A Comprehensive Review of Energy-Efficient Techniques for UAV-Assisted Industrial Wireless Networks
Abstract
:1. Introduction
1.1. Background
1.2. Related Reviews for Energy-Efficient Techniques on UAV and Industrial Wireless Networks
1.3. Motivation and Contribution
1.4. Paper Organization
2. Energy Efficient Techniques in Industrial Wireless Network
2.1. Vehicular Communication
2.2. Platooning System
2.3. Backscatter Communication
2.4. Reconfigurable Intelligent Surfaces
2.5. WiFi Sensing
2.6. Simultaneous Wireless Information and Power Transfer
3. UAV Assistance in Industrial Wireless Networks
3.1. Aerial Server
3.2. Coverage Enhancement
3.3. Cost Reduction
3.4. UAV and Energy Consumption Models
3.4.1. Fixed-Wing UAV
3.4.2. Rotary-Wing UAV
4. Energy-Efficient Techniques in UAV-Assisted Wireless Communications
4.1. UAV Placement
4.1.1. Optimal Hovering Position
4.1.2. UAV Trajectory Design
4.2. Resource Allocation
4.3. Scheduling
4.4. Beamforming
4.5. Wireless Power Transfer
5. Energy-Efficient Techniques for UAV-Assisted Industrial Wireless Networks
5.1. Existing Energy-Efficient Techniques
5.1.1. Vehicular Networks and Platooning Systems
5.1.2. UAV-Assisted Backscatter Communication
5.1.3. RIS-Assisted UAV Systems
5.1.4. Machine Learning-Based Approaches
Techniques | Articles | Strengths | Concerns |
---|---|---|---|
Vehicular networks | [126,127,128,129] | Enhancing fuel consumption reduction along with improving road capacity and safety to benefit supply chains. | Significant Doppler shift challenges; reliability and safety of communication are difficult to guarantee. |
Backscattering | [130,131,132,133,134] | Low power consumption and low cost; each device has its own ID for easy tracking. | Communication range is limited. |
Reconfigurable intelligent surfaces | [135,136,137,138] | Low power consumption; enhances communication performance with extended range. | Highly dependent on propagation environment; and the RIS-related channels are hard to estimate and control. |
Machine learning-based approaches | [139,140] | Easy to tackle non-convex or challenging-formulated problems. | High costs; demands substantial computational resource demands and large datasets. |
5.2. Open Research Problems, Challenges and Future Directions
5.2.1. Limitations of Existing UAV Communication Models
5.2.2. Implementing Practical Prototypes
5.2.3. Utilizing Renewable Energy Sources
5.2.4. Ensuring Privacy and Security
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Statista. Industrial IoT Worldwide. 2024. Available online: https://www.statista.com/outlook/tmo/internet-of-things/industrial-iot/worldwide (accessed on 22 August 2024).
- Rahman, M.A.; Hossain, M.S.; Showail, A.J.; Alrajeh, N.A.; Ghoneim, A. AI-enabled IIoT for live smart city event monitoring. IEEE Internet Things J. 2021, 10, 2872–2880. [Google Scholar] [CrossRef]
- Bhargava, A.; Bhargava, D.; Kumar, P.N.; Sajja, G.S.; Ray, S. Industrial IoT and AI implementation in vehicular logistics and supply chain management for vehicle mediated transportation systems. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 673–680. [Google Scholar] [CrossRef]
- Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial internet of things: Challenges, opportunities, and directions. IEEE Trans. Ind. Inform. 2018, 14, 4724–4734. [Google Scholar] [CrossRef]
- Herrera, J.L.; Bellavista, P.; Foschini, L.; Galán-Jiménez, J.; Murillo, J.M.; Berrocal, J. Meeting stringent qos requirements in iiot-based scenarios. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7 December 2020; pp. 1–6. [Google Scholar]
- Harvey, C.; Gamble, L.L.; Bolander, C.R.; Hunsaker, D.F.; Joo, J.J.; Inman, D.J. A review of avian-inspired morphing for UAV flight control. Prog. Aerosp. Sci. 2022, 132, 100825. [Google Scholar] [CrossRef]
- Zhang, Y.; Mishra, D.; Gharakheili, H.H.; Wing Kwan Ng, D. UAV Operation Time Minimization for Wireless-Powered Data Collection. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Seoul, Republic of Korea, 14–19 April 2024; pp. 46–50. [Google Scholar] [CrossRef]
- Qian, L.; Lo, Y.L.; Liu, H.H.t. A path planning algorithm for a crop monitoring fixed-wing unmanned aerial system. Sci. China Inform. Sci. 2024, 67, 1–19. [Google Scholar] [CrossRef]
- Cao, J.R.; Wang, W.; Xu, N.; Su, W.T.; Xing, L.X.; Su, J.T. Robust Energy Efficiency Optimization Strategy for Emergency Communication Based on Fixed-Wing UAV. J. Comput. Sci. Technol. 2024, 35, 37–57. [Google Scholar]
- Altamira-Colado, E.; Cuevas-González, D.; Reyna, M.A.; García-Vázquez, J.P.; Avitia, R.L.; Osornio-Vargas, A.R. Drone-Assisted Particulate Matter Measurement in Air Monitoring: A Patent Review. Atmosphere 2024, 15, 515. [Google Scholar] [CrossRef]
- Shah, S.F.A.; Mazhar, T.; Al Shloul, T.; Shahzad, T.; Hu, Y.C.; Mallek, F.; Hamam, H. Applications, challenges, and solutions of unmanned aerial vehicles in smart city using blockchain. PeerJ Comput. Sci. 2024, 10, e1776. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Wan, J.; Vasilakos, A.V.; Lai, C.F.; Wang, S. A review of industrial wireless networks in the context of Industry 4.0. Wirel. Netw. 2017, 23, 23–41. [Google Scholar] [CrossRef]
- Çoban, S.; Oktay, T. Unmanned aerial vehicles (UAVs) according to engine type. J. Aviat. 2018, 2, 177–184. [Google Scholar] [CrossRef]
- Galkin, B.; Kibilda, J.; DaSilva, L.A. UAVs as mobile infrastructure: Addressing battery lifetime. IEEE Commun. Mag. 2019, 57, 132–137. [Google Scholar] [CrossRef]
