Quantifying Agricultural Residues Biomass Resources and the Energy Potentials with Characterization of Their Nature and Ethiopian Case Consumption Inference
Abstract
:1. Introduction
Outline of the Content and Structure
2. Materials and Methods
2.1. Methodology and Research Design
2.2. Data Collection
- I.
- Crop Yields and Factors
- II.
- Conversion Factors
2.3. Biomass Energy Potential Assessment Methods
2.4. Data Analysis and Characterizing Method
2.4.1. Residue Biomass Resource and Its Energy Potential
2.4.2. Categorizing the Residues and Crops by Their Nature
2.4.3. Residues and Crops Natural Potential (Capacity) for Energy
- I.
- Natural Potential
- II.
- Potential Value for Energy Assigning and Prioritizing
2.5. Implications of Contemplation of the Resource Route to Consumption
3. Results and Discussion
3.1. Annual Crop Yield Trend and Comparisons
3.2. Characterizing and Grouping by RPR and SAF
3.3. Residue Amounts Potentially Available for Energy
3.4. Gross Energy Potential and Annual Variations
3.5. Energy Potentials of Crops and Residues
3.6. Regional Energy Potential Distributions and Shares
3.7. Potential Value (Capacity) for Energy
3.8. Summary of the Crop’s Nature and Hypothesis
3.9. Inference of the Resource Route to Energy
3.10. Limitations of the Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Crops/Crop Group/Residue | Residue to Product Ratio (RPR) | Surplus Availability Factor (SAF) | Lower Heating Value (LHV) (MJ/Kg) | Selection Remark R(Repeat), M(Mean), Mi(Middle) |
---|---|---|---|---|
Sesame | ||||
Stalk | 1.47 [33],1.2 [34] | 0.8 [33] | 14.35 [34], 17.37 [17] | RPR RMi, SAF RMi |
Coffee | ||||
Husk, pulp | 2.1 [35],1.65 [27], 1.4 [36] | 1 [7] | 12.8 [7], 12.38 [35], 12.2 [27] | |
Maize | ||||
Husk | 0.2 [35,37] 0.6 [7] | 1 [7,37] | 12.6 [37], 12 [7], 15.5 [10] | RPR R, SAF R, LHV M and R |
Cobs | 0.27 [10,37], 0.25 [38], 0.47 [35] 0.3 [33] | 1 [7,37,39], 0.67 [38] | 16.63 [38], 12.6 [37], 15.46 [35], 15.2 [7] | RPR M, SAF R R, LHV MM |
Stalk | 2 [7,33,37], 1.59 [39] | 0.8 [7,37,39] | 14.7 [37], 15 [7], 16.67 [34] | RPR R, SAF R, LHV M |
Sugar Cane | ||||
Bagasse | 0.29 [7,35], 0.25 [38], 0.33 [33,34] | 1 [7,37] | 6.43 [38], 11 [35], 13 [7], 12.5 [27], 17.9 [37], 20 [34] | RPR RMi, SAF R, LHV Mi |
Tops/leaves | 0.175 [35], 0.3 [35], 0.32 [7,37] | 0.8 [7,37,39], 0.98 [38] | 6.8 [38], 15.8 [7,37], 16.6 [35], 20 [34] | RPR MiR, SAF R, LHV MiR |
Teff | ||||
Straw | 2.3 [25] | 0.67 [25] | 15 [25] consideration | SAF calculated. |
Sorghum | ||||
Straw | 1.75 [7,10], 1.5 [25], 2 [37,39] | 0.8 [7,37,39] | 12.38 [7], 14.4 [10], 17.24 [37] | RPR RMi, SAF R, LHV Mi |
Wheat | ||||
Husk/pod | 0.23 [7,37], 0.3 [34,40] | 0.29 [7,37] | 12.9 [7,37], 17.4 [34], 15 [M] | RPR R, LHV M |
Straw/stalk | 1.3 [37], 1.5 [33,34], 1.75 [7] | 0.29 [7,37] | 14.9 [35], 15.6 [37], 16.4 [7], | RPR RMi, LHV Mi |
Barley | ||||
Straw | 1.2 [35] Mi,1.3 [25,34],1.75 [7] | 0.29 [7], 0.3 [25] | 12.65 [35]M, 18.16 [34] | RPR Mi, LHV Mi,R RPR |
Finger Millet | ||||
