Morphology and Solidity Optimization of Freeform Surface Turbulators for Heat Exchangers Equipped with Narrow Channels
Abstract
:1. Introduction
1.1. State of the Art
1.2. Motivation of the Work
2. Materials and Methods
2.1. ToffeeX’s Physics-Driven Generative Design Platform
Mathematical Foundations and Optimization Workflow
- For inlets: Dirichlet conditions for the velocity () and temperature (), while a zero normal pressure gradient is applied.
- For outlets: the pressure is fixed (), and zero normal gradients are imposed for both velocity and temperature.
- On walls: no-slip conditions () are enforced for the velocity, with a zero normal pressure gradient and different possible thermal boundary conditions.
2.2. CFD Model Within ToffeeX
2.3. Sensitivity Analysis Within ToffeeX
2.4. Validation of the CFD Model Inside ToffeeX
2.5. Design Setup
2.6. CFD Model and Method with OpenFOAM
Assessment of the Mesh Independence and Validation of the Simulations
3. Results and Discussion
3.1. Topology Optimization
3.2. OpenFOAM CFD Simulations
3.3. Concluding Remarks and Future Developments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Latin letters | |
a | Local impermeability [−]; |
AM | Additive Manufacturing; |
CFD | Computational Fluid Dynamics; |
Specific heat capacity []; | |
D | Thermal diffusivity []; |
e | Relative error [−]; |
f | Objective function [−]; |
F | Multi-objective function [−]; |
h | Convective heat transfer coefficient [W/m2K]; |
Mass flow rate []; | |
Nusselt number [−]; | |
P | Fluid pressure [Pa]; |
Prandtl number [−]; | |
Heat transfer rate []; | |
RANS | Reynolds-Averaged Navier–Stokes; |
Reynolds number [−]; | |
S | Solution of the optimization problem [−]; |
T | Temperature [K]; |
TO | Topology Optimization; |
Fluid velocity []. | |
Greek letters | |
Angle between the ribs and the wall [°]; | |
Thermal conductivity []; | |
Dynamic viscosity [Pa s]; | |
Kinematic viscosity []; | |
Density []; | |
Feasible solution [−]; | |
Set of feasible solution [−]; | |
Weight of the objective function [−]; | |
Design domain [−]. | |
Subscripts | |
b | Bulk; |
CFD | Numerical; |
exp | Experimental; |
HT | Heat transfer; |
in | Inlet; |
out | Outlet; |
PL | Pressure loss; |
t | Turbulent; |
w | Wall. |
References
- Fawaz, A.; Hua, Y.; Le Corre, S.; Fan, Y.; Luo, L. Topology optimization of heat exchangers: A review. Energy 2022, 252, 124053. [Google Scholar] [CrossRef]
- Cerdá, J.; Cafaro, V.G.; Cafaro, D.C. Novel Mathematical Approaches for the Structural Synthesis of Heat Exchanger Networks. Ind. Eng. Chem. Res. 2022, 61, 464–486. [Google Scholar] [CrossRef]
- Yao, J. A Review of Industrial Heat Exchange Optimization. IOP Conf. Ser. Earth Environ. Sci. 2018, 108, 042036. [Google Scholar] [CrossRef]
- Ait Laasri, I.; Charai, M.; Mghazli, M.O.; Outzourhit, A. Energy performance assessment of a novel enhanced solar thermal system with topology optimized latent heat thermal energy storage unit for domestic water heating. Renew. Energy 2024, 224, 120189. [Google Scholar] [CrossRef]
- Sarap, M.; Kallaste, A.; Shams Ghahfarokhi, P.; Tiismus, H.; Vaimann, T. Utilization of additive manufacturing in the thermal design of electrical machines: A review. Machines 2022, 10, 251. [Google Scholar] [CrossRef]
- Anh, N.T.; Quynh, N.X.; Tung, T.T. Study on Topology Optimization Design for Additive Manufacturing. Eng. Technol. Appl. Sci. Res. 2024, 14, 14437–14441. [Google Scholar] [CrossRef]
- Anwajler, B. Potential of 3D Printing for Heat Exchanger Heat Transfer Optimization—Sustainability Perspective. Inventions 2024, 9, 60. [Google Scholar] [CrossRef]