- Dixon, S.R.; Wickens, C.D.; Chang, D. Mission control of multiple unmanned aerial vehicles: A workload analysis. Hum. Factors 2005, 47, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Jin, X.; Zhou, Y.; Guo, P.; Ren, J.; Yao, J.; Zhang, S. A survey of energy efficient methods for UAV communication. Veh. Commun. 2023, 41, 100594. [Google Scholar] [CrossRef]
- Jiang, X.; Sheng, M.; Nan, Z.; Chengwen, X.; Weidang, L.; Xianbin, W. Green UAV communications for 6G: A survey. Chin. J. Aeronaut. 2022, 35, 19–34. [Google Scholar] [CrossRef]
- Abubakar, A.I.; Ahmad, I.; Omeke, K.G.; Ozturk, M.; Ozturk, C.; Abdel-Salam, A.M.; Mollel, M.S.; Abbasi, Q.H.; Hussain, S.; Imran, M.A. A survey on energy optimization techniques in UAV-based cellular networks: From conventional to machine learning approaches. Drones 2023, 7, 214. [Google Scholar] [CrossRef]
- Thibbotuwawa, A.; Nielsen, P.; Zbigniew, B.; Bocewicz, G. Energy consumption in unmanned aerial vehicles: A review of energy consumption models and their relation to the UAV routing. In Proceedings of the 39th International Conference on Information Systems Architecture and Technology–ISAT 2018, Nysa, Poland, 16–18 September 2018; Springer: Berlin/Heidelberg, Germany, 2019; pp. 173–184. [Google Scholar]
- Shakoor, S.; Kaleem, Z.; Baig, M.I.; Chughtai, O.; Duong, T.Q.; Nguyen, L.D. Role of UAVs in public safety communications: Energy efficiency perspective. IEEE Access 2019, 7, 140665–140679. [Google Scholar] [CrossRef]
- Wu, Y.; Dai, H.N.; Wang, H.; Xiong, Z.; Guo, S. A survey of intelligent network slicing management for industrial IoT: Integrated approaches for smart transportation, smart energy, and smart factory. IEEE Commun. Surv. Tutor. 2022, 24, 1175–1211. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, X.; Liu, J.; Zhang, Y. Vehicular intelligence in 6G: Networking, communications, and computing. Veh. Commun. 2022, 33, 100399. [Google Scholar] [CrossRef]
- Quy, V.K.; Nguyen, D.C.; Van Anh, D.; Quy, N.M. Federated learning for green and sustainable 6G IIoT applications. Internet Things 2024, 25, 101061. [Google Scholar] [CrossRef]
- Rao, S.K.; Prasad, R. Impact of 5G technologies on industry 4.0. Wirel. Pers. Commun. 2018, 100, 145–159. [Google Scholar] [CrossRef]
- Yan, Y. Research on the innovation path of logistics formats based on 5G technology. Open J. Bus. Manag. 2019, 7, 1936–1942. [Google Scholar] [CrossRef]
- Taboada, I.; Shee, H. Understanding 5G technology for future supply chain management. Int. J. Logist. Res. Appl. 2021, 24, 392–406. [Google Scholar] [CrossRef]
- Que, S.; Chen, J.; Chen, B.; Jiang, H. The application of 5G technology in logistics information acquisition. In Proceedings of the DEStech Transactions on Computer Science and Engineering, International Conference on Electronic Information Technology and Intellectualization, Hong Kong, China, 26–27 April 2016; pp. 512–517. [Google Scholar]
- Alalewi, A.; Dayoub, I.; Cherkaoui, S. On 5G-V2X use cases and enabling technologies: A comprehensive survey. IEEE Access 2021, 9, 107710–107737. [Google Scholar] [CrossRef]
- Cheng, J.; Chen, W.; Tao, F.; Lin, C.L. Industrial IoT in 5G environment towards smart manufacturing. J. Ind. Inf. Integr. 2018, 10, 10–19. [Google Scholar] [CrossRef]
- Zhao, R.; Mishra, D.; Seneviratne, A. Securing OFDMA in V2V Communication Among Untrusted Platoons. In Proceedings of the 2022 30th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Nice, France, 18–20 October 2022; pp. 145–151. [Google Scholar]
- Tsugawa, S.; Jeschke, S.; Shladover, S.E. A review of truck platooning projects for energy savings. IEEE Trans. Intell. Veh. 2016, 1, 68–77. [Google Scholar] [CrossRef]
- Dadras, S.; Gerdes, R.M.; Sharma, R. Vehicular platooning in an adversarial environment. In Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security, Singapore, 14–17 April 2015; pp. 167–178. [Google Scholar]
- Zhao, R.; Mishra, D.; Seneviratne, A. Securing OFDMA-Based Cooperative Vehicular IoT Systems From Untrusted Platooning Networks. IEEE Internet Things J. 2024, 1. [Google Scholar] [CrossRef]
- Hou, J.; Chen, G.; Huang, J.; Qiao, Y.; Xiong, L.; Wen, F.; Knoll, A.; Jiang, C. Large-scale vehicle platooning: Advances and challenges in scheduling and planning techniques. Engineering 2023, 28, 26–48. [Google Scholar] [CrossRef]
- Watanabe, D.; Kenmochi, T.; Sasa, K. An analytical approach for facility location for truck platooning—A case study of an unmanned following truck platooning system in Japan. Logistics 2021, 5, 27. [Google Scholar] [CrossRef]
- Zhang, T.; Lu, C.; Goay, A.C.Y.; Mishra, D.; Seneviratne, A.; Yuan, J. Securing RFID Backscattering Against Jamming: Modelling, Simulations and Experimental Validation. In Proceedings of the 2024 IEEE Global Communications Conference (IEEE GLOBECOM), Cape Town, South Africa, 8–12 December 2024; pp. 1–6. [Google Scholar]
- Ruotong, Z.; Lei, T.; Deepak, M.; Seneviratne, A.; Yuan, J. Experimental Demonstration of Securing RFID Backscattering Against Proactive Eavesdropping. In Proceedings of the 2024 IEEE Global Communications Conference (IEEE GLOBECOM), Cape Town, South Africa, 8–12 December 2024; pp. 1–6. [Google Scholar]
- Zhao, R.; Mondal, A.; Mishra, D.; Seneviratne, A. QoS-Aware Reinforcement Learning Based Green Trajectory Design for UAV-Aided Backscattering. In Proceedings of the GLOBECOM 2023-2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 7303–7308. [Google Scholar]
- Bletsas, A.; Siachalou, S.; Sahalos, J.N. Anti-collision backscatter sensor networks. IEEE Trans. Wirel. Commun. 2009, 8, 5018–5029. [Google Scholar] [CrossRef]