Stalk | 1.75 [35]MiR [10], 2 [37] 1.3 [25], 1.83 [39] | 0.8 [7,37,39] | 12.39 [35], 15.51 [37], 15.56 [10], 18.16 [34] | RPR RMi LHV Mi |
Rice | ||||
Husk | 0.267 [35]M, 0.275 [7], 0.26 [39] 0.2 [33,34] | 0.83 [7],1 [39], 0.75 [33] | 14.39 [35]Mi,13.24 [41],15.54 [34], 16 [7] | RPR M,Mi, SAF Mi, LHV Mi |
Straw | 1.87 [35]M, 1.75 [7], 1.5 [33,34], 1.66 [39] | 1 [7], 0.25 [39],0.5 [33] | 16 [35]R, 15.54 [34], 13.45 [7] | |
Cotton | ||||
Stalk | 3.5 [35]R, 2.1 [37], 2.2 [27] 3.23 [38], 2.88 [39], 3.8 [34], 2.75 [36] | 1 [37,38], 0.8 [39] | 16.2 [35]M, 13.07 [38], 25 [37], 17.4 [34,36] | RPR Mi, SAF R, LHV Mi,Mi |
Husk | 1.1 [34,37] | 1 [34,42] | 16.7 [34,37] | |
Balls/Shells | 1.1 [34,37] | 1 [34,42] | 18.3 [34,37] | |
Pulses | ||||
Stalk | 1.4 [37], 1.8 [33,34], 1.3 [40] | 0.38 [37], 0.49 [42] | 12.8 [11],14.7 [37], 16 [34]Mi | RPR Mi, SAF R, LHV Mi,R |
Oilseeds (OSOS) | ||||
Stalk | 2 [24,40] | 1 [42] | 15.38 [34]M |
Appendix B
Crop/Category | Scientific Name | |
---|---|---|
1 | Sesame | Sesamum indicum |
2 | Coffee | Coffea Arabica |
3 | Maize | Zea mays |
4 | Sugarcane | Saccharumof ficinarum |
5 | Teff | Eragrostis tef |
6 | Sorghum | Sorghum bicolor |
7 | Wheat | Triticum aestivum |
8 | Barley | Hordeum vulgare |
9 | Finger millet | Eleusine coracana |
10 | Rice | Oryza sativa |
11 | Cotton | Gossypiumhirsutum |
12 | Pulses | Fabaceae (Leguminos) |
Legumes (Faba Beans) | Vicia faba | |
Field peas | Pisum sativum | |
White haricot beans | Phaseolus vulgaris | |
Red Haricot beans | Phaseolus vulgaris | |
Chickpeas | Cicer arietinum | |
Lentils | Lens culinaris | |
Grass Peas | Lathyrus sativus | |
Soya beans | Glycine max | |
13 | Oil Seeds (OSOS) | |
Neug | Ricinus communis | |
Linseed (common flax) | Linum usitatissimum | |
Groundnut or peanut | Arachis hypogaea | |
Sunflower | Helianthus annuus | |
Rapeseed | Brassica napus | |
Fenugreek | Trigonella foenum-graecum | |
Mung bean | Vigna radiate | |
Gibto | Tragopogon pratensis |
References
- Benti, N.E.; Gurmesa, G.S.; Argaw, T.; Aneseyee, A.B.; Gunta, S.; Kassahun, G.B.; Aga, G.S.; Asfaw, A.A. Biotechnology for Biofuels the current status, challenges and prospects of using biomass energy in Ethiopia. Biotechnol. Biofuels 2021, 14, 209. [Google Scholar] [CrossRef]
- Yalew, A.W. Environmental and economic accounting for biomass energy in Ethiopia. Energy. Sustain. Soc. 2022, 12, 30. [Google Scholar] [CrossRef]
- Hailu, A.D.; Kumsa, D.K. Ethiopia renewable energy potentials and current state. AIMS Energy 2020, 9, 1–14. [Google Scholar] [CrossRef]
- Kaygusuz, K. Energy for sustainable development: A case of developing countries. Renew. Sustain. Energy Rev. 2012, 16, 1116–1126. [Google Scholar] [CrossRef]
- Toklu, E. Biomass energy potential and utilization in Turkey. Renew. Energy 2017, 107, 235–244. [Google Scholar] [CrossRef]
- Yalew, A.W. The Ethiopian energy sector and its implications for the SDGs and modeling. Renew. Sustain. Energy Transit. 2022, 2, 100018. [Google Scholar] [CrossRef]
