Use of Carbon-Based Additives in Bio-Electrochemically Assisted Anaerobic Digestion for Cheese Whey Valorisation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inoculum, Substrate and Additives
2.2. Reactors Setup
2.3. Calculations
2.4. Analytical Techniques and Electrochemical Characterisation
2.5. DNA Extraction and Microbial Community Characterisation
3. Results and Discussion
3.1. Biomethanisation Potential
3.2. Current Production
Electrochemical and Biological Characterisation
4. Conclusions
- The AC amendment has a negative impact on methane productivity (a result that was supported by the microbiological analyses, where it was shown that the reactors that contained AC underwent the largest reduction in the population of both archaea and bacteria). Nevertheless, the MEC attenuated the low productivity caused by the AC.
- The addition of the pyrolysed material (PA) did not result in any increase in biogas production (compared to conventional AD), although it slightly accelerated the methane production rate, something that could be advantageous in real anaerobic digesters that usually operate at very tight hydraulic retention times. A similar improvement was observed in the MEC-assisted AD without supplements.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Milk and Dairy Products. Available online: https://agriculture.ec.europa.eu/farming/animal-products/milk-and-dairy-products_en (accessed on 18 July 2023).
- Rao, M.; Bast, A.; de Boer, A. Valorized Food Processing By-Products in the EU: Finding the Balance between Safety, Nutrition, and Sustainability. Sustainability 2021, 13, 4428. [Google Scholar] [CrossRef]
- Osorio-González, C.S.; Gómez-Falcon, N.; Brar, S.K.; Ramírez, A.A. Cheese Whey as a Potential Feedstock for Producing Renewable Biofuels: A Review. Energies 2022, 15, 6828. [Google Scholar] [CrossRef]
- Curry, N.; Pillay, P. Biogas Prediction and Design of a Food Waste to Energy System for the Urban Environment. Renew Energy 2012, 41, 200–209. [Google Scholar] [CrossRef]
- Iglesias, R.; Muñoz, R.; Polanco, M.; Díaz, I.; Susmozas, A.; Moreno, A.D.; Guirado, M.; Carreras, N.; Ballesteros, M. Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development. Energies 2021, 14, 2742. [Google Scholar] [CrossRef]
- Asunis, F.; De Gioannis, G.; Dessì, P.; Isipato, M.; Lens, P.N.L.; Muntoni, A.; Polettini, A.; Pomi, R.; Rossi, A.; Spiga, D. The Dairy Biorefinery: Integrating Treatment Processes for Cheese Whey Valorisation. J. Environ. Manag. 2020, 276, 111240. [Google Scholar] [CrossRef] [PubMed]
- Fernández, C.; Cuetos, M.J.; Martínez, E.J.; Gómez, X. Thermophilic Anaerobic Digestion of Cheese Whey: Coupling H2 and CH4 Production. Biomass Bioenergy 2015, 81, 55–62. [Google Scholar] [CrossRef]
- Comino, E.; Riggio, V.A.; Rosso, M. Biogas Production by Anaerobic Co-Digestion of Cattle Slurry and Cheese Whey. Bioresour. Technol. 2012, 114, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Escalante, H.; Castro, L.; Amaya, M.P.; Jaimes, L.; Jaimes-Estévez, J. Anaerobic Digestion of Cheese Whey: Energetic and Nutritional Potential for the Dairy Sector in Developing Countries. Waste Manag. 2018, 71, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Escalante-Hernández, H.; Castro-Molano, L.D.P.; Besson, V.; Jaimes-Estévez, J. Feasibility of the Anaerobic Digestion of Cheese Whey in a Plug Flow Reactor (PFR) under Local Conditions. Ing. Investig. Y Tecnol. 2017, 18, 264–277. [Google Scholar] [CrossRef]
