Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,238)

Search Parameters:
Keywords = photovoltaic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6388 KiB  
Article
Spatial–Temporal Hotspot Management of Photovoltaic Modules Based on Fiber Bragg Grating Sensor Arrays
by Haotian Ding, Rui Guo, Huan Xing, Yu Chen, Jiajun He, Junxian Luo, Maojie Chen, Ye Chen, Shaochun Tang and Fei Xu
Sensors 2025, 25(15), 4879; https://doi.org/10.3390/s25154879 (registering DOI) - 7 Aug 2025
Abstract
Against the backdrop of an urgent energy crisis, solar energy has attracted sufficient attention as one of the most inexhaustible and friendly types of environmental energy. Faced with long service and harsh environment, the poor performance ratios of photovoltaic arrays and safety hazards [...] Read more.
Against the backdrop of an urgent energy crisis, solar energy has attracted sufficient attention as one of the most inexhaustible and friendly types of environmental energy. Faced with long service and harsh environment, the poor performance ratios of photovoltaic arrays and safety hazards are frequently boosted worldwide. In particular, the hot spot effect plays a vital role in weakening the power generation performance and reduces the lifetime of photovoltaic (PV) modules. Here, our research reports a spatial–temporal hot spot management system integrated with fiber Bragg grating (FBG) temperature sensor arrays and cooling hydrogels. Through finite element simulations and indoor experiments in laboratory conditions, a superior cooling effect of hydrogels and photoelectric conversion efficiency improvement have been demonstrated. On this basis, field tests were carried out in which the FBG arrays detected the surface temperature of the PV module first, and then a classifier based on an optimized artificial neural network (ANN) recognized hot spots with an accuracy of 99.1%. The implementation of cooling hydrogels as a feedback mechanism achieved a 7.7 °C reduction in temperature, resulting in a 5.6% enhancement in power generation efficiency. The proposed strategy offers valuable insights for conducting predictive maintenance of PV power plants in the case of hot spots. Full article
Show Figures

Figure 1

18 pages, 2405 KiB  
Article
Dynamic Comparative Assessment of Long-Term Simulation Strategies for an Off-Grid PV–AEM Electrolyzer System
by Roberta Caponi, Domenico Vizza, Claudia Bassano, Luca Del Zotto and Enrico Bocci
Energies 2025, 18(15), 4209; https://doi.org/10.3390/en18154209 (registering DOI) - 7 Aug 2025
Abstract
Among the various renewable-powered pathways for green hydrogen production, solar photovoltaic (PV) technology represents a particularly promising option due to its environmental sustainability, widespread availability, and declining costs. However, the inherent intermittency of solar irradiance presents operational challenges for electrolyzers, particularly in terms [...] Read more.
Among the various renewable-powered pathways for green hydrogen production, solar photovoltaic (PV) technology represents a particularly promising option due to its environmental sustainability, widespread availability, and declining costs. However, the inherent intermittency of solar irradiance presents operational challenges for electrolyzers, particularly in terms of stability and efficiency. This study presents a MATLAB-based dynamic model of an off-grid, DC-coupled solar PV-Anion Exchange Membrane (AEM) electrolyzer system, with a specific focus on realistically estimating hydrogen output. The model incorporates thermal energy management strategies, including electrolyte pre-heating during startup, and accounts for performance degradation due to load cycling. The model is designed for a comprehensive analysis of hydrogen production by employing a 10-year time series of irradiance and ambient temperature profiles as inputs. The results are compared with two simplified scenarios: one that does not consider the equipment response time to variable supply and another that assumes a fixed start temperature to evaluate their impact on productivity. Furthermore, to limit the effects of degradation, the algorithm has been modified to allow the non-sequential activation of the stacks, resulting in an improvement of the single stack efficiency over the lifetime and a slight increase in overall hydrogen production. Full article
Show Figures