- Gabisa, E.W.; Gheewala, S.H. Potential of bio-energy production in Ethiopia based on available biomass residues. Biomass Bioenergy 2018, 111, 77–87. [Google Scholar] [CrossRef]
- Tolessa, A. Bioenergy potential from crop residue biomass resources in Ethiopia. Heliyon 2023, 9, e13572. [Google Scholar] [CrossRef]
- Ciria, P.; Barro, R. 3—Biomass resource assessment. In Biomass Supply Chains for Bioenergy and Biorefining; Woodhead Publishing: Sawston, UK, 2016. [Google Scholar] [CrossRef]
- Jekayinfa, S.O.; Scholz, V. Potential availability of energetically usable crop residues in Nigeria. Energy Sources Part A Recover. Util. Environ. Eff. 2009, 31, 687–697. [Google Scholar] [CrossRef]
- Halder, P.K.; Paul, N.; Beg, M.R.A. Assessment of biomass energy resources and related technologies practice in Bangladesh. Renew. Sustain. Energy Rev. 2014, 39, 444–460. [Google Scholar] [CrossRef]
- Rettenmaier, N.; Schorb, A.; Köppen, S.; Berndes, G.; Christou, M.; Dees, M.; Domac, J.; Eleftheriadis, I.; Goltsev, V.; Kajba, D.K.; et al. Status of Biomass Resource Assessments Version 3. 2010, pp. 1–205. Available online: https://www.ifeu.de/fileadmin/uploads/BEE_D3.6_Status_of_biomass_resource_assessments_V3_1_04906.pdf (accessed on 16 June 2024).
- Tolessa, A. Bioenergy Production Potential of Available Biomass Residue Resources in Ethiopia. J. Renew. Energy 2023, 1, 2407300. [Google Scholar] [CrossRef]
- Ibitoye, S.E.; Jen, T.C.; Mahamood, R.M.; Akinlabi, E.T. Densification of agro-residues for sustainable energy generation: An overview. Bioresour. Bioprocess. 2021, 8, 75. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Series, C. Biomass Utilization of Some Agricultural Wastes as Alternative Fuel in Indonesia Biomass Utilization of Some Agricultural Wastes as Alternative Fuel in Indonesia. J. Phys. Conf. Ser. 2019, 1175, 012271. [Google Scholar] [CrossRef]
- Gebresas, A.; Asmelash, H.; Berhe, H.; Tesfay, T. Briquetting of Charcoal from Sesame Stalk. J. Energy 2015, 2015, 757284. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Sokhansanj, S.; Wright, C.T.; Boardman, R.D.; Yancey, N.A. A review on biomass classification and composition, co-firing issues and pretreatment methods. In Proceedings of the American Society of Agricultural and Biological Engineers International Meeting 2011, ASABE 2011, Louisville, Kentucky, 7–10 August 2011; Volume 3, pp. 2053–2083. [Google Scholar] [CrossRef]
- Chew, J.J.; Doshi, V. Recent advances in biomass pretreatment—Torrefaction fundamentals and technology. Renew. Sustain. Energy Rev. 2011, 15, 4212–4222. [Google Scholar] [CrossRef]
- Park, C.S.; Raju, A.S.K. Current developments in thermochemical conversion of biomass to fuels and chemicals. In Valorization of Lignocellulosic Biomass in a Biorefinery: From Logistics to Environmental and Performance Impact; IntechOpen: London, UK, 2016; pp. 171–184. [Google Scholar] [CrossRef]
- Panahi, A.; Tarakcioglu, M.; Schiemann, M.; Delichatsios, M.; Levendis, Y.A. On the particle sizing of torrefied biomass for co-firing with pulverized coal. Combust. Flame 2018, 194, 72–84. [Google Scholar] [CrossRef]