- Jaimes-Estévez, J.; Castro, L.; Escalante, H.; Carrillo, D.; Portillo, S.; Sotres, A.; Morán, A. Cheese Whey Co-Digestion Treatment in a Tubular System: Microbiological Behaviour along the Axial Axis. Biomass Convers. Biorefinery 2020, 12, 5719–5728. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, B.; Yin, C.; Zhang, C.; Dai, X.; Yuan, H.; Zhu, N. Biostimulation by Direct Voltage to Enhance Anaerobic Digestion of Waste Activated Sludge. RSC Adv. 2015, 6, 1581–1588. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Chen, S.; Quan, X. Enhanced Production of Methane from Waste Activated Sludge by the Combination of High-Solid Anaerobic Digestion and Microbial Electrolysis Cell with Iron–Graphite Electrode. Chem. Eng. J. 2015, 259, 787–794. [Google Scholar] [CrossRef]
- Carrillo-Peña, D.; Escapa, A.; Hijosa-Valsero, M.; Paniagua-García, A.I.; Díez-Antolínez, R.; Mateos, R. Bioelectrochemical Enhancement of Methane Production from Exhausted Vine Shoot Fermentation Broth by Integration of MEC with Anaerobic Digestion. Biomass Convers. Biorefinery 2022, 1, 1–10. [Google Scholar] [CrossRef]
- Escapa, A.; Gil-Carrera, L.; García, V.; Morán, A. Performance of a Continuous Flow Microbial Electrolysis Cell (MEC) Fed with Domestic Wastewater. Bioresour. Technol. 2012, 117, 55–62. [Google Scholar] [CrossRef]
- Park, J.G.; Lee, B.; Park, H.R.; Jun, H.B. Long-Term Evaluation of Methane Production in a Bio-Electrochemical Anaerobic Digestion Reactor according to the Organic Loading Rate. Bioresour. Technol. 2019, 273, 478–486. [Google Scholar] [CrossRef]
- Blasco-Gómez, R.; Batlle-Vilanova, P.; Villano, M.; Balaguer, M.D.; Colprim, J.; Puig, S. On the Edge of Research and Technological Application: A Critical Review of Electromethanogenesis. Int. J. Mol. Sci. 2017, 18, 874. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Shen, Y.; Yuan, R.; Zhu, N.; Yuan, H.; Lou, Z. Sludge-Based Biochar-Assisted Thermophilic Anaerobic Digestion of Waste-Activated Sludge in Microbial Electrolysis Cell for Methane Production. Bioresour. Technol. 2019, 284, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Johnravindar, D.; Liang, B.; Fu, R.; Luo, G.; Meruvu, H.; Yang, S.; Yuan, B.; Fei, Q. Supplementing Granular Activated Carbon for Enhanced Methane Production in Anaerobic Co-Digestion of Post-Consumer Substrates. Biomass Bioenergy 2020, 136, 105543. [Google Scholar] [CrossRef]
- Wang, X.T.; Zhang, Y.F.; Wang, B.; Wang, S.; Xing, X.; Xu, X.J.; Liu, W.Z.; Ren, N.Q.; Lee, D.J.; Chen, C. Enhancement of Methane Production from Waste Activated Sludge Using Hybrid Microbial Electrolysis Cells-Anaerobic Digestion (MEC-AD) Process—A Review. Bioresour. Technol. 2022, 346, 126641. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Liu, Y.; Dhar, B.R. Boosting Resilience of Microbial Electrolysis Cell-Assisted Anaerobic Digestion of Blackwater with Granular Activated Carbon Amendment. Bioresour. Technol. 2023, 381, 129136. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Liu, H.; Zhang, Y.; Cui, M.H.; Fu, B.; Liu, H. Insight into Sludge Anaerobic Digestion with Granular Activated Carbon Addition: Methanogenic Acceleration and Methane Reduction Relief. Bioresour. Technol. 2021, 319, 124131. [Google Scholar] [CrossRef]
- Fujinawa, K.; Nagoya, M.; Kouzuma, A.; Watanabe, K. Conductive Carbon Nanoparticles Inhibit Methanogens and Stabilize Hydrogen Production in Microbial Electrolysis Cells. Appl. Microbiol. Biotechnol. 2019, 103, 6385–6392. [Google Scholar] [CrossRef] [PubMed]