- Liu, V.; Parks, A.; Talla, V.; Gollakota, S.; Wetherall, D.; Smith, J.R. Ambient backscatter: Wireless communication out of thin air. ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 39–50. [Google Scholar] [CrossRef]
- Yuen Goay, A.C.; Mishra, D.; Seneviratne, A. QoS-Aware BPSK Modulation for Sustainable Backscattering in Energy Harvesting IoT Systems. In Proceedings of the 2023 IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 1722–1727. [Google Scholar]
- Van Huynh, N.; Hoang, D.T.; Lu, X.; Niyato, D.; Wang, P.; Kim, D.I. Ambient backscatter communications: A contemporary survey. IEEE Commun. Surv. Tutor. 2018, 20, 2889–2922. [Google Scholar] [CrossRef]
- Huang, Y.; Li, M.; Yu, F.R.; Si, P.; Zhang, H.; Qiao, J. Resources Scheduling for Ambient Backscatter Communication-Based Intelligent IIoT: A Collective Deep Reinforcement Learning Method. IEEE Trans. Cogn. Commun. Netw. 2023, 10, 634–648. [Google Scholar] [CrossRef]
- Shi, G.; He, Y.; Gu, L.; Jiao, J. Industry 4.0-Oriented Chipless RFID Backscatter Signal Variable Polarization Amplitude Deep Learning Coding. Wirel. Commun. Mob. Comput. 2021, 2021, 6985420. [Google Scholar] [CrossRef]
- Khan, W.U.; Ihsan, A.; Nguyen, T.N.; Ali, Z.; Javed, M.A. NOMA-enabled backscatter communications for green transportation in automotive-industry 5.0. IEEE Trans. Ind. Inform. 2022, 18, 7862–7874. [Google Scholar] [CrossRef]
- Jameel, F.; Duan, R.; Chang, Z.; Liljemark, A.; Ristaniemi, T.; Jantti, R. Applications of backscatter communications for healthcare networks. IEEE Netw. 2019, 33, 50–57. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Mu, X.; Hou, T.; Xu, J.; Di Renzo, M.; Al-Dhahir, N. Reconfigurable intelligent surfaces: Principles and opportunities. IEEE Commun. Surv. Tutor. 2021, 23, 1546–1577. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, W.; Wang, K.; Di Renzo, M.; Alouini, M.S. Spectral and energy efficiency of IRS-assisted MISO communication with hardware impairments. IEEE Wirel. Commun. Lett. 2020, 9, 1366–1369. [Google Scholar] [CrossRef]
- Perović, N.S.; Di Renzo, M.; Flanagan, M.F. Channel capacity optimization using reconfigurable intelligent surfaces in indoor mmWave environments. In Proceedings of the ICC 2020-2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–7. [Google Scholar]
- Jamil, S.; Rahman, M.; Abbas, M.S.; Fawad. Resource allocation using reconfigurable intelligent surface (RIS)-assisted wireless networks in industry 5.0 scenario. Telecom 2022, 3, 163–173. [Google Scholar] [CrossRef]
- Dhok, S.; Raut, P.; Sharma, P.K.; Singh, K.; Li, C.P. Non-linear energy harvesting in RIS-assisted URLLC networks for industry automation. IEEE Trans. Commun. 2021, 69, 7761–7774. [Google Scholar] [CrossRef]
- Wang, J.; Fu, X.; Peng, R.; Kadoch, M. An Innovative Infrastructure Based on Shape-Adaptive RIS for Smart Industrial IoTs. Electronics 2022, 11, 391. [Google Scholar] [CrossRef]
- Aboagye, S.; Ndjiongue, A.R.; Ngatched, T.M.; Dobre, O.A.; Poor, H.V. RIS-assisted visible light communication systems: A tutorial. IEEE Commun. Surv. Tutor. 2022, 25, 251–288. [Google Scholar] [CrossRef]
- Wu, C.; Wang, B.; Au, O.C.; Liu, K.R. Wi-fi can do more: Toward ubiquitous wireless sensing. IEEE Commun. Stand. Mag. 2022, 6, 42–49. [Google Scholar] [CrossRef]
- Sharma, A.; Li, J.; Mishra, D.; Jha, S.; Seneviratne, A. Towards Energy Efficient Wireless Sensing by Leveraging Ambient Wi-Fi Traffic. Energies 2024, 17, 485. [Google Scholar] [CrossRef]
- Perera, T.D.P.; Jayakody, D.N.K.; Sharma, S.K.; Chatzinotas, S.; Li, J. Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges. IEEE Commun. Surv. Tutor. 2017, 20, 264–302. [Google Scholar] [CrossRef]
- Ding, Z.; Zhong, C.; Ng, D.W.K.; Peng, M.; Suraweera, H.A.; Schober, R.; Poor, H.V. Application of smart antenna technologies in simultaneous wireless information and power transfer. IEEE Commun. Mag. 2015, 53, 86–93. [Google Scholar] [CrossRef]
- Tang, J.; Luo, J.; Liu, M.; So, D.K.; Alsusa, E.; Chen, G.; Wong, K.K.; Chambers, J.A. Energy efficiency optimization for NOMA with SWIPT. IEEE J. Sel. Top. Signal Process. 2019, 13, 452–466. [Google Scholar] [CrossRef]
- Su, Z.; Feng, W.; Tang, J.; Chen, Z.; Fu, Y.; Zhao, N.; Wong, K.K. Energy-efficiency optimization for D2D communications underlaying uav-assisted industrial IoT networks with SWIPT. IEEE Internet Things J. 2022, 10, 1990–2002. [Google Scholar] [CrossRef]
- Masotti, D.; Shanawani, M.; Murtaza, G.; Paolini, G.; Costanzo, A. RF systems design for simultaneous wireless information and power transfer (SWIPT) in automation and transportation. IEEE J. Microw. 2021, 1, 164–175. [Google Scholar] [CrossRef]
- Amjad, M.; Chughtai, O.; Naeem, M.; Ejaz, W. SWIPT-assisted energy efficiency optimization in 5G/B5G cooperative IoT network. Energies 2021, 14, 2515. [Google Scholar] [CrossRef]
- Shi, S.; Wang, M.; Gu, S.; Zheng, Z. Energy-efficient UAV-enabled computation offloading for industrial internet of things: A deep reinforcement learning approach. Wirel. Netw. 2021, 30, 3921–3934. [Google Scholar] [CrossRef]
- Ouamri, M.A.; Alkanhel, R.; Singh, D.; El-Kenaway, E.S.M.; Ghoneim, S.S. Double deep q-network method for energy efficiency and throughput in a uav-assisted terrestrial network. Int. J. Comput. Syst. Sci. Eng. 2023, 46, 73–92. [Google Scholar] [CrossRef]
- Lan, X.; Tang, X.; Zhang, R.; Lin, W.; Han, Z. UAV-assisted computation offloading toward energy-efficient blockchain operations in internet of things. IEEE Wirel. Commun. Lett. 2023, 12, 1469–1473. [Google Scholar] [CrossRef]