- Elalami, D.; Barakat, A. State of the Art of Energy Production from Agricultural Residues Using Thermochemical and Biological Processes, 1st ed.; Elsevier Inc: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Baloch, H.A.; Griffin, G.J.; Mubarak, N.M.; Bhutto, A.W.; Abro, R.; Mazari, S.A.; Ali, B.S. An overview of effect of process parameters on hydrothermal carbonization of biomass. Renew. Sustain. Energy Rev. 2017, 73, 1289–1299. [Google Scholar] [CrossRef]
- Purohit, P.; Chaturvedi, V. Biomass pellets for power generation in India: A techno-economic evaluation. Environ. Sci. Pollut. Res. 2018, 25, 29614–29632. [Google Scholar] [CrossRef]
- Tucho, G.T.; Nonhebel, S. Bio-wastes as an alternative household cooking energy source in Ethiopia. Energies 2015, 8, 9565–9583. [Google Scholar] [CrossRef]
- Werther, J.; Saenger, M.; Hartge, E.U.; Ogada, T.; Siagi, Z. Combustion of agricultural residues. Prog. Energy Combust. Sci. 2000, 26, 1–27. [Google Scholar] [CrossRef]
- Terrapon-Pfaff, J.C. Linking energy- and land-use systems: Energy potentials and environmental risks of using agricultural residues in Tanzania. Sustainability 2012, 4, 278–293. [Google Scholar] [CrossRef]
- Edwards, R.; Šúri, M.; Huld, T.A.; Dallemand, J.F. GIS-based assessment of cereal straw energy resource in the European Union. In Proceedings of the 14th European Biomass Conference & Exhibition. Biomass for Energy, Industry and Climate Protection, Paris, France, 17–21 October 2005; pp. 17–21. [Google Scholar]
- Blasi, A.; Verardi, A.; Lopresto, C.G.; Siciliano, S.; Sangiorgio, P. Lignocellulosic Agricultural Waste Valorization to Obtain Valuable Products: An Overview. Recycling 2023, 8, 61. [Google Scholar] [CrossRef]
- Ginni, G.; Kavitha, S.; Kannah, Y.; Bhatia, S.K.; Kumar, A.; Rajkumar, M.; Kumar, G.; Pugazhendhi, A.; Chi, N.T.L. Valorization of agricultural residues: Different biorefinery routes. J. Environ. Chem. Eng. 2021, 9, 105435. [Google Scholar] [CrossRef]
- Cesaro, A.; Belgiorno, V. Combined biogas and bioethanol production: Opportunities and challenges for industrial application. Energies 2015, 8, 8121–8144. [Google Scholar] [CrossRef]
- Fischer, G.; Prieler, S.; van Velthuizen, H.; Berndes, G.; Faaij, A.; Londo, M.; de Wit, M. Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures, Part II: Land use scenarios. Biomass Bioenergy 2010, 34, 173–187. [Google Scholar] [CrossRef]
- Hiloidhari, M.; Baruah, D.C. Crop residue biomass for decentralized electrical power generation in rural areas (part 1): Investigation of spatial availability. Renew. Sustain. Energy Rev. 2011, 15, 1885–1892. [Google Scholar] [CrossRef]
- Hiloidhari, M.; Das, D.; Baruah, D.C. Bioenergy potential from crop residue biomass in India. Renew. Sustain. Energy Rev. 2014, 32, 504–512. [Google Scholar] [CrossRef]
- Koopmans, A.; Koppejan, J. Agricultural and Forest Residues—Generation, Utilization and Availability. FAO. Available online: https://www.fao.org/4/AD576E/AD576E00.htm (accessed on 18 June 2024).
- Seboka, Y.; Getahun, M.A.; Haile-meskel, Y. Biomass Energy for Cement Production: Opportunities in Ethiopia:United Nations Development Program. 2009. Available online: https://www.ieabioenergy.com/wp-content/uploads/2018/01/EA-Bioenergy-Task-43-TR2016-05.pdf (accessed on 14 May 2021).
- Shane, A.; Gheewala, S.H.; Fungtammasan, B.; Silalertruksa, T.; Bonnet, S.; Phiri, S. Bioenergy resource assessment for Zambia. Renew. Sustain. Energy Rev. 2016, 53, 93–104. [Google Scholar] [CrossRef]
- Sajjakulnukit, B.; Yingyuad, R.; Maneekhao, V.; Pongnarintasut, V.; Bhattacharya, S.C.; Salam, P.A. Assessment of sustainable energy potential of non-plantation biomass resources in Thailand. Biomass Bioenergy 2005, 29, 214–224. [Google Scholar] [CrossRef]
- Kemausuor, F.; Kamp, A.; Thomsen, S.T.; Bensah, E.C.; Stergård, H. Assessment of biomass residue availability and bioenergy yields in Ghana. Resour. Conserv. Recycl. 2014, 86, 28–37. [Google Scholar] [CrossRef]
- Dasappa, S. Potential of biomass energy for electricity generation in sub-Saharan Africa. Energy Sustain. Dev. 2011, 15, 203–213. [Google Scholar] [CrossRef]
- Mhilu, C.F. Analysis of Energy Characteristics of Rice and Coffee Husks Blends. ISRN Chem. Eng. 2014, 2014, 196103. [Google Scholar] [CrossRef]
- Awalgaonkar, N.; Saxena, H.; Venkatesan, A.; Natarajan, R. Assessment of Surplus Agricultural Residues Available for Biomass Briquetting in India. In ICREGA’14—Renewable Energy: Generation and Applications; Springer: Berlin/Heidelberg, Germany, 2014; pp. 23–35. [Google Scholar] [CrossRef]
Crop Type | 2014 | 2015 | 2016 | 2017 | 2018 | Mean Yield 2014–2018 | Mean Yield Proportion % | Increment 2014–2018 (%) |
---|---|---|---|---|---|---|---|---|
Sesame | 220.22 | 288.77 | 274.22 | 267.87 | 255.90 | 261.39 | 0.88 | 16.2 |
Coffee | 392.01 | 419.98 | 414.60 | 469.09 | 449.23 | 428.98 | 1.45 | 14.6 |
Maize | 6491.54 | 7234.96 | 7150.84 | 7847.17 | 8395.89 | 7424.08 | 25.13 | 29.3 |
Sugar cane | 1403.44 | 1561.23 | 1376.98 | 1410.31 | 1347.04 | 1419.80 | 4.81 | −4.0 |
Teff | 4418.64 | 4750.66 | 4471.38 | 5020.44 | 5283.40 | 4788.90 | 16.21 | 19.6 |
Sorghum | 3828.87 | 4339.13 | 4323.30 | 4752.10 | 5169.25 | 4482.53 | 15.17 | 35.0 |
Wheat | 3925.17 | 4231.59 | 4219.26 | 4537.85 | 4642.97 | 4311.37 | 14.59 | 18.3 |
Barley | 1908.26 | 1953.38 | 1856.70 | 2024.92 | 2053.00 | 1959.25 | 6.63 | 7.6 |
Finger Millet | 848.96 | 915.31 | 940.25 | 1017.06 | 1030.82 | 950.48 | 3.22 | 21.4 |
Rice | 92.36 | 131.82 | 126.81 | 136.00 | 151.02 | 127.60 | 0.43 | 63.5 |
Cotton | 40.06 | 38.10 | 45.07 | 38.10 | 38.10 | 39.89 | 0.14 | −4.9 |
Pulses | 2858.88 | 2671.83 | 2769.27 | 2814.63 | 2978.59 | 2818.64 | 9.54 | 4.2 |
OSOS | 491.04 | 471.33 | 510.59 | 571.34 | 599.17 | 528.69 | 1.79 | 22.0 |
Total All | 26,919.45 | 29,008.09 | 28,479.27 | 30,906.88 | 32,394.38 | 29,541,616.4 |
S. No | Crop Type | Residue Type | Five-Year Mean Residue Amount Potentially Available for Energy (RAPA) (Tons/Year) | Five-Year Mean Crop Total RAPA (Tons/Year) | Crop RAPA Proportion in the Gross RAPA % | Comparison of Crop Total RAPA with Yield (RAPA/Yield) (%) |
---|---|---|---|---|---|---|
1 | Sesame | Stalk | 307,400.2 | 307,400.2 | 0.88 | 117 |
2 | Coffee | Husk | 857,961.5 | 857,961.5 | 2.45 | 200 |
3 | Maize | Husk | 1,484,815.7 | 15,590,564.9 | 44.44 | 210 |
Cobs | 2,227,223.6 | |||||
Stalk | 11,878,525.7 | |||||
4 | Sugar cane | Bagasse | 354,950.3 | 695,702.7 | 1.98 | 49 |
Tops leaves | 340,752.3 | |||||
5 | Teff | Straw | 3,304,343.7 | 3,304,343.7 | 9.42 | 69 |
6 | Sorghum | Stalk | 7,172,048.7 | 7,172,048.7 | 20.45 | 160 |
7 | Wheat | Husk | 287,568.2 | 2,163,013.1 | 6.17 | 50 |
Straw | 1,875,444.9 | |||||
8 | Barley | Straw | 764,109.0 | 764,109.0 | 2.18 | 39 |
9 | Finger Millet | Stalk | 1,330,671.9 | 1,330,671.9 | 3.79 | 140 |
10 | Rice | Husk | 27,536.5 | 133,446.2 | 0.38 | 104 |
Straw | 105,909.7 | |||||
11 | Cotton | Stalk | 114,874.8 | 202,626.3 | 0.58 | 508 |
Husk | 43,875.8 | |||||
Balls and Shells | 43,875.8 | |||||
12 | Pulses | Stalk | 1,499,517.6 | 1,499,517.6 | 4.27 | 53 |
13 | OSOS | Stalk | 1,057,388.1 | 1,057,388.1 | 3.01 | 200 |
All Residues | 35,078,794.0 | 35,078,794.0 |
Crop/Crop Category | Annual Energy Potentials of Crops Type from Their Total Residue (PJ/Year) | Residue Type | Five-Year Mean Energy Potential PJ/Year | Residues Proportion % | Five-Year Energy Rise % | Five Years Mean Energy Potential PJ/Year | Standard Deviation | Coeff. of Variation COV | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | Residue-Wise | Residue | Crop | 2014 to 2018 | Crop-Wise | ||||
Sesame | 3.72 | 4.87 | 4.63 | 4.52 | 4.32 | Stalk | 4.41 | 0.89 | 0.89 | 16.2 | 4.41 | 0.39 | 8.9 |
Coffee | 10.04 | 10.75 | 10.61 | 12.01 | 11.5 | Husk | 10.98 | 2.22 | 2.22 | 14.6 | 10.98 | 0.69 | 6.3 |
Maize | 199.1 | 221.9 | 219.3 | 240.7 | 257.5 | Husk | 18.71 | 3.78 | 46.04 | 29.3 | 227.76 | 19.9 | 8.7 |
Cobs | 34.43 | 6.96 | |||||||||||
Stalk | 174.61 | 35.30 | |||||||||||
Sugar cane | 9.18 | 10.21 | 9.01 | 9.23 | 8.81 | Bagasse | 3.9 | 0.79 | 1.86 | −4 | 9.29 | 0.49 | 5.2 |
Tops, leaves | 5.38 | 1.09 | |||||||||||
Teff | 42.68 | 45.89 | 43.19 | 48.5 | 51.04 | Straw | 46.26 | 9.35 | 9.35 | 19.6 | 46.26 | 3.17 | 6.8 |
Sorghum | 75.84 | 85.95 | 85.64 | 94.13 | 102.4 | Stalk | 88.79 | 17.95 | 17.95 | 35 | 88.79 | 8.94 | 10.1 |
Wheat | 30.56 | 32.95 | 32.85 | 35.33 | 36.15 | Husk | 4.31 | 0.87 | 6.78 | 18.3 | 33.57 | 1.99 | 5.9 |
Straw | 29.26 | 5.91 | |||||||||||
