Wind and Solar Energy Generation Potential Features in the Extreme Northern Amazon Using Reanalysis Data
Abstract
:1. Introduction
2. Methodology
2.1. Overview of Study Area
2.2. The ERA5 Reanalysis Dataset
- Zonal wind component at 100 m (, m/s);
- Meridional wind component at 100 m (, m/s);
- Zonal wind component at 10 m (, m/s);
- Meridional wind component at 10 m (, m/s);
- Downward surface solar radiation (ssrd, J/m2);
- Clear-sky downward surface solar radiation (ssrdc, J/m2)
- Temperature at 2 m (, K);
- Dew point temperature at 2 m (, K);
- Pressure at mean sea level (, Pa);
- Surface pressure (, Pa).
2.3. Wind Power Density
2.4. Air Density Normalization
2.5. Capacity Factor
2.6. Photovoltaic Power Potential
2.7. Concentrated Solar Power Output
3. Results and Discussion
3.1. Air Density Assessment and Power Curve Correction
3.2. Variability of Wind Speed and Global Horizontal Irradiance
3.3. Wind Energy Assessment
3.4. Solar Energy Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- REN21. Renewables 2022 Global Status; REN21: Paris, France, 2022; ISBN 9783948393045. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Impacts of 1.5°C Global Warming on Natural and Human Systems. In Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2022; pp. 175–312. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2019; IRENA: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Cozzi, L.; Gould, T.; Bouckart, S.; Crow, D.; Kim, T.-Y.; McGlade, C.; Olejarnik, P.; Wanner, B.; Wetzel, D. World Energy Outlook 2020; International Energy Agency: Paris, France, 2020; Volume 2050. [Google Scholar]
- EIA. International Energy Outlook 2021; EIA: Singapore, 2021. [Google Scholar]
- Coriolano, T.R.; Signorelli, N.T.; Lugon Junior, J.; Moreira, M.A.C.; Silva, M.G.A.J.d. Study of the temporal variation of offshore wind energy potential in southeast Brazil. Ciência Nat. 2022, 44, e6. [Google Scholar] [CrossRef]
- Dantas, E.J.d.A.; Rosa, L.P.; Silva, N.F.d.; Pereira, M.G. Wind Power on the Brazilian Northeast Coast, from the Whiff of Hope to Turbulent Convergence: The Case of the Galinhos Wind Farms. Sustainability 2019, 11, 3802. [Google Scholar] [CrossRef]
- de Souza Nascimento, M.M.; Shadman, M.; Silva, C.; de Freitas Assad, L.P.; Estefen, S.F.; Landau, L. Offshore wind and solar complementarity in Brazil: A theoretical and technical potential assessment. Energy Convers. Manag. 2022, 270, 116194. [Google Scholar] [CrossRef]
- do Carmo, L.F.R.; de Almeida Palmeira, A.C.P.; de Jesus Lauriano Antonio, C.F.; de Jesus Palmeira, R.M. Comparison of wind profile estimation methods for calculating offshore wind potential for the Northeast region of Brazil. Int. J. Energy Environ. Eng. 2022, 13, 365–375. [Google Scholar] [CrossRef]
- Freitas, I.G.F.d.; Gomes, H.B.; Peña, M.; Mitsopoulos, P.; Nova, T.S.V.; da Silva, K.M.R.; Calheiros, A.J.P. Evaluation of Wind and Wave Estimates from CMEMS Reanalysis for Brazil’s Offshore Energy Resource Assessment. Wind 2022, 2, 586–598. [Google Scholar] [CrossRef]
- Freitas, M.M.d. Geological risk evaluation in the eolic energy planning on rio Grande do Norte, Brazil. Mercator 2016, 15, 117–129. [Google Scholar] [CrossRef]
- Nardelli, A.; Futai, M.M. Assessment of Brazilian onshore wind turbines foundations. Rev. IBRACON Estruturas Mater. 2022, 15, e15508. [Google Scholar] [CrossRef]
- Nascimento, L.N. Wind Energy and Policy in Brazil: An Assessment of the State of Bahia. In Renewable Energy; Springer International Publishing: Cham, Switzerland, 2019; pp. 131–155. [Google Scholar]
- Wu, C.; Wang, Q.; Luo, K.; Fan, J. Mesoscale impact of the sea surface on the performance of offshore wind farms. J. Clean. Prod. 2022, 372, 133741. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, K.; Wu, C.; Zhu, Z.; Fan, J. Mesoscale simulations of a real onshore wind power base in complex terrain: Wind farm wake behavior and power production. Energy 2022, 241, 122873. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, K.; Wu, C.; Tan, J.; He, R.; Ye, S.; Fan, J. Inter-farm cluster interaction of the operational and planned offshore wind power base. J. Clean. Prod. 2023, 396, 136529. [Google Scholar] [CrossRef]
- Viveros, F.; Ladha, A.; Galvao, R. The Crisis in Amapá is a Warning for the World; Al Jazeera: Doha, Qatar, 2020. [Google Scholar]
- Brasil, B.N. Apagão no Amapá: O que se Sabe Sobre o Blecaute que Afeta o Estado. BBC News Bras. 2020. Available online: https://www.bbc.com/portuguese/brasil-54843654 (accessed on 20 April 2023).