- Alonso, R.M.; Escapa, A.; Sotres, A.; Morán, A. Integrating Microbial Electrochemical Technologies with Anaerobic Digestion to Accelerate Propionate Degradation. Fuel 2020, 267, 117158. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, X.; Xie, D.; Guan, W.; Yang, M.; Zhao, P.; Gao, M.; Wang, Q.; Wu, C. Adding Activated Carbon to the System with Added Zero-Valent Iron Further Improves Anaerobic Digestion Performance by Alleviating Ammonia Inhibition and Promoting DIET. J. Environ. Chem. Eng. 2021, 9, 106616. [Google Scholar] [CrossRef]
- Orrantia, M.; Meza-Escalante, E.R.; Burboa-Charis, V.A.; García-Reyes, R.B.; Atilano-Camino, M.M.; Serrano-Palacios, D.; Leyva, L.A.; Del Angel, Y.A.; Alvarez, L.H. Granular Activated Carbon Enhances the Anaerobic Digestion of Solid and Liquid Fractions of Swine Effluent at Different Mesophilic Temperatures. Anaerobe 2023, 83, 102782. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pẽa, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of RRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, B.; Tian, D.; Jun, H. Bioelectrochemical Enhancement of Methane Production from Highly Concentrated Food Waste in a Combined Anaerobic Digester and Microbial Electrolysis Cell. Bioresour. Technol. 2018, 247, 226–233. [Google Scholar] [CrossRef]
- Carmona-Martínez, A.A.; Lacroix, R.; Trably, E.; Da Silva, S.; Bernet, N. On the Actual Anode Area That Contributes to the Current Density Produced by Electroactive Biofilms. Electrochim. Acta 2018, 259, 395–401. [Google Scholar] [CrossRef]
- Wang, X.F.; Xu, K.; Li, X.R.; Liu, Y.X.; Cheng, J.M. Damage Effect of Amorphous Carbon Black Nanoparticle Aggregates on Model Phospholipid Membranes: Surface Charge, Exposure Concentration and Time Dependence. Int. J. Environ. Res. Public Health 2023, 20, 2999. [Google Scholar] [CrossRef]
- Guo, H.; Hua, J.; Cheng, J.; Yue, L.; Zhou, J. Microbial Electrochemistry Enhanced Electron Transfer in Lactic Acid Anaerobic Digestion for Methane Production. J. Clean. Prod. 2022, 358, 131983. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Wu, J. Enhancement of Methane Production in Anaerobic Digestion Process: A Review. Appl. Energy 2019, 240, 120–137. [Google Scholar] [CrossRef]
- Chen, S.; He, Q. Persistence of Methanosaeta Populations in Anaerobic Digestion during Process Instability. J. Ind. Microbiol. Biotechnol. 2015, 42, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Conklin, A.; Stensel, H.D.; Ferguson, J. Growth Kinetics and Competition Between Methanosarcina and Methanosaeta in Mesophilic Anaerobic Digestion. Water Environ. Res. 2006, 78, 486–496. [Google Scholar] [CrossRef]
- Jannat, A.H.; Park, S.H.; Chairattanawat, C.; Yulisa, A.; Hwang, S. Effect of Different Microbial Seeds on Batch Anaerobic Digestion of Fish Waste. Bioresour. Technol. 2022, 349, 126834. [Google Scholar] [CrossRef]
- Carrillo-Peña, D.; Mateos, R.; Morán, A.; Escapa, A. Reduced Graphene Oxide Improves the Performance of a Methanogenic Biocathode. Fuel 2022, 321, 123957. [Google Scholar] [CrossRef]
- Park, J.H.; Park, J.H.; Lee, S.H.; Jung, S.P.; Kim, S.H. Enhancing Anaerobic Digestion for Rural Wastewater Treatment with Granular Activated Carbon (GAC) Supplementation. Bioresour. Technol. 2020, 315, 123890. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, C.; Watson, J.; Sharma, B.K.; Si, B.; Zhang, Y. Adsorption or Direct Interspecies Electron Transfer? A Comprehensive Investigation of the Role of Biochar in Anaerobic Digestion of Hydrothermal Liquefaction Aqueous Phase. Chem. Eng. J. 2022, 435, 135078. [Google Scholar] [CrossRef]
- Liang, B.; Wang, L.Y.; Mbadinga, S.M.; Liu, J.F.; Yang, S.Z.; Gu, J.D.; Mu, B.Z. Anaerolineaceae and Methanosaeta Turned to Be the Dominant Microorganisms in Alkanes-Dependent Methanogenic Culture after Long-Term of Incubation. AMB Express 2015, 5, 37. [Google Scholar] [CrossRef]
