An Analytical Determination of the Magnetic Field in a System of Finite-Length Ribbon Busbars
Abstract
:1. Introduction
2. The Magnetic Field of a Long Rectangular Busbar
3. The Magnetic Field of a Long Ribbon Busbar
- Field strength on the Ox axis as
- Field strength on the Oy axis as
4. The Magnetic Field of a Ribbon Busbar of Finite Length
- The magnetic field strength component along the Ox axis is
- The magnetic field strength component along the Oy axis is
5. Results and Discussion
5.1. The Magnetic Field of a Line with Two Ribbon Busbars of Finite Length
5.2. The Magnetic Field Characteristics of a Three-Phase Line with Three Ribbon Busbars of Finite Length
5.3. The Magnetic Field of a Three-Phase Line with Four Ribbon Busbars of Finite Length
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sarajcev, P. Numerical Analysis of the Magnetic Field of High-Current Busducts and GIL Systems. Energies 2011, 4, 2196–2211. [Google Scholar] [CrossRef]
- Kusiak, D. The magnetic field and impedances in three-phase rectangular busbars with a finite length. Energies 2019, 12, 1419. [Google Scholar] [CrossRef]
- Koch, H. Gas-Insulated Transmission Lines; John Wiley&Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Karban, P.; Pánek, D.; Orosz, T.; Petrášova, I.; Doležel, I. FEM based robust design optimization with Agros and Ārtap. Comp. Math. Appl. 2021, 81, 618–633. [Google Scholar] [CrossRef]
- Yousuf, H.; Zahid, M.A.; Khokhar, M.Q.; Park, J.; Ju, M.; Lim, D.; Kim, Y.; Cho, E.-C.; Yi, J. Cell-to-Module Simulation Analysis for Optimizing the Efficiency and Power of the Photovoltaic Module. Energies 2022, 15, 1176. [Google Scholar] [CrossRef]
- Martinez-Roman, J.; Puche-Panadero, R.; Sapena-Bano, A.; Burriel-Valencia, J. Fast Numerical Model of Power Busbar Conductors Through the FFT and the Convolution Theorem. IEEE Trans. Power Deliv. 2022, 37, 3291–3301. [Google Scholar] [CrossRef]
- Kolańska-Płuska, J.; Jabłoński, P.; Piątek, Z. Numerical Method of Computing the Impedance of a Twin High Current Busduct of Rectangular Hollow Conductors. Prog. Electromagn. Res. M 2014, 34, 9–17. [Google Scholar] [CrossRef]
- Riba, J.R. Calculation of AC to DC resistance ratio of conductive nonmagnetic straight conductors by applying FEM simulations. Eur. J. Phys. 2015, 36, 055019. [Google Scholar] [CrossRef]
- Riba, J.R.; Capelli, F. Calculation of the inductance of conductive nonmagnetic conductors by means of finite element method simulations. Int. J. Electr. Educ. 2018, 57, 230–252. [Google Scholar] [CrossRef]
- Piątek, Z. Impedances of Tubular High Current Busducts; Series Progress in High-Voltage Technique; Polish Academy of Sciences; Committee of Electrical Engineering: Warsaw, Poland, 2008; p. 154. [Google Scholar]
- Li, B.; Shi, L.; Wen, W.; Li, B.; Gu, T. Research on the Calculation Method of Equivalent Parameters of the Core Wire for the High-Voltage GIL Metal Shell Grounded Through the Copper Bar. Front. Energy Res. 2022, 10, 813770. [Google Scholar] [CrossRef]
- Piątek, Z. Modelowanie linii, kabli i torów wielkopradowych (Modeling of Lines, Cables and High-Current Busducts); Monograph Series No. 130; Czestochowa University of Technology: Czestochowa, Poland, 2007; p. 220. (In Polish) [Google Scholar]
- Pramanik, A. Electromagnetism—Theory and Applications; PHI Learning: New Delhi, India, 2009. [Google Scholar]