- G1 Apagão no Amapá: Entenda as Causas e Consequências da Falta de Energia no Estado. 2020. Available online: https://g1.globo.com/ap/amapa/noticia/2020/11/06/apagao-no-amapa-entenda-as-causas-e-consequencias-da-falta-de-energia-no-estado.ghtml (accessed on 20 April 2023).
- Machado, L.; Tavares, V. “Somos Excluídos do país”: Amapaenses veem “Descaso Nacional” por Apagão em Meio a Protestos e Violência. BBC News Bras. 2020. Available online: https://www.bbc.com/portuguese/brasil-54911520 (accessed on 21 April 2023).
- Dasari, H.P.; Desamsetti, S.; Langodan, S.; Attada, R.; Kunchala, R.K.; Viswanadhapalli, Y.; Knio, O.; Hoteit, I. High-resolution assessment of solar energy resources over the Arabian Peninsula. Appl. Energy 2019, 248, 354–371. [Google Scholar] [CrossRef]
- Drake, F.; Mulugetta, Y. Assessment of solar and wind energy resources in Ethiopia. I. Solar energy. Sol. Energy 1996, 57, 205–217. [Google Scholar] [CrossRef]
- Fathi Nassar, Y.; Yassin Alsadi, S. Assessment of solar energy potential in Gaza Strip-Palestine. Sustain. Energy Technol. Assess. 2019, 31, 318–328. [Google Scholar] [CrossRef]
- Gulaliyev, M.G.; Mustafayev, E.R.; Mehdiyeva, G.Y. Assessment of Solar Energy Potential and Its Ecological-Economic Efficiency: Azerbaijan Case. Sustainability 2020, 12, 1116. [Google Scholar] [CrossRef]
- Hassan, Q.; Abbas, M.K.; Abdulateef, A.M.; Abdulateef, J.; Mohamad, A. Assessment the potential solar energy with the models for optimum tilt angles of maximum solar irradiance for Iraq. Case Stud. Chem. Environ. Eng. 2021, 4, 100140. [Google Scholar] [CrossRef]
- Hossain, J.; Sinha, V.; Kishore, V.V.N. A GIS based assessment of potential for windfarms in India. Renew. Energy 2011, 36, 3257–3267. [Google Scholar] [CrossRef]
- Martins, F.R.; Pereira, E.B.; Silva, S.A.B.; Abreu, S.L.; Colle, S. Solar energy scenarios in Brazil, Part one: Resource assessment. Energy Policy 2008, 36, 2853–2864. [Google Scholar] [CrossRef]
- Migoya, E.; Crespo, A.; Jiménez, Á.; García, J.; Manuel, F. Wind energy resource assessment in Madrid region. Renew. Energy 2007, 32, 1467–1483. [Google Scholar] [CrossRef]
- Ortega, A.; Escobar, R.; Colle, S.; de Abreu, S.L. The state of solar energy resource assessment in Chile. Renew. Energy 2010, 35, 2514–2524. [Google Scholar] [CrossRef]
- Poje, D.; Cividini, B. Assessment of wind energy potential in croatia. Sol. Energy 1988, 41, 543–554. [Google Scholar] [CrossRef]
- Saeed, M.A.; Ahmed, Z.; Hussain, S.; Zhang, W. Wind resource assessment and economic analysis for wind energy development in Pakistan. Sustain. Energy Technol. Assess. 2021, 44, 101068. [Google Scholar] [CrossRef]
- Vinhoza, A.; Schaeffer, R. Brazil’s offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis. Renew. Sustain. Energy Rev. 2021, 146, 111185. [Google Scholar] [CrossRef]
- Belhamadia, A.; Mansor, M.; Younis, M.A. Assessment of wind and solar energy potentials in Malaysia. In Proceedings of the 2013 IEEE Conference on Clean Energy and Technology (CEAT), Langkawi, Malaysia, 18–20 November 2013; pp. 152–157. [Google Scholar]
- Carrasco-Díaz, M.; Rivas, D.; Orozco-Contreras, M.; Sánchez-Montante, O. An assessment of wind power potential along the coast of Tamaulipas, northeastern Mexico. Renew. Energy 2015, 78, 295–305. [Google Scholar] [CrossRef]
- Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2009. [Google Scholar]
- National Renewable Energy Laboratory about NREL. Available online: https://www.nrel.gov/about/ (accessed on 25 April 2023).
- IBGE-Instituto Brasileiro de Geografia e Estatística Sinopse Do Censo Demográfico. Available online: http://www.censo2010.ibge.gov.br (accessed on 5 September 2020).
- Hersbach, H.; Dee, D. ERA5 Reanalysis is in Production. ECMWF Newsl. 2016. Available online: https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production (accessed on 5 April 2023).
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Ndiaye, A.; Moussa, M.S.; Dione, C.; Sawadogo, W.; Bliefernicht, J.; Dungall, L.; Kunstmann, H. Projected Changes in Solar PV and Wind Energy Potential over West Africa: An Analysis of CORDEX-CORE Simulations. Energies 2022, 15, 9602. [Google Scholar] [CrossRef]
- Carreno-Madinabeitia, S.; Ibarra-Berastegi, G.; Sáenz, J.; Ulazia, A. Long-term changes in offshore wind power density and wind turbine capacity factor in the Iberian Peninsula (1900–2010). Energy 2021, 226, 120364. [Google Scholar] [CrossRef]
- Ulazia, A.; Nafarrate, A.; Ibarra-Berastegi, G.; Sáenz, J.; Carreno-Madinabeitia, S. The consequences of air density variations over northeastern Scotland for offshore wind energy potential. Energies 2019, 12, 2635. [Google Scholar] [CrossRef]
- Sawadogo, W.; Reboita, M.S.; Faye, A.; da Rocha, R.P.; Odoulami, R.C.; Olusegun, C.F.; Adeniyi, M.O.; Abiodun, B.J.; Sylla, M.B.; Diallo, I.; et al. Current and future potential of solar and wind energy over Africa using the RegCM4 CORDEX-CORE ensemble. Clim. Dyn. 2021, 57, 1647–1672. [Google Scholar] [CrossRef]
- Ibarra-Berastegi, G.; Ulazia, A.; Saénz, J.; González-Rojí, S.J. Evaluation of lebanon’s offshore-wind-energy potential. J. Mar. Sci. Eng. 2019, 7, 361. [Google Scholar] [CrossRef]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application, 2nd ed.; John Wiley & Sons, Ltd: Amherst, MA, USA, 2009; ISBN 0470846127. [Google Scholar]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained; Wiley: New York, NY, USA, 2009; ISBN 9780470015001. [Google Scholar]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science: An Introductory Survey, 2nd ed.; Academic Press: Cambridge, MA, USA, 2006; ISBN 012732951X. [Google Scholar]
- Pallabazzer, R. Evaluation of wind-generator potentiality. Sol. Energy 1995, 55, 49–59. [Google Scholar] [CrossRef]
- Pallabazzer, R. Previsional estimation of the energy output of windgenerators. Renew. Energy 2004, 29, 413–420. [Google Scholar] [CrossRef]
- Villanueva, D.; Feijóo, A. Wind power distributions: A review of their applications. Renew. Sustain. Energy Rev. 2010, 14, 1490–1495. [Google Scholar] [CrossRef]
- Mabel, M.C.; Fernandez, E. Estimation of Energy Yield From Wind Farms Using Artificial Neural Networks. IEEE Trans. Energy Convers. 2009, 24, 459–464. [Google Scholar] [CrossRef]
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook, 2nd ed.; John Wiley & Sons, Ltd: West Sussex, UK, 2011; ISBN 0471489972. [Google Scholar]
- European Wind Energy Association. Wind Energy-The Facts; Earthscan: London, UK, 2012; ISBN 9781844077106. [Google Scholar]
- IEC 61400-12-1:2022; Wind Turbines-Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines. International Electrical Commission: Geneva, Switzerland, 2005.
- Jerez, S.; Tobin, I.; Vautard, R.; Montávez, J.P.; López-Romero, J.M.; Thais, F.; Bartok, B.; Christensen, O.B.; Colette, A.; Déqué, M.; et al. The impact of climate change on photovoltaic power generation in Europe. Nat. Commun. 2015, 6, 10014. [Google Scholar] [CrossRef] [PubMed]
- Mavromatakis, F.; Makrides, G.; Georghiou, G.; Pothrakis, A.; Franghiadakis, Y.; Drakakis, E.; Koudoumas, E. Modeling the photovoltaic potential of a site. Renew. Energy 2010, 35, 1387–1390. [Google Scholar] [CrossRef]
- Tamizhmani, G.; Ji, L.; Tang, Y.; Petacci, L.; Osterwald, C. Photovoltaic Module Thermal/Wind Performance: Long-Term Monitoring and Model Development For Energy Rating. In Proceedings of the NCPV and Solar Program Review Meeting Proceedings, Denver, CO, USA, 24–26 March 2003; pp. 936–939. [Google Scholar]
- Chenni, R.; Makhlouf, M.; Kerbache, T.; Bouzid, A. A detailed modeling method for photovoltaic cells. Energy 2007, 32, 1724–1730. [Google Scholar] [CrossRef]
- Wild, M.; Folini, D.; Henschel, F.; Fischer, N.; Müller, B. Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Sol. Energy 2015, 116, 12–24. [Google Scholar] [CrossRef]
- Zou, L.; Wang, L.; Li, J.; Lu, Y.; Gong, W.; Niu, Y. Global surface solar radiation and photovoltaic power from Coupled Model Intercomparison Project Phase 5 climate models. J. Clean. Prod. 2019, 224, 304–324. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, J.; Liu, T.; Li, Y.; Zhou, Y.; Gao, X. Projections of future changes in solar radiation in China based on CMIP5 climate models. Glob. Energy Interconnect. 2018, 1, 452–459. [Google Scholar] [CrossRef]
- Zuluaga, C.F.; Avila-Diaz, A.; Justino, F.B.; Martins, F.R.; Ceron, W.L. The climate change perspective of photovoltaic power potential in Brazil. Renew. Energy 2022, 193, 1019–1031. [Google Scholar] [CrossRef]
- Madhlopa, A. Solar Receivers for Thermal Power Generation; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 9780323852715. [Google Scholar]
- Crook, J.A.; Jones, L.A.; Forster, P.M.; Crook, R. Climate change impacts on future photovoltaic and concentrated solar power energy output. Energy Environ. Sci. 2011, 4, 3101–3109. [Google Scholar] [CrossRef]
- Dudley, V.; Evans, L.; Matthews, C. Test Results, Industrial Solar Technology Parabolic trough Solar Collector; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA; Livermore, CA, USA, 1995. [Google Scholar]
- Salati, E.; Vose, P.B. Amazon Basin: A system in equilibrium. Science 1984, 225, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.A.; Nobre, C.A.; Tomasella, J.; Oyama, M.D.; de Oliveira, G.S.; de Oliveira, R.; Camargo, H.; Alves, L.M.; Brown, I.F. The drought of Amazonia in 2005. J. Clim. 2008, 21, 495–516. [Google Scholar] [CrossRef]
- Archer, C.L.; Jacobson, M.Z. Evaluation of global wind power. J. Geophys. Res. D Atmos. 2005, 110, 1–20. [Google Scholar] [CrossRef]
- Technical University of Denmark (DTU). Global Wind Atlas 3.0; Technical University of Denmark (DTU): Lyngby, Denmark, 2021. Available online: https://globalwindatlas.info/en/ (accessed on 13 April 2023).