- Zamorano-López, N.; Borrás, L.; Giménez, J.B.; Seco, A.; Aguado, D. Acclimatised Rumen Culture for Raw Microalgae Conversion into Biogas: Linking Microbial Community Structure and Operational Parameters in Anaerobic Membrane Bioreactors (AnMBR). Bioresour. Technol. 2019, 290, 121787. [Google Scholar] [CrossRef]
- Wang, G.; Li, Q.; Gao, X.; Wang, X.C. Synergetic Promotion of Syntrophic Methane Production from Anaerobic Digestion of Complex Organic Wastes by Biochar: Performance and Associated Mechanisms. Bioresour. Technol. 2018, 250, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Roy, C.K.; Hoshiko, Y.; Toya, S.; Maeda, T. Effect of Different Concentrations of Sodium Selenite on Anaerobic Digestion of Waste Sewage Sludge. Environ. Technol. Innov. 2022, 27, 102403. [Google Scholar] [CrossRef]
- Wang, L.; Liu, C.; Wei, B.; Song, C.; Cai, F.; Liu, G.; Chen, C. Effects of Different Microbial Pretreatments on the Anaerobic Digestion of Giant Grass under Anaerobic and Microaerobic Conditions. Bioresour. Technol. 2021, 337, 125456. [Google Scholar] [CrossRef]
- Li, W.; Khalid, H.; Zhu, Z.; Zhang, R.; Liu, G.; Chen, C.; Thorin, E. Methane Production through Anaerobic Digestion: Participation and Digestion Characteristics of Cellulose, Hemicellulose and Lignin. Appl. Energy 2018, 226, 1219–1228. [Google Scholar] [CrossRef]
Parameter | Units | Inoculum | Cheese Whey (CW) |
---|---|---|---|
Total solids (TS) | g·kg−1 | 26.8 ± 0.3 | 63.4 ± 0.3 |
Volatile solids (VS) | g·kg−1 | 17.0 ± 0.2 | 59.0 ± 0.2 |
Total organic carbon (TOC) | g·L−1 | 2.8 ± 0.2 | 21.5 ± 0.6 |
Inorganic carbon (IC) | g·L−1 | - | 0.4 ± 0.1 |
Total nitrogen (TN) | g·L−1 | - | 1.5 ± 0.1 |
Ratio C:N | - | - | 14.0 ± 0.1 |
Chemical oxygen demand (COD) | g·L−1 | 25.8 ± 1.2 | 85.5 ± 4.9 |
pH | - | 7.3 ± 0.1 | 6.1 ± 0.1 |
Conductivity | µS·cm−1 | 5.8 ± 0.1 | 5.7 ± 0.1 |
Redox | mV | −385.0 ± 18 | −311.0 ± 15 |
Condition | Reactor Name | Configuration | Additive | Electrolytic Module |
---|---|---|---|---|
i | MECAC | Microbial Electrolysis Cell | Activated Carbon | Yes |
ADAC | Anaerobic Digestion | Activated Carbon | No | |
ii | MECPA | Microbial Electrolysis Cell | Pyrolysed Argan | Yes |
ADPA | Anaerobic Digestion | Pyrolysed Argan | No | |
iii | MECNA | Microbial Electrolysis Cell | Non-Additive | Yes |
ADNA | Anaerobic Digestion | Non-Additive | No | |
iv | Blank | - | - | No |
Reactor | VEC (LCH4·kgVS−¹) | %CH4 via Electromethanogenesis |
---|---|---|
MECNA | 125.4 ± 0.3 | 24.9% |
MECAC | 36.2 ± 3.6 | 10.3% |
MECPA | 71.2 ± 2.6 | 14.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo-Peña, D.; Mateos, R.; Morán, A.; Escapa, A. Use of Carbon-Based Additives in Bio-Electrochemically Assisted Anaerobic Digestion for Cheese Whey Valorisation. Energies 2024, 17, 1290. https://doi.org/10.3390/en17061290
Carrillo-Peña D, Mateos R, Morán A, Escapa A. Use of Carbon-Based Additives in Bio-Electrochemically Assisted Anaerobic Digestion for Cheese Whey Valorisation. Energies. 2024; 17(6):1290. https://doi.org/10.3390/en17061290
Chicago/Turabian StyleCarrillo-Peña, D., R. Mateos, A. Morán, and A. Escapa. 2024. "Use of Carbon-Based Additives in Bio-Electrochemically Assisted Anaerobic Digestion for Cheese Whey Valorisation" Energies 17, no. 6: 1290. https://doi.org/10.3390/en17061290
APA StyleCarrillo-Peña, D., Mateos, R., Morán, A., & Escapa, A. (2024). Use of Carbon-Based Additives in Bio-Electrochemically Assisted Anaerobic Digestion for Cheese Whey Valorisation. Energies, 17(6), 1290. https://doi.org/10.3390/en17061290