- Li, N.; Hugo, J.M.; Serret, D.; Zhang, Y.; Gomes, S. A two-step parametric generative method for heat exchangers design in additive manufacturing. Procedia CIRP 2022, 109, 508–512. [Google Scholar] [CrossRef]
- Ghasemi, A.; Elham, A. Multi-objective topology optimization of pin-fin heat exchangers using spectral and finite-element methods. Struct. Multidiscip. Optim. 2021, 64, 2075–2095. [Google Scholar] [CrossRef]
- Pei, E.; Bernard, A.; Gu, D.; Klahn, C.; Monzón, M.; Petersen, M.; Sun, T. Springer Handbook of Additive Manufacturing; Springer Nature: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Careri, F.; Khan, R.H.; Todd, C.; Attallah, M.M. Additive manufacturing of heat exchangers in aerospace applications: A review. Appl. Therm. Eng. 2023, 235, 121387. [Google Scholar] [CrossRef]
- Liang, X.; Li, A.; Rollett, A.D.; Zhang, Y.J. An isogeometric analysis-based topology optimization framework for 2D cross-flow heat exchangers with manufacturability constraints. Eng. Comput. 2022, 38, 4829–4852. [Google Scholar] [CrossRef]
- Wei, L.s.; Liu, H.l.; Tang, C.g.; Tang, X.p.; Shao, X.d.; Xie, G. Investigation of novel type of cylindrical lithium-ion battery heat exchangers based on topology optimization. Energy 2024, 304, 131886. [Google Scholar] [CrossRef]
- Sun, S.; Rankouhi, B.; Thoma, D.J.; Cheadle, M.J.; Maples, G.D.; Anderson, M.H.; Nellis, G.; Qian, X. Topology optimization, additive manufacturing and thermohydraulic testing of heat sinks. Int. J. Heat Mass Transf. 2024, 224, 125281. [Google Scholar] [CrossRef]
- Dbouk, T. A review about the engineering design of optimal heat transfer systems using topology optimization. Appl. Therm. Eng. 2017, 112, 841–854. [Google Scholar] [CrossRef]
- Dong, C.C.; He, G.; Li, D.; Zhang, Z.; Cong, J.; Meng, Z. 3D Topology Optimization Design of Air Natural Convection Heat Transfer Fins. Nucl. Eng. Des. 2024, 429, 113623. [Google Scholar] [CrossRef]
- Paudel, B.J.; Masoomi, M.; Thompson, S.M. Multi-Objective Topology Optimization of Additively Manufactured Heat Exchangers. In Proceedings of the 2019 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 12–14 August 2019. [Google Scholar] [CrossRef]
- Alexandersen, J.; Andreasen, C.S. A Review of Topology Optimisation for Fluid-Based Problems. Fluids 2020, 5, 29. [Google Scholar] [CrossRef]
- Shah, R.K.; Sekulic, D.P. Fundamentals of Heat Exchanger Design; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Marler, R.T.; Arora, J.S. The weighted sum method for multi-objective optimization: New insights. Struct. Multidisc. Optim. 2010, 41, 853–862. [Google Scholar] [CrossRef]
- Caruana, R.; Marocco, L.; Guilizzoni, M. A novel CFD model for design and performance prediction of recuperators for Indirect Evaporative Cooling. Therm. Sci. Eng. Prog. 2024, 51, 102619. [Google Scholar] [CrossRef]
- Caruana, R.; Marocco, L.; De Antonellis, S.; Guilizzoni, M. Effect of the plates geometry on the performance of a cross-flow recuperator for indirect evaporative cooling systems. J. Phys. Conf. Ser. 2024, 2766, 012177. [Google Scholar] [CrossRef]
- Sahin, B.; Yakut, K.; Kotcioglu, I.; Celik, C. Optimum design parameters of a heat exchanger. Appl. Energy 2005, 82, 90–106. [Google Scholar] [CrossRef]
- Primo, T.; Calabrese, M.; Del Prete, A.; Anglani, A. Additive manufacturing integration with topology optimization methodology for innovative product design. Int. J. Adv. Manuf. Technol. 2017, 93, 467–479. [Google Scholar] [CrossRef]
- Lei, T.; Alexandersen, J.; Lazarov, B.S.; Wang, F.; Haertel, J.H.; De Angelis, S.; Sanna, S.; Sigmund, O.; Engelbrecht, K. Investment casting and experimental testing of heat sinks designed by topology optimization. Int. J. Heat Mass Transf. 2018, 127, 396–412. [Google Scholar] [CrossRef]
- Zeng, S.; Kanargi, B.; Lee, P.S. Experimental and numerical investigation of a mini channel forced air heat sink designed by topology optimization. Int. J. Heat Mass Transf. 2018, 121, 663–679. [Google Scholar] [CrossRef]
- Pietropaoli, M.; Montomoli, F.; Gaymann, A. Three-dimensional fluid topology optimization for heat transfer. Struct. Multidisc. Optim. 2019, 59, 801–812. [Google Scholar] [CrossRef]
- Jahan, S.; Wu, T.; Shin, Y.; Tovar, A.; El-Mounayri, H. Thermo-fluid topology optimization and experimental study of conformal cooling channels for 3D printed plastic injection molds. Procedia Manuf. 2019, 34, 631–639. [Google Scholar] [CrossRef]
- Li, H.; Ding, X.; Meng, F.; Jing, D.; Xiong, M. Optimal design and thermal modelling for liquid-cooled heat sink based on multi-objective topology optimization: An experimental and numerical study. Int. J. Heat Mass Transf. 2019, 144, 118638. [Google Scholar] [CrossRef]
- Yan, S.; Wang, F.; Hong, J.; Sigmund, O. Topology optimization of microchannel heat sinks using a two-layer model. Int. J. Heat Mass Transf. 2019, 143, 118462. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, Z.; Li, Q. Numerical study on flow and heat transfer characteristics of microchannel designed using topological optimizations method. Sci. China Technol. Sci. 2020, 63, 105–115. [Google Scholar] [CrossRef]
- Høghøj, L.C.; Nørhave, D.R.; Alexandersen, J.; Sigmund, O.; Andreasen, C.S. Topology optimization of two fluid heat exchangers. Int. J. Heat Mass Transf. 2020, 163, 120543. [Google Scholar] [CrossRef]
- Ghosh, S.; Fernandez, E.; Kapat, J. Fluid-thermal topology optimization of gas turbine blade internal cooling ducts. J. Mech. Des. 2022, 144, 051703. [Google Scholar] [CrossRef]
- Ali, S.; Dbouk, T.; Wang, G.; Wang, D.; Drikakis, D. Advancing thermal performance through vortex generators morphing. Sci. Rep. 2023, 13, 368. [Google Scholar] [CrossRef] [PubMed]
- Hurry, A.S.; Hayward, K.; Guzzomi, F.; Rauthan, K.; Vafadar, A. Thermo-hydraulic performance evaluation of a NACA 63-015 heat exchanger with shark denticles as surface textures. Int. J. Heat Mass Transf. 2023, 216, 124591. [Google Scholar] [CrossRef]
- Xuan, W.; Xu, C.; Qian, C.; Wang, J.; Jiang, Z.; Ma, R.; Yu, B.; Shi, J.; Chen, J. Numerical simulation and thermodynamic test analysis of plate heat exchanger based on topology optimization. Appl. Therm. Eng. 2024, 255, 123882. [Google Scholar] [CrossRef]
- Navah, F.; Lamarche-Gagnon, M.É.; Ilinca, F. Thermofluid topology optimization for cooling channel design. Appl. Therm. Eng. 2024, 236, 121317. [Google Scholar] [CrossRef]
- Wang, D.; Wu, Q.; Wang, G.; Zhang, H.; Yuan, H. Experimental and numerical study of plate heat exchanger based on topology optimization. Int. J. Therm. Sci. 2024, 195, 108659. [Google Scholar] [CrossRef]
- Hu, J.; Chen, C.; Wang, X.; Xin, G.; Wang, M. Improvement of flow and heat transfer performance of microchannels with different ribs using topology optimization. Appl. Therm. Eng. 2024, 244, 122672. [Google Scholar] [CrossRef]
- Belwadi, Z.A.; Akula, R. Design of a PCM-based thermal management system for cylindrical Li-ion battery using topology optimization. Appl. Therm. Eng. 2025, 270, 126143. [Google Scholar] [CrossRef]
- Yang, C.; Wang, D.; Ali, S.; Wang, G.; Dbouk, T. Topology optimization of rectangular parallel plate heat exchanger unit. Int. J. Therm. Sci. 2025, 208, 109503. [Google Scholar] [CrossRef]
- Yu, H.; Li, T.; Zeng, X.; He, T.; Mao, N. A critical review on geometric improvements for heat transfer augmentation of microchannels. Energies 2022, 15, 9474. [Google Scholar] [CrossRef]
- Corti, M.; Gramazio, P.; Fustinoni, D.; Vitali, L.; Niro, A. Accuracy in evaluating heat transfer coefficient by RANS CFD simulations in a rectangular channel with high aspect ratio—Part 1: Benchmark on a channel with plane walls. J. Phys. Conf. Ser. 2023, 2509, 012009. [Google Scholar] [CrossRef]