- Tavares, J.P.N. Características Da Climatologia De Macapá-Ap. Caminhos Geogr. 2014, 15, 138–151. [Google Scholar] [CrossRef]
- Pereira, E.B.; Martins, F.R.; Gonçalves, A.; Costa, R.S.; Lima, F.J.L.d.; Rüther, R.; Abreu, S.L.d.; Tiepolo, G.M.; Pereira, S.V.; Souza, J.G.d. Brazilian Atlas of Solar Energy, 2nd ed.; Inpe: São José dos Campos, Brazil, 2017; 80p. [Google Scholar] [CrossRef]
- Wexler, R. Theory and Observations of Land and Sea Breezes. Bull. Am. Meteorol. Soc. 1946, 27, 272–287. [Google Scholar] [CrossRef]
- Xia, G.; Draxl, C.; Optis, M.; Redfern, S. Detecting and characterizing simulated sea breezes over the US northeastern coast with implications for offshore wind energy. Wind Energy Sci. 2022, 7, 815–829. [Google Scholar] [CrossRef]
- Liu, F.; Sun, F.; Liu, W.; Wang, T.; Wang, H.; Wang, X.; Lim, W.H. On wind speed pattern and energy potential in China. Appl. Energy 2019, 236, 867–876. [Google Scholar] [CrossRef]
- Ibarra-berastegi, G.; Gonzalez-roji, S.J.; Ulazia, A.; Carreno-medinabeitia, S.; Saenz, J. Calculation of Lebanon offshore wind energy potential using ERA5 reanalysis: Impact of seasonal air density changes. In Proceedings of the 2019 Fourth International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), Beirut, Lebanon, 3–5 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Ulazia, A.; Sáenz, J.; Ibarra-Berastegi, G.; González-Rojí, S.J.; Carreno-Madinabeitia, S. Global estimations of wind energy potential considering seasonal air density changes. Energy 2019, 187, 115938. [Google Scholar] [CrossRef]
- Trenberth, K.E. The Definition of El Niño. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2777. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Reis, J.S.; Bose, N.d.A.; Amorim, A.C.B.; de Almeida Dantas, V.; Bezerra, L.A.C.; Oliveira, L.d.L.; Emiliavaca, S.d.A.; Matos, M.d.F.A.d.; Pereira, N.E.T.; Lima, R.R.M.d.; et al. Wind and Solar Energy Generation Potential Features in the Extreme Northern Amazon Using Reanalysis Data. Energies 2023, 16, 7671. https://doi.org/10.3390/en16227671
dos Reis JS, Bose NdA, Amorim ACB, de Almeida Dantas V, Bezerra LAC, Oliveira LdL, Emiliavaca SdA, Matos MdFAd, Pereira NET, Lima RRMd, et al. Wind and Solar Energy Generation Potential Features in the Extreme Northern Amazon Using Reanalysis Data. Energies. 2023; 16(22):7671. https://doi.org/10.3390/en16227671
Chicago/Turabian Styledos Reis, Jean Souza, Nícolas de Assis Bose, Ana Cleide Bezerra Amorim, Vanessa de Almeida Dantas, Luciano Andre Cruz Bezerra, Leonardo de Lima Oliveira, Samira de Azevedo Emiliavaca, Maria de Fátima Alves de Matos, Nickollas Elias Targino Pereira, Raniere Rodrigues Melo de Lima, and et al. 2023. "Wind and Solar Energy Generation Potential Features in the Extreme Northern Amazon Using Reanalysis Data" Energies 16, no. 22: 7671. https://doi.org/10.3390/en16227671
APA Styledos Reis, J. S., Bose, N. d. A., Amorim, A. C. B., de Almeida Dantas, V., Bezerra, L. A. C., Oliveira, L. d. L., Emiliavaca, S. d. A., Matos, M. d. F. A. d., Pereira, N. E. T., Lima, R. R. M. d., & de Medeiros, A. M. (2023). Wind and Solar Energy Generation Potential Features in the Extreme Northern Amazon Using Reanalysis Data. Energies, 16(22), 7671. https://doi.org/10.3390/en16227671