- Niu, H.; Zhao, X.; Hou, L.; Ma, D. Energy Efficiency Maximization for UAV-Assisted Emergency Communication Networks. Wirel. Commun. Mob. Comput. 2021, 2021, 7595347. [Google Scholar] [CrossRef]
- Chen, X.; Liu, X.; Chen, Y.; Jiao, L.; Min, G. Deep Q-network based resource allocation for UAV-assisted ultra-dense networks. Comput. Netw. 2021, 196, 108249. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 2016, 54, 36–42. [Google Scholar] [CrossRef]
- Zhang, Y.; Mishra, D. Age of Information Minimization in QoS-Aware UAV-assisted Wireless-Powered Data Collection. In Proceedings of the 2024 Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Valencia, Spain, 2–5 September 2024; pp. 1–6. [Google Scholar]
- Zhang, X.; Chang, Z.; Hämäläinen, T.; Min, G. AoI-energy tradeoff for data collection in UAV-assisted wireless networks. IEEE Trans. Commun. 2023, 72, 1849–1861. [Google Scholar] [CrossRef]
- Pervez, F.; Sultana, A.; Yang, C.; Zhao, L. Energy and latency efficient joint communication and computation optimization in a multi-UAV assisted MEC network. IEEE Trans. Wirel. Commun. 2023, 23, 1728–1741. [Google Scholar] [CrossRef]
- Sabuj, S.R.; Ahmed, A.; Cho, Y.; Lee, K.J.; Jo, H.S. Cognitive UAV-aided URLLC and mMTC services: Analyzing energy efficiency and latency. IEEE Access 2020, 9, 5011–5027. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.; Leung, V.C.; Durrani, T.S. Energy-efficient resource allocation for dual-NOMA-UAV assisted Internet of Things. IEEE Trans. Veh. Technol. 2022, 72, 3532–3543. [Google Scholar] [CrossRef]
- Xiao, T.; Wei, W.; Hongliang, H.; Zhang, R. Energy-efficient data collection for UAV-assisted IoT: Joint trajectory and resource optimization. Chin. J. Aeronaut. 2022, 35, 95–105. [Google Scholar]
- Ei, N.N.; Alsenwi, M.; Tun, Y.K.; Han, Z.; Hong, C.S. Energy-efficient resource allocation in multi-UAV-assisted two-stage edge computing for beyond 5G networks. IEEE Trans. Intell. Transp. Syst. 2022, 23, 16421–16432. [Google Scholar] [CrossRef]
- Liu, Z.; Qi, J.; Shen, Y.; Ma, K.; Guan, X. Maximizing energy efficiency in UAV-assisted NOMA-MEC networks. IEEE Internet Things J. 2023. [Google Scholar] [CrossRef]
- Tun, Y.K.; Park, Y.M.; Tran, N.H.; Saad, W.; Pandey, S.R.; Hong, C.S. Energy-efficient resource management in UAV-assisted mobile edge computing. IEEE Commun. Lett. 2020, 25, 249–253. [Google Scholar] [CrossRef]
- Masaracchia, A.; Nguyen, L.D.; Duong, T.Q.; Yin, C.; Dobre, O.A.; Garcia-Palacios, E. Energy-efficient and throughput fair resource allocation for TS-NOMA UAV-assisted communications. IEEE Trans. Commun. 2020, 68, 7156–7169. [Google Scholar] [CrossRef]
- Yu, X.Y.; Niu, W.J.; Zhu, Y.; Zhu, H.B. UAV-assisted cooperative offloading energy efficiency system for mobile edge computing. Digit. Commun. Netw. 2022. [Google Scholar] [CrossRef]
- Li, Y.; Xu, S.; Wu, Y.; Li, D. Network energy-efficiency maximization in UAV-enabled air–ground-integrated deployment. IEEE Internet Things J. 2022, 9, 13209–13222. [Google Scholar] [CrossRef]
- Abrar, M.; Ajmal, U.; Almohaimeed, Z.M.; Gui, X.; Akram, R.; Masroor, R. Energy efficient UAV-enabled mobile edge computing for IoT devices: A review. IEEE Access 2021, 9, 127779–127798. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Long, K.; Choi, S.; Nallanathan, A. Resource allocation for optimizing energy efficiency in NOMA-based fog UAV wireless networks. IEEE Netw. 2019, 34, 158–163. [Google Scholar] [CrossRef]
- Xie, J.; Chang, Z.; Guo, X.; Hämäläinen, T. Energy Efficient Resource Allocation for Wireless Powered UAV Wireless Communication System With Short Packet. IEEE Trans. Green Commun. Netw. 2023, 7, 101–113. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, Y.; Lim, W.Y.B.; Kang, J.; Niyato, D.; Leung, C.; Miao, C. UAV-Assisted Wireless Energy and Data Transfer With Deep Reinforcement Learning. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 85–99. [Google Scholar] [CrossRef]
- Sikeridis, D.; Tsiropoulou, E.E.; Devetsikiotis, M.; Papavassiliou, S. Wireless powered Public Safety IoT: A UAV-assisted adaptive-learning approach towards energy efficiency. J. Netw. Comput. Appl. Dec 2018, 123, 69–79. [Google Scholar] [CrossRef]
- Do, Q.V.; Pham, Q.V.; Hwang, W.J. Deep Reinforcement Learning for Energy-Efficient Federated Learning in UAV-Enabled Wireless Powered Networks. IEEE Commun. Lett. Oct 2022, 26, 99–103. [Google Scholar] [CrossRef]
- Xu, X.R.; Xu, Y.H.; Zhou, W.; Nallanathan, A. Energy Efficient Resource Allocation for UAV-Served Energy Harvesting-Supported Cognitive Industrial M2M Networks. IEEE Wirel. Commun. Lett. 2023, 12, 1454–1458. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, W.; Shikh-Bahaei, M. Energy Efficient UAV Communication With Energy Harvesting. IEEE Trans. Veh. Technol. 2020, 69, 1913–1927. [Google Scholar] [CrossRef]
- Huo, Y.; Dong, X.; Lu, T.; Xu, W.; Yuen, M. Distributed and Multi-layer UAV Network for the Next-generation Wireless Communication. arXiv 2018, arXiv:1805.01534. [Google Scholar]
- Tahar, K.N.; Ahmad, A.; Akib, W.A.A.W.M.; Mohd, W.M.N.W. Aerial mapping using autonomous fixed-wing unmanned aerial vehicle. In Proceedings of the 2012 IEEE 8th International Colloquium on Signal Processing and Its Applications, Malacca, Malaysia, 23–25 March 2012; pp. 164–168. [Google Scholar] [CrossRef]
- Coombes, M.; Chen, W.H.; Liu, C. Fixed Wing UAV Survey Coverage Path Planning in Wind for Improving Existing Ground Control Station Software. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 9820–9825. [Google Scholar] [CrossRef]