Figure 1

28 pages, 4311 KiB  
Article
Sustainable Integration of Prosumers’ Battery Energy Storage Systems’ Optimal Operation with Reduction in Grid Losses
by Tomislav Markotić, Damir Šljivac, Predrag Marić and Matej Žnidarec
Sustainability 2025, 17(15), 7165; https://doi.org/10.3390/su17157165 (registering DOI) - 7 Aug 2025
Abstract
Driven by the need for sustainable and efficient energy systems, the optimal management of distributed generation, including photovoltaic systems and battery energy storage systems within prosumer households, is of crucial importance. This requires a comprehensive cost–benefit analysis to assess their viability. In this [...] Read more.
Driven by the need for sustainable and efficient energy systems, the optimal management of distributed generation, including photovoltaic systems and battery energy storage systems within prosumer households, is of crucial importance. This requires a comprehensive cost–benefit analysis to assess their viability. In this study, an optimization model formulated as a mixed-integer linear programming problem is proposed to evaluate the integration of battery storage systems for 10 prosumers on the radial feeder in Croatia and to quantify the benefits both from the prosumers’ perspective and that of the reduction in grid losses. The results show significant annual cost reductions for prosumers, totaling EUR 1798.78 for the observed feeder, with some achieving a net profit. Grid losses are significantly reduced by 1172.52 kWh, resulting in an annual saving of EUR 216.25 for the distribution system operator. However, under the current Croatian market conditions, the integration of battery storage systems is not profitable over the entire lifetime due to the high initial investment costs of EUR 720/kWh. The break-even analysis reveals that investment cost needs to decrease by 52.78%, or an inflation rate of 4.87% is required, to reach prosumer profitability. This highlights the current financial barriers to the widespread adoption of battery storage systems and emphasizes the need for significant cost reductions or targeted incentives. Full article
Show Figures

Figure 1

19 pages, 10210 KiB  
Article
Evaluating Landscape Fragmentation and Consequent Environmental Impact of Solar Parks Installation in Natura 2000 Protected Areas: The Case of the Thessaly Region, Central Greece
by Ioannis Faraslis, Vassiliki Margaritopoulou, Christos Christakis and Efthimios Providas
Sustainability 2025, 17(15), 7158; https://doi.org/10.3390/su17157158 (registering DOI) - 7 Aug 2025
Abstract
This study examines the adverse environmental impacts of solar photovoltaic parks located in established protected areas, aiming to determine the level of landscape fragmentation through the calculation of relevant landscape metrics. For this purpose, a case study was carried out in a Mediterranean [...] Read more.
This study examines the adverse environmental impacts of solar photovoltaic parks located in established protected areas, aiming to determine the level of landscape fragmentation through the calculation of relevant landscape metrics. For this purpose, a case study was carried out in a Mediterranean Natura 2000 Special Protection Area (SPA), and landscape metrics were calculated using Geographic Information System spatial analysis tools. The analysis of metrics showed that the installation of renewable energy parks within the designated protected area negatively affect landscape fragmentation and the absence of carefully defined and evidence-based mitigation measures. The land cover categories that are significantly affected are those considered critical habitats of bird species that have been designated as SPAs. The results of this study highlight the need to integrate, in the National Renewable Energy Spatial Plans, specific biodiversity objectives, such as conservation objectives and the suspension of the installation of photovoltaic parks in certain areas that are important for conservation of biodiversity, in order to ensure the overall sustainability of renewable energy production. Full article
(This article belongs to the Special Issue Environmental Protection and Sustainable Ecological Engineering)
Show Figures

Figure 1

14 pages, 3207 KiB  
Article
Grid-Tied PV Power Smoothing Using an Energy Storage System: Gaussian Tuning
by Ahmad I. Alyan, Nasrudin Abd Rahim and Jeyraj Selvaraj
Energies 2025, 18(15), 4206; https://doi.org/10.3390/en18154206 (registering DOI) - 7 Aug 2025
Abstract
The use of power smoothing for renewable energy resources is attracting increasing attention. One widely used resource that could benefit from this technique is the grid-tied photovoltaic (PