.4993 | 1.4993 | 517.6806 | 493.8284 | 541.7478 |
Manual | 0.30000 | 0.30000 | 0.30000 | 0.0100000 | 0.0100000 | 0.0100000 | 1.0000 | 1.0000 | 1.0000 |
Controller | Error | ||
---|---|---|---|
PID | 986.3245 | 25.3698 | 20.0167 |
GA-PID | 434.5232 | 41.4234 | 24.1455 |
DE-PID | 587.4376 | 28.2597 | 15.2486 |
PSO-PID | 429.3954 | 40.5316 | 29.1618 |
Bypass Valve Opening Parameter | Error | ||
---|---|---|---|
Nominal | 434.5232 | 41.4234 | 24.1455 |
+5% | 456.2488 | 42.5638 | 25.3528 |
−5% | 412.8000 | 40.1236 | 22.9382 |
+10% | 477.9755 | 43.4500 | 26.5600 |
−10% | 391.0710 | 39.9678 | 21.7310 |
Compressor Map Variations | Error | ||
---|---|---|---|
Nominal | 434.5232 | 41.4234 | 24.1455 |
+5% | 461.2488 | 41.6633 | 26.2828 |
−5% | 408.8000 | 40.2258 | 20.5631 |
Sensor Noise Level | Error | ||
---|---|---|---|
Nominal | 434.5232 | 41.4234 | 24.1455 |
1% | 460.1245 | 41.4234 | 26.6593 |
3% | 489.1695 | 41.4234 | 28.8686 |
5% | 497.5981 | 41.4234 | 29.4069 |
System Parameters | No Control | PID | GA-PID | Improvement vs. No Control (%) | Improvement vs. PID (%) |
---|---|---|---|---|---|
Setting Time (s) | 567 | 239 | 167 | 70.6 | 30.1 |
Overshoot Peak (kW) | 3.5805 | 2.3051 | 35.6 | ||
SM | 0.186 | 0.256 | 0.256 | 37.6 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Sun, Y.; Fang, Q.; Huang, F.; Yu, J.; Tang, X.; Ning, Q. A Control Method for Surge Prevention Under Load Disturbances in Closed Brayton Cycle TAC System. Energies 2025, 18, 4524. https://doi.org/10.3390/en18174524
Liu H, Sun Y, Fang Q, Huang F, Yu J, Tang X, Ning Q. A Control Method for Surge Prevention Under Load Disturbances in Closed Brayton Cycle TAC System. Energies. 2025; 18(17):4524. https://doi.org/10.3390/en18174524
Chicago/Turabian StyleLiu, Haosen, Yuxuan Sun, Qingqing Fang, Fangnan Huang, Jun Yu, Xiangrong Tang, and Qian Ning. 2025. "A Control Method for Surge Prevention Under Load Disturbances in Closed Brayton Cycle TAC System" Energies 18, no. 17: 4524. https://doi.org/10.3390/en18174524
APA StyleLiu, H., Sun, Y., Fang, Q., Huang, F., Yu, J., Tang, X., & Ning, Q. (2025). A Control Method for Surge Prevention Under Load Disturbances in Closed Brayton Cycle TAC System. Energies, 18(17), 4524. https://doi.org/10.3390/en18174524