- Rakesh, D.; Akshay Kumar, N.; Sivaguru, M.; Keerthivaasan, K.V.R.; Rohini Janaki, B.; Raffik, R. Role of UAVs in Innovating Agriculture with Future Applications: A Review. In Proceedings of the 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), Virtual, 8–9 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Beard, R.; McLain, T.; Nelson, D.; Kingston, D.; Johanson, D. Decentralized Cooperative Aerial Surveillance Using Fixed-Wing Miniature UAVs. Proc. IEEE 2006, 94, 1306–1324. [Google Scholar] [CrossRef]
- Song, K.; Zhang, J.; Ji, Z.; Jiang, J.; Li, C. Energy-Efficiency for IoT System With Cache-Enabled Fixed-Wing UAV Relay. IEEE Access 2020, 8, 117503–117512. [Google Scholar] [CrossRef]
- Chen, H.; Cong, Y.; Wang, X.; Xu, X.; Shen, L. Coordinated path-following control of fixed-wing unmanned aerial vehicles. IEEE Trans. Syst. Man Cybern. 2021, 52, 2540–2554. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R. Energy-Efficient UAV Communication with Trajectory Optimization. IEEE Trans. Wirel. Commun. 2017, 16, 3747–3760. [Google Scholar] [CrossRef]
- Lucia, W.; Franzè, G.; Sznaier, M. A Hybrid Command Governor Scheme for Rotary Wings Unmanned Aerial Vehicles. IEEE Trans. Control Syst. Technol. 2020, 28, 361–375. [Google Scholar] [CrossRef]
- Tianao, Z.; Wei, L. Design Configuration and Technical Application of Rotary-Wing Unmanned Aerial Vehicles. Mechatron. Intell. Transp. Syst. Sep 2022, 1, 69–85. [Google Scholar] [CrossRef]
- Falkowski, K.; Duda, M. Dynamic Models Identification for Kinematics and Energy Consumption of Rotary-Wing UAVs during Different Flight States. Sensors 2023, 23, 9378. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Gao, F.; Shen, X.S. 3D UAV Trajectory Design and Frequency Band Allocation for Energy-Efficient and Fair Communication: A Deep Reinforcement Learning Approach. IEEE Trans. Wirel. Commun. 2020, 19, 7796–7809. [Google Scholar] [CrossRef]
- Wang, Z.; Lv, T.; Zeng, J.; Ni, W. Placement and Resource Allocation of Wireless-Powered Multiantenna UAV for Energy-Efficient Multiuser NOMA. IEEE Trans. Wirel. Commun. 2022, 21, 8757–8771. [Google Scholar] [CrossRef]
- Zhai, D.; Wang, C.; Zhang, R.; Cao, H.; Yu, F.R. Energy-Saving Deployment Optimization and Resource Management for UAV-Assisted Wireless Sensor Networks with NOMA. IEEE Trans. Veh. Technol. Mar 2022, 71, 6609–6623. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, J.; Xiang, L.; Ge, X. Energy Consumption Optimization for UAV Assisted Private Blockchain-based IIoT Networks. In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference, Virtual, 27 September–28 October 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Cheng, K.; Fang, X.; Wang, X. Energy Efficient Edge Computing and Data Compression Collaboration Scheme for UAV-Assisted Network. IEEE Trans. Veh. Technol. 2023, 72, 16395–16408. [Google Scholar] [CrossRef]
- Li, M.; Cheng, N.; Gao, J.; Wang, Y.; Zhao, L.; Shen, X. Energy-Efficient UAV-Assisted Mobile Edge Computing: Resource Allocation and Trajectory Optimization. IEEE Trans. Veh. Technol. 2020, 69, 3424–3438. [Google Scholar] [CrossRef]
- Liu, L.; Wang, A.; Sun, G.; Li, J. Multiobjective Optimization for Improving Throughput and Energy Efficiency in UAV-Enabled IoT. IEEE Internet Things J. 2022, 9, 20763–20777. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, N.; Lu, N.; Shen, X.S. Multi-UAV-Aided Networks: Aerial-Ground Cooperative Vehicular Networking Architecture. IEEE Veh. Technol. Mag. 2015, 10, 36–44. [Google Scholar] [CrossRef]
- Xu, D.; Sun, Y.; Ng, D.W.K.; Schober, R. Multiuser MISO UAV Communications in Uncertain Environments With No-Fly Zones: Robust Trajectory and Resource Allocation Design. IEEE Trans. Commun. 2020, 68, 3153–3172. [Google Scholar] [CrossRef]
- Cai, Y.; Wei, Z.; Li, R.; Ng, D.W.K.; Yuan, J. Joint Trajectory and Resource Allocation Design for Energy-Efficient Secure UAV Communication Systems. IEEE Trans. Commun. 2020, 68, 4536–4553. [Google Scholar] [CrossRef]
- Bian, H.; Dai, H.; Yang, L. Throughput and energy efficiency maximization for UAV-assisted vehicular networks. Phys. Commun. 2020, 42, 101136. [Google Scholar] [CrossRef]
- Zhang, Y.; Mishra, D. Energy-Efficient UAV-Relayed High-Altitude Platform to Ground User Communication. In Proceedings of the 2024 Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Valencia, Spain, 2–5 September 2024; pp. 1–6. [Google Scholar]
- Lai, R.; Zhang, B.; Gong, G.; Yuan, H.; Yang, J.; Zhang, J.; Zhou, M. Energy-Efficient Scheduling in UAV-Assisted Hierarchical Wireless Sensor Networks. IEEE Internet Things J. 2024, 11, 20194–20206. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, G.; Wang, M.; Duan, W.; Wen, M.; Ho, P.H. UAV-Aided Energy-Efficient Edge Computing Networks: Security Offloading Optimization. IEEE Internet Things J. 2022, 9, 4245–4258. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Zhou, X.; Liu, W.; Yuan, D. Joint Resource Allocation and Trajectory Design for Energy-Efficient UAV Assisted Networks With User Fairness Guarantee. IEEE Internet Things J. 2024, 11, 23835–23849. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, R.; Liu, Q.; Thompson, J.S.; Kadoch, M. Energy-Efficient Data Collection and Device Positioning in UAV-Assisted IoT. IEEE Internet Things J. 2020, 7, 1122–1139. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, H.; Shu, L.; Liu, Y. UAV-Assisted Sleep Scheduling Algorithm for Energy-Efficient Data Collection in Agricultural Internet of Things. IEEE Internet Things J. 2022, 9, 11043–11056. [Google Scholar] [CrossRef]