- Corti, M.; Gramazio, P.; Fustinoni, D.; Vitali, L.; Niro, A. Accuracy in evaluating heat transfer coefficient by RANS CFD simulations in a rectangular channel with high aspect ratio—Part 2: Channel with ribbed walls. J. Phys. Conf. Ser. 2023, 2509, 012010. [Google Scholar] [CrossRef]
- Corti, M.; Gramazio, P.; Fustinoni, D.; Niro, A. Accuracy in evaluating convective heat transfer coefficient by RANS CFD simulations in a rectangular channel with high aspect ratio and 60° tilted staggered ribs. J. Phys. Conf. Ser. 2024, 2685, 012001. [Google Scholar] [CrossRef]
- Corti, M.; Gramazio, P.; Fustinoni, D.; Niro, A. Accuracy in evaluating convective heat transfer coefficient by RANS CFD simulations in a rectangular channel with high aspect ratio and V-shaped ribs. J. Phys. Conf. Ser. 2025, 2940, 012002. [Google Scholar] [CrossRef]
- Fustinoni, D.; Gramazio, P.; Colombo, L.P.; Niro, A. Heat Transfer Characteristics in Forced Convection Through a Rectangular Channel with V-Shaped Rib Roughened Surfaces. In Proceedings of the 15th International Heat Transfer Conference, Kyoto, Japan, 10–15 August 2014. [Google Scholar] [CrossRef]
- Physics-Driven Generative Design Software: ToffeeX. Available online: https://toffeex.com/ (accessed on 5 May 2025).
- Raikar, P.P.; Anand, N.; Pini, M.; De Servi, C. Concurrent optimization of multiple heat transfer surfaces using adjoint-based optimization with a CAD-based parametrization. Int. J. Heat Mass Transf. 2025, 236, 126230. [Google Scholar] [CrossRef]
- Kenway, G.K.; Mader, C.A.; He, P.; Martins, J.R. Effective adjoint approaches for computational fluid dynamics. Prog. Aerosp. Sci. 2019, 110, 100542. [Google Scholar] [CrossRef]
- Liu, Q.; Vasilyev, O.V. A Brinkman penalization method for compressible flows in complex geometries. J. Comput. Phys. 2007, 227, 946–966. [Google Scholar] [CrossRef]
- The OpenFOAM Foundation. OpenFOAM. Available online: https://openfoam.org/ (accessed on 5 May 2025).
Boundary Region | Fluid Dynamic Condition | Thermal Condition |
---|---|---|
Inlet | fixed velocity (Re = 7400) | fixed temperature ( K) |
Outlet | fixed pressure ( Pa) | zero gradient |
Lateral wall | no-slip | adiabatic |
Lower wall | no-slip | fixed temperature ( K) |
Upper wall | no-slip | adiabatic |
Ribs wall | no-slip | adiabatic |
Symmetry 1 | symmetry | symmetry |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corti, M.; Caruana, R.; Di Caterino, A.; Fustinoni, D.; Gramazio, P.; Vitali, L.; Guilizzoni, M. Morphology and Solidity Optimization of Freeform Surface Turbulators for Heat Exchangers Equipped with Narrow Channels. Energies 2025, 18, 2903. https://doi.org/10.3390/en18112903
Corti M, Caruana R, Di Caterino A, Fustinoni D, Gramazio P, Vitali L, Guilizzoni M. Morphology and Solidity Optimization of Freeform Surface Turbulators for Heat Exchangers Equipped with Narrow Channels. Energies. 2025; 18(11):2903. https://doi.org/10.3390/en18112903
Chicago/Turabian StyleCorti, Maria, Roberta Caruana, Antonio Di Caterino, Damiano Fustinoni, Pasqualino Gramazio, Luigi Vitali, and Manfredo Guilizzoni. 2025. "Morphology and Solidity Optimization of Freeform Surface Turbulators for Heat Exchangers Equipped with Narrow Channels" Energies 18, no. 11: 2903. https://doi.org/10.3390/en18112903
APA StyleCorti, M., Caruana, R., Di Caterino, A., Fustinoni, D., Gramazio, P., Vitali, L., & Guilizzoni, M. (2025). Morphology and Solidity Optimization of Freeform Surface Turbulators for Heat Exchangers Equipped with Narrow Channels. Energies, 18(11), 2903. https://doi.org/10.3390/en18112903