Barley | 9.41 | 9.64 | 9.16 | 9.99 | 10.13 | Straw | 9.67 | 1.95 | 1.95 | 7.6 | 9.67 | 0.36 | 3.7 |
Finger Millet | 18.43 | 19.88 | 20.42 | 22.08 | 22.38 | Stalk | 20.64 | 4.17 | 4.17 | 21.4 | 20.64 | 1.46 | 7.1 |
Rice | 1.48 | 2.11 | 2.03 | 2.18 | 2.42 | Husk | 0.4 | 0.08 | 0.41 | 63.5 | 2.04 | 0.31 | 15.2 |
Straw | 1.65 | 0.33 | |||||||||||
Cotton | 3.41 | 3.24 | 3.84 | 3.24 | 3.24 | Stalk | 1.86 | 0.38 | 0.69 | −4.9 | 3.40 | 0.23 | 6.8 |
Husk | 0.73 | 0.15 | |||||||||||
Balls, shells | 0.80 | 0.16 | |||||||||||
Pulses | 22.36 | 20.89 | 21.66 | 22.01 | 23.29 | Stalk | 22.04 | 4.46 | 4.46 | 4.2 | 22.04 | 0.79 | 3.6 |
OSOS | 14.73 | 14.14 | 15.32 | 17.14 | 17.98 | Stalk | 15.86 | 3.21 | 3.21 | 22.0 | 15.86 | 1.46 | 9.2 |
Total | 441.0 | 482.5 | 477.7 | 521.1 | 551.2 | 25.0 | 494.71 | 37.98 | 7.7 |
Regions | Area km2 | Sesame | Coffee | Maize | Sugar Cane | Teff | Sorghum | Wheat | Barley | F. Millet | Rice | Pulses | OSOS | Regional Potentials |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oromiya | 284,538 | 0.697 | 7.294 | 125.977 | 2.067 | 22.605 | 37.124 | 19.570 | 5.145 | 4.223 | 0.201 | 9.744 | 9.942 | 244.589 |
Amhara | 154,709 | 2.083 | 0.076 | 56.970 | 0.996 | 17.876 | 28.999 | 9.751 | 2.997 | 11.374 | 1.678 | 8.800 | 4.008 | 145.608 |
Tigray | 50,079 | 1.207 | 0.000 | 4.752 | 0.003 | 2.316 | 12.756 | 1.575 | 0.815 | 3.806 | 0.019 | 0.447 | 0.355 | 28.051 |
SNNP | 105,800 | 0.023 | 3.601 | 31.721 | 4.924 | 3.175 | 4.695 | 2.521 | 0.698 | 0.126 | 0.078 | 2.727 | 0.075 | 54.364 |
Afar | 72,051 | 0.000 | 0.000 | 0.404 | 0.345 | 0.000 | 0.140 | 0.000 | 0.000 | 0.000 | 0.000 | 0.005 | 0.002 | 0.896 |
Somalie | 279,252 | 0.000 | 0.000 | 2.783 | 0.000 | 0.000 | 2.163 | 0.000 | 0.000 | 0.000 | 0.000 | 0.008 | 0.152 | 5.106 |
Gambela | 29,783 | 0.000 | 0.000 | 0.306 | 0.000 | 0.000 | 0.113 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.001 | 0.422 |
Benshangul | 50,699 | 0.398 | 0.011 | 5.291 | 0.000 | 0.282 | 2.712 | 0.041 | 0.005 | 1.109 | 0.064 | 0.305 | 1.236 | 11.454 |
Harere | 334 | 0.000 | 0.000 | 0.090 | 0.127 | 0.000 | 0.246 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.087 | 0.551 |
Diredawa | 1559 | 0.001 | 0.000 | 0.018 | 0.148 | 0.000 | 0.359 | 0.000 | 0.000 | 0.000 | 0.000 | 0.007 | 0.008 | 0.541 |
Crop | Cotton | OSOS | Coffee | Maize | Finger Millet | Cotton | Sorghum | Cotton | Sesame | Rice |
---|---|---|---|---|---|---|---|---|---|---|
Residue | Stalk | Stalk | Husk | stalk | Stalk | Ball and Shell | Stalk | Husk | Stalk | Straw |
PVERr | 46.7 | 30 | 25.6 | 23.5 | 21.7 | 20.1 | 19.8 | 18.4 | 16.9 | 12.9 |
Rank | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th |
Crop | Teff | Pulses | Wheat | Barley | Maize | Sugar cane | Rice | Sugar Cane | Maize | Wheat |