- Yang, X.; Li, Z.; Ge, X.; Chao, H.C. Energy-Efficiency Optimization of UAV-Assisted Internet of Things. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications, Chengdu, China, 11–14 December 2020; pp. 934–940. [Google Scholar] [CrossRef]
- Xiong, R.; Liang, C.; Zhang, H.; Xu, X.; Luo, J. FlyingLoRa: Towards energy efficient data collection in UAV-assisted LoRa networks. Comput. Netw. 2023, 220, 109511. [Google Scholar] [CrossRef]
- Wang, J.; Jin, C.; Wu, Y.; Tang, Q.; Xiong, N.N. Energy-Efficient Optimization Design for UAV-Assisted Wireless Powered MEC Systems. In Proceedings of the 5th International Conference, SmartCom 2020, Paris, France, 29–31 December 2021; Qiu, M., Ed.; Springer: Cham, Switzerland, 2021; pp. 146–155. [Google Scholar]
- Miao, W.; Luo, C.; Min, G.; Mi, Y.; Yu, Z. Location-Based Robust Beamforming Design for Cellular-Enabled UAV Communications. IEEE Internet Things J. 2021, 8, 9934–9944. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, J.; Zeng, Y.; Ng, D.W.K.; Al-Dhahir, N.; Schober, R.; Swindlehurst, A.L. A Comprehensive Overview on 5G-and-Beyond Networks With UAVs: From Communications to Sensing and Intelligence. IEEE J. Sel. Areas Commun. 2021, 39, 2912–2945. [Google Scholar] [CrossRef]
- Tlili, F.; Fourati, L.C.; Ayed, S.; Ouni, B. Investigation on vulnerabilities, threats and attacks prohibiting UAVs charging and depleting UAVs batteries: Assessments & countermeasures. Ad Hoc Netw. 2022, 129, 102805. [Google Scholar] [CrossRef]
- Lien, S.Y.; Deng, D.J. Autonomous non-terrestrial base station deployment for non-terrestrial networks: A reinforcement learning approach. IEEE Trans. Veh. Technol. 2022, 71, 10894–10909. [Google Scholar] [CrossRef]
- Qazzaz, M.M.; Zaidi, S.A.; McLernon, D.; Hayajneh, A.M.; Salama, A.; Aldalahmeh, S.A. Non-Terrestrial UAV clients for beyond 5G networks: A comprehensive survey. Ad Hoc Netw. 2024, 157, 103440. [Google Scholar] [CrossRef]
- Pandey, G.K.; Gurjar, D.S.; Yadav, S.; Jiang, Y.; Yuen, C. UAV-Assisted Communications With RF Energy Harvesting: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2024. [Google Scholar] [CrossRef]
- Banafaa, M.; Pepeoğlu, Ö.; Shayea, I.; Alhammadi, A.; Shamsan, Z.; Razaz, M.A.; Alsagabi, M.; Al-Sowayan, S. A comprehensive survey on 5G-and-beyond networks with UAVs: Applications, emerging technologies, regulatory aspects, research trends and challenges. IEEE Access 2024. [Google Scholar] [CrossRef]
- Duan, X.; Zhao, Y.; Tian, D.; Zhou, J.; Ma, L.; Zhang, L. Joint Communication and Control Optimization of a UAV-Assisted Multi-Vehicle Platooning System in Uncertain Communication Environment. IEEE Trans. Veh. Technol. 2023, 73, 3177–3190. [Google Scholar] [CrossRef]
- Uhlemann, E. Platooning: Connected vehicles for safety and efficiency [Connected Vehicles]. IEEE Veh. Technol. Mag. 2016, 11, 13–18. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, J.; Tian, D.; Sheng, Z.; Duan, X.; Qu, G.; Leung, V.C. Joint communication and computation resource scheduling of a UAV-assisted mobile edge computing system for platooning vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 23, 8435–8450. [Google Scholar] [CrossRef]
- Turgut, E.; Gursoy, M.C.; Guvenc, I. Energy harvesting in unmanned aerial vehicle networks with 3D antenna radiation patterns. IEEE Trans. Green Commun. Netw. 2020, 4, 1149–1164. [Google Scholar] [CrossRef]
- Han, K.; Huang, K. Wirelessly powered backscatter communication networks: Modeling, coverage, and capacity. IEEE Trans. Wirel. Commun. 2017, 16, 2548–2561. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, H.; Niyato, D.; Kim, D.I.; Han, Z. Wireless-powered device-to-device communications with ambient backscattering: Performance modeling and analysis. IEEE Trans. Wirel. Commun. 2017, 17, 1528–1544. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; He, Q.; Bian, K.; Song, L. Joint trajectory and power optimization for UAV relay networks. IEEE Commun. Lett. 2017, 22, 161–164. [Google Scholar] [CrossRef]
- Yang, S.; Deng, Y.; Tang, X.; Ding, Y.; Zhou, J. Energy efficiency optimization for UAV-assisted backscatter communications. IEEE Commun. Lett. 2019, 23, 2041–2045. [Google Scholar] [CrossRef]
- Yang, G.; Dai, R.; Liang, Y.C. Energy-efficient UAV backscatter communication with joint trajectory design and resource optimization. IEEE Trans. Wirel. Commun. 2020, 20, 926–941. [Google Scholar] [CrossRef]
- Liu, X.; Xie, C.; Xie, W.; Zhu, P.; Yang, Z. Security performance analysis of RIS-assisted UAV wireless communication in industrial IoT. J. Supercomput. 2022, 78, 5957–5973. [Google Scholar] [CrossRef]
- Qin, X.; Song, Z.; Hou, T.; Yu, W.; Wang, J.; Sun, X. Joint optimization of resource allocation, phase shift, and UAV trajectory for energy-efficient RIS-assisted UAV-enabled MEC systems. IEEE Trans. Green Commun. Netw. 2023, 7, 1778–1792. [Google Scholar] [CrossRef]
- Nguyen, K.K.; Masaracchia, A.; Sharma, V.; Poor, H.V.; Duong, T.Q. RIS-assisted UAV communications for IoT with wireless power transfer using deep reinforcement learning. IEEE J. Sel. Top. Signal Process. 2022, 16, 1086–1096. [Google Scholar] [CrossRef]
- Xu, Q.; You, Q.; Gong, Y.; Yang, X.; Wang, L. RIS-Assisted UAV-Enabled Green Communications for Industrial IoT Exploiting Deep Learning. IEEE Internet Things J. 2024, 11, 26595–26609. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, Z.; Meng, Y. Energy efficiency optimization for UAV-assisted mMTC networks with altitude differences. In Proceedings of the 2021 IEEE/CIC International Conference on Communications in China, Xiamen, China, 28–30 July 2021; pp. 306–311. [Google Scholar]