- Griffiths, D.J. Introduction to Electrodynamics, 4th ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Alboyacı, B.; Çınar, M.A.; Demirol, Y.B. Influence of busbar trunking system design on thermal performance operating with non-sinusoidal currents. Electr. Power Syst. Res. 2023, 214, 10881. [Google Scholar] [CrossRef]
- Wu, R.; Zou, W.; Yuan, J.; Bao, H.; Wang, S.; Liu, Y.; Yang, W. Comparison of Methods for Suppressing Circulating Current in Metal Sheath of Cables Connected in Parallel. Energies 2023, 16, 4265. [Google Scholar] [CrossRef]
- Kovalev, D.I.; Varivodov, V.N.; Golubev, D.V.; Voronkova, E.M. Calculation of Electric Fields in 6(10) kV Conductors with Solid Insulation. Power Technol. Eng. 2022, 55, 931–938. [Google Scholar] [CrossRef]
- Kotsur, M.; Yarymbash, D.; Bezverkhnia, Y.; Kotsur, I. Increasing the Accuracy of Determining the Resistance of Three-Phase Busbar’s Trolleys. In Proceedings of the 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 3–7 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Kotsur, M.; Yarymbash, D.; Bezverkhnia, Y.; Kotsur, I. Comparative analysis of a different geometric shapes of a busbar’s trolley parameters in the higher harmonic current condition. In Proceedings of the 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 22–26 February 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Kusiak, D.; Szczegielniak, T. Obliczenia elektromagnetyczne szynoprzewodów (Electromagnetic Calculations of Busbars); Monograph Series No. 326; Czestochowa University of Technology: Czestochowa, Poland, 2017; p. 177. (In Polish) [Google Scholar]
- QuickField. Available online: www.quickfield.com (accessed on 2 February 2024).
- COMSOL Multiphysics. Available online: www.comsol.com (accessed on 2 February 2024).
- FEMM (Finite Element Method Magnetics). Available online: www.femm.info (accessed on 2 February 2024).
- AGROS Suite. Available online: www.agros2d.org (accessed on 2 February 2024).
- MATLAB. Available online: www.mathworks.com (accessed on 2 February 2024).
- Ansys. Available online: www.ansys.com (accessed on 2 February 2024).
- Ziolkowski, M.; Gratkowski, S. Closed-Form Expressions for Local Absorbing Boundary Conditions in Electromagnetic Scattering Problems and Their Implementation into Commercial FEM Software. Energies 2024, 17, 89. [Google Scholar] [CrossRef]
- Mathcad. Available online: www.mathcad.com (accessed on 2 February 2024).
- Mathematica. Available online: www.wolfram.com/mathematica (accessed on 2 February 2024).
- Piątek, Z.; Baron, B.; Jabłoński, P.; Szczegielniak, T.; Kusiak, D.; Pasierbek, A. A numerical-analytical method for magnetic field determination in three-phase busbars of rectangular cross section. Przegląd Elektrotechniczny 2015, 91, 193–197. [Google Scholar] [CrossRef]
- Piątek, Z.; Baron, B. Exact closed form formula for self inductance of conductor of rectangular cross section. Prog. Electromagn. Res. M 2012, 26, 225–236. [Google Scholar] [CrossRef]
- Piątek, Z.; Baron, B.; Szczegielniak, T.; Kusiak, D.; Pasierbek, A. Exact closed form formula for mutual inductance of conductors of rectangular cross section. Przegląd Elektrotechniczny 2013, 89, 61–64. [Google Scholar]
- Piątek, Z.; Baron, B.; Szczegielniak, T.; Kusiak, D.; Pasierbek, A. Inductance of a long two-rectangular busbar single-phase line. Przegląd Elektrotechniczny 2013, 89, 290–292. [Google Scholar]
- Piątek, Z.; Baron, B.; Szczegielniak, T.; Kusiak, D.; Pasierbek, A. Mutual inductance of long rectangular conductors. Przegląd Elektrotechniczny 2012, 88, 175–177. [Google Scholar]