Residues | Straw | Stalk | Straw | Straw | Cob | Tops Leaves | Husk | Bagasse | Husk | Husk |
PVERr | 9.7 | 7.8 | 6.8 | 4.9 | 4.6 | 3.8 | 3.1 | 2.8 | 2.5 | 1 |
Rank | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | 19th | 20th |
Crop | Cotton | Maize | OSOS | Coffee | Finger Millet | Sorghum | Sesame | Rice | Teff | Pulses | Wheat | Sugar Cane | Barley |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PVERc | 85.2 | 30.7 | 30.0 | 25.6 | 21.7 | 19.8 | 16.9 | 16.0 | 9.7 | 7.8 | 7.8 | 6.5 | 4.9 |
Rank | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th |
Crop | Cotton | Cotton | Cotton | Maize | Oil Seeds OSOS | Coffee | Sugar Cane | Maize | Finger Millet | Rice |
---|---|---|---|---|---|---|---|---|---|---|
Residue | Balls/Shells | Husk | Stalk | Cobs | Stalk | Husk | Tops and leaves | Husk | Stalk | Husk |
PVEAri (SAF × LHV) | 18.3 | 16.7 | 16.2 | 15.5 | 15 | 12.8 | 12.6 | 12.6 | 12.4 | 12 |
Rank | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th |
Crop | Maize | Sesame | Sugar cane | Sorghum | Rice | Pulses | Wheat | Wheat | Teff | Barley |
Residue | Stalk | Stalk | Bagasse | Straw | Straw | Stalk | Straw | husk | Straw | Straw |
PVEAri (SAF × LHV) | 11.8 | 11.5 | 11 | 9.9 | 7.8 | 5.6 | 4.5 | 4.4 | 4.2 | 3.8 |
Rank | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | 19th | 20th |
Crop | Cotton | Maize | Sugar Cane | Rice | Oil Seeds | Coffee | Finger Millet | Sesame | Sorghum | Wheat | Pulses | Teff | Barley |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PVEAc | 51.2 | 39.9 | 23.6 | 19.8 | 15 | 12.8 | 12.4 | 11.5 | 9.9 | 8.9 | 5.6 | 4.2 | 3.8 |
Rank | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tesfay, A.G.; Tesfay, A.H.; Adaramola, M.S. Quantifying Agricultural Residues Biomass Resources and the Energy Potentials with Characterization of Their Nature and Ethiopian Case Consumption Inference. Energies 2024, 17, 4736. https://doi.org/10.3390/en17184736
Tesfay AG, Tesfay AH, Adaramola MS. Quantifying Agricultural Residues Biomass Resources and the Energy Potentials with Characterization of Their Nature and Ethiopian Case Consumption Inference. Energies. 2024; 17(18):4736. https://doi.org/10.3390/en17184736
Chicago/Turabian StyleTesfay, Angesom Gebrezgabiher, Asfafaw Haileselassie Tesfay, and Muyiwa Samuel Adaramola. 2024. "Quantifying Agricultural Residues Biomass Resources and the Energy Potentials with Characterization of Their Nature and Ethiopian Case Consumption Inference" Energies 17, no. 18: 4736. https://doi.org/10.3390/en17184736
APA StyleTesfay, A. G., Tesfay, A. H., & Adaramola, M. S. (2024). Quantifying Agricultural Residues Biomass Resources and the Energy Potentials with Characterization of Their Nature and Ethiopian Case Consumption Inference. Energies, 17(18), 4736. https://doi.org/10.3390/en17184736