- Zhou, Z.; Zhang, C.; Xu, C.; Xiong, F.; Zhang, Y.; Umer, T. Energy-efficient industrial internet of UAVs for power line inspection in smart grid. IEEE Trans. Ind. Inform. 2018, 14, 2705–2714. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Long, K. Energy efficiency optimization for NOMA UAV network with imperfect CSI. IEEE J. Sel. Areas Commun. 2020, 38, 2798–2809. [Google Scholar] [CrossRef]
- Ojha, T.; Raptis, T.P.; Passarella, A.; Conti, M. Wireless power transfer with unmanned aerial vehicles: State of the art and open challenges. Pervasive Mob. Comput. 2023, 93, 101820. [Google Scholar] [CrossRef]
- Goddemeier, N.; Wietfeld, C. Investigation of Air-to-Air Channel Characteristics and a UAV Specific Extension to the Rice Model. In Proceedings of the 2015 IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, 6–10 December 2015; pp. 1–5. [Google Scholar] [CrossRef]
- 3GPP. Architecture Enhancements for 5G System (5GS) to Support Vehicle-to-Everything (V2X) Services (3GPP TS 23.287 Version 16.4.0 Release 16). Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3578 (accessed on 26 September 2023).
- Yuan, W.; Wei, Z.; Li, S.; Yuan, J.; Ng, D.W.K. Integrated sensing and communication-assisted orthogonal time frequency space transmission for vehicular networks. IEEE J. Sel. Top. Signal Process. 2021, 15, 1515–1528. [Google Scholar] [CrossRef]
- Vougioukas, G.; Daskalakis, S.N.; Bletsas, A. Could battery-less scatter radio tags achieve 270-meter range? In Proceedings of the 2016 IEEE Wireless Power Transfer Conference, Aveiro, Portugal, 5 May 2016; pp. 1–3. [Google Scholar]
- Saravanakumar, Y.N.; Sultan, M.T.H.; Shahar, F.S.; Giernacki, W.; Łukaszewicz, A.; Nowakowski, M.; Holovatyy, A.; Stępień, S. Power Sources for Unmanned Aerial Vehicles: A State-of-the Art. Appl. Sci. 2023, 13, 11932. [Google Scholar] [CrossRef]
- Gavrilovic, N.; Vincekovic, D.; Moschetta, J. A long range fuel cell/soaring uav system for crossing the atlantic ocean. In Proceedings of the 11th International Micro air Vehicle Competition and Conference, Madrid, Spain, 1–4 October 2019; pp. 121–131. [Google Scholar]
- Liu, Y.; Chin, K.W.; Yang, C.; Zheng, Z. Joint Data Upload and Targets Coverage in Solar-Powered IIoT Networks. IEEE Trans. Ind. Inform. 2024, 20, 9476–9486. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, D.; Ng, D.W.K.; Dai, L.; Schober, R. Optimal 3D-Trajectory Design and Resource Allocation for Solar-Powered UAV Communication Systems. IEEE Trans. Commun. 2019, 67, 4281–4298. [Google Scholar] [CrossRef]
- Sharma, S.; Agarwal, S.; Jain, A. Significance of hydrogen as economic and environmentally friendly fuel. Energies 2021, 14, 7389. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, G.; Wu, Q.; Ng, D.W.K. Robust Trajectory and Transmit Power Design for Secure UAV Communications. IEEE Trans. Veh. Technol. 2018, 67, 9042–9046. [Google Scholar] [CrossRef]
- Sun, X.; Ng, D.W.K.; Ding, Z.; Xu, Y.; Zhong, Z. Physical layer security in UAV systems: Challenges and opportunities. IEEE Wirel. Commun. 2019, 26, 40–47. [Google Scholar] [CrossRef]
- Kim, K.; Kang, Y. Drone security module for UAV data encryption. In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 21–23 October 2020; pp. 1672–1674. [Google Scholar]
- Khan, N.A.; Jhanjhi, N.Z.; Brohi, S.N.; Nayyar, A. Emerging use of UAV’s: Secure communication protocol issues and challenges. In Drones in Smart-Cities; Elsevier: Amsterdam, The Netherlands, 2020; pp. 37–55. [Google Scholar]
- Maxa, J.A.; Ben Mahmoud, M.S.; Larrieu, N. Secure routing protocol design for UAV Ad hoc NETworks. In Proceedings of the 2015 IEEE/AIAA 34th Digital Avionics Systems Conference, Prague, Czech Republic, 13–17 September 2015; pp. 4A5-1–4A5-15. [Google Scholar] [CrossRef]
- Agron, D.J.S.; Ramli, M.R.; Lee, J.M.; Kim, D.S. Secure ground control station-based routing protocol for UAV networks. In Proceedings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 16–18 October 2019; pp. 794–798. [Google Scholar]
- Wu, G.; Chen, X.; Shen, Y.; Xu, Z.; Zhang, H.; Shen, S.; Yu, S. Combining lyapunov optimization with actor-critic networks for privacy-aware IIoT computation offloading. IEEE Internet Things J. 2024, 11, 17437–17452. [Google Scholar] [CrossRef]
- Yu, S.; Wang, X.; Shen, Y.; Wu, G.; Yu, S.; Shen, S. Novel Intrusion Detection Strategies With Optimal Hyper Parameters for Industrial Internet of Things Based On Stochastic Games and Double Deep Q-Networks. IEEE Internet Things J. 2024, 11, 29132–29145. [Google Scholar] [CrossRef]
- Zhao, R.; Mishra, D.; Seneviratne, A. Securing V2I Backscattering from Eavesdropper. In Proceedings of the ICC 2024-IEEE International Conference on Communications, Denver, CO, USA, 9–13 June 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Shao, X.; Zhang, R. 6DMA Enhanced Wireless Network with Flexible Antenna Position and Rotation: Opportunities and Challenges. arXiv 2024, arXiv:2406.06064. [Google Scholar]
Title | Year | Main Achievements | Limitations |
---|---|---|---|
[23] | 2024 | Focused on reviewing AI-based algorithms for energy efficient perspective in industrial wireless networks. | Lack of focus on UAV-assisted networks nor detailed reviews on energy-efficient techniques in UAV-assisted Industrial wireless networks. |
[16] | 2023 | Provided a number of energy-efficiency-related techniques, protocols and algorithms. | Techniques such as scheduling are not included and there is no focus on industrial wireless networks. |