- Gliński, H.; Grzymkowski, R.; Kapusta, A.; Słota, D. Mathematica 8; Jacek Skalmierski Publisher of the Computer Studio: Gliwice, Poland, 2012; p. 718. (In Polish) [Google Scholar]
- Kusiak, D.; Piątek, Z.; Szczegielniak, T. Magnetic Field of a Ribbon Busbar of Finite Length. In Proceedings of the Conference on Computer Applications in Electrical Engineering (ZKwE’2018), Poznań, Poland, 23–24 April 2018; ITM Web of Conferences. Volume 19, p. 0101. [Google Scholar] [CrossRef]
- Cabral, S.H.L.; Bertoli, S.L.; Medeiros, A.; Hillesheim, C.R.; De Souza, C.K.; Stefenon, S.F.; Nied, A.; Leithardt, V.R.Q.; Gonzalez, G.V. Practical Aspects of the Skin Effect in Low Frequencies in Rectangular Conductors. IEEE Access 2021, 9, 49424–49433. [Google Scholar] [CrossRef]
- Tabei, B.; Ametani, A.; Gole, A.M.; Kordi, B. Quasi-Analytical Calculation of Frequency-Dependent Resistance of Rectangular Conductors Considering the Edge Effect. Energies 2022, 15, 503. [Google Scholar] [CrossRef]
- Szczegielniak, T.; Piątek, Z.; Kusiak, D. Impedancje własne i wzajemne szynoprzewodów prostokątnych o skończonej długości (Self and mutual impedances of rectangular bus-bars of finite length). Inform. Autom. Pomiary W Gospod. I Ochr. Sr. 2014, 4, 21–24. (In Polish) [Google Scholar] [CrossRef]
- Vaskuri, A.; Curé, B.; Dudarev, A.; Mentink, M. Aluminium-Stabilized High-Temperature Superconducting Cable for Particle Detector Magnets. IEEE Trans. Appl. Supercond. 2023, 33, 4500506. [Google Scholar] [CrossRef]
- Gautam, G.; Zhang, M.; Yuan, W.; Burt, G.; Malkin, D. Fault Tolerant Superconducting Busbar With Reduced Self-Field Effect on Critical Current Design for All Electric Aircraft. IEEE Trans. Appl. Supercond. 2024, 34, 4801805. [Google Scholar] [CrossRef]
- Hou, W.; Sun, K.; Sun, S.; Li, M. Numerical Investigation of Electro-Thermal Field Distribution Law of Busbar under Different Operating Conditions. Metals 2023, 13, 1361. [Google Scholar] [CrossRef]
- Di Gerlando, A.; Negri, S.; Ricca, C. A Novel Analytical Formulation of the Magnetic Field Generated by Halbach Permanent Magnet Arrays. Magnetism 2023, 3, 280–296. [Google Scholar] [CrossRef]
- Romero-Mendez, R.; Berjano, E. Differences in the Electric Field Distribution Predicted with a Mathematical Model of Cylindrical Electrodes of Finite Length vs. Infinite Length: A Comparison Based on Analytical Solution. Mathematics 2023, 11, 4447. [Google Scholar] [CrossRef]
- Mathematica, version 7.0.1. Software Used; License Number: L4726-9731 (for Czestochowa University of Technology). Wolfram Research, Inc.: Champaign, IL, USA.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusiak, D. An Analytical Determination of the Magnetic Field in a System of Finite-Length Ribbon Busbars. Energies 2024, 17, 1289. https://doi.org/10.3390/en17061289
Kusiak D. An Analytical Determination of the Magnetic Field in a System of Finite-Length Ribbon Busbars. Energies. 2024; 17(6):1289. https://doi.org/10.3390/en17061289
Chicago/Turabian StyleKusiak, Dariusz. 2024. "An Analytical Determination of the Magnetic Field in a System of Finite-Length Ribbon Busbars" Energies 17, no. 6: 1289. https://doi.org/10.3390/en17061289
APA StyleKusiak, D. (2024). An Analytical Determination of the Magnetic Field in a System of Finite-Length Ribbon Busbars. Energies, 17(6), 1289. https://doi.org/10.3390/en17061289