[18] | 2023 | Summarized energy optimization techniques for UAV-assisted cellular networks and existing optimization methodologies. | UAV-assist industrial wireless networks have not been highlighted in this paper. |
[21] | 2022 | Highlighted the concept of “smart energy” in IIoT applications. | Lack of focus on UAV-assisted networks nor detailed reviews on energy-efficient techniques in UAV-assisted Industrial wireless networks. |
[22] | 2022 | Introduced energy-efficiency techniques in IIoT networks such as LED lighting installations, mmWaves and satellite communications. | |
[17] | 2022 | Detailed explanations for UAV energy consumption models with five energy-efficient techniques in UAV-assisted 6G networks. | Overlooked the potential of the cooperation of UAVs and IIoT applications. |
[19] | 2019 | Investigated the energy consumption of UAVs associated with their routing. | Lack of energy-efficient techniques and ignores the Industrial wireless network. |
[20] | 2019 | Reviewed public safety UAV paper and addressing energy-efficiency issues. | Insufficient energy-efficient techniques provided and no focus on IIoT-related work. |
Type of UAVs | Strengths | Weaknesses |
---|---|---|
Fixed-wing UAVs | Can manoeuvre at high speed and fly at great altitudes. | Likely to be affected by Doppler’s effect, it requires a runway or a catapult system to take off and has limitations on moving directions |
Rotary-wing UAVs | Can manoeuvre in any direction or hover at a certain position. | High energy consumption and less efficient aerodynamics lead to limited flight times and ranges. |
UAV Placement | Articles | Strengths | Weaknesses |
---|---|---|---|
Optimal Hovering Position | [64,74,79,81,100,101] | Providing applicable results with less computational complexity and consumes less operational energy. | Cannot completely utilize the UAV’s high mobility or employ fixed-wing UAVs. |
UAV Trajectory Design | [70,72,75,76,78,93,102,103,104,105,107,108] | Acquiring larger coverage area and addressing a wider range of tasks. | High computational complexity and energy consumption. |
Type of Resource | Articles | Related Features |
---|---|---|
Power allocation | [65,66,70,71,72,74,75,76,79,81,82,85,86,100,103,105,108,109,110,113] | Enhance the system throughput and transmission rate while efficiently utilizing the energy at the device or UAVs. The most common kind of resource allocation in existing works and is often jointly optimized with other resources. |
Time allocation | [69,82,86,100,110,111] | Allocation for transmission time is mostly considered in UAV hovering scenarios while flying time duration and length of time slots also need to be optimized in trajectory planning conditions to achieve energy efficient implementation. |
Computation resource allocation | [74,75,76,78,85,102,112] | Computational resource allocation is important to overcome the computing limitation issues of servers in the network, there are two approaches in the existing literature: (1) Directly allocating task computation; (2) Allocating the Offload process of the computing tasks to other devices. |
Bandwidth/ Channel allocation | [65,74,76,79,85,101,113] | Conserving system bandwidth and reducing communication expenses and network overhead. |
Techniques | Articles | Related Features | Potential |
---|---|---|---|
Scheduling | [72,73,102,108,114,115,116,117] | Focuses on planning and organizing tasks and events, including exploiting mechanism of devices, control the connection and prioritization of the users. | Can cooperate with power or time allocation-based techniques to enhance energy-efficient implementation. |
Beamforming | [63] | Fully utilizing the LoS air-ground channels provided by UAV-assisted communication while mitigating the serious interference in UAV-assisted communications. | Can be adopted with other existing techniques, such as UAV placement and resource allocation. It is worth noting that utilizing beamforming in the UAV trajectory planning scenario is very challenging. |
Wireless Power Transfer | Articles | Strengths | Weaknesses |
---|---|---|---|
From infrastructures to UAVs | [100,112] | Ensuring UAVs have sufficient energy for completing their missions and ensuring system reliability. | Infrastructures like power beacons have high construction costs and limited wireless service coverage. |
From UAVs to devices | [82,83,84,85,86] | Prolonging network work time by performing sustainable operation and preventing potential risks such as battery leakage of devices. | UAVs have stringent constraints on size and weight which leads to concerns on energy storage for achieving WPT on a continuous basis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhao, R.; Mishra, D.; Ng, D.W.K. A Comprehensive Review of Energy-Efficient Techniques for UAV-Assisted Industrial Wireless Networks. Energies 2024, 17, 4737. https://doi.org/10.3390/en17184737
Zhang Y, Zhao R, Mishra D, Ng DWK. A Comprehensive Review of Energy-Efficient Techniques for UAV-Assisted Industrial Wireless Networks. Energies. 2024; 17(18):4737. https://doi.org/10.3390/en17184737
Chicago/Turabian StyleZhang, Yijia, Ruotong Zhao, Deepak Mishra, and Derrick Wing Kwan Ng. 2024. "A Comprehensive Review of Energy-Efficient Techniques for UAV-Assisted Industrial Wireless Networks" Energies 17, no. 18: 4737. https://doi.org/10.3390/en17184737
APA StyleZhang, Y., Zhao, R., Mishra, D., & Ng, D. W. K. (2024). A Comprehensive Review of Energy-Efficient Techniques for UAV-Assisted Industrial Wireless Networks. Energies, 17(18), 4737. https://doi.org/10.3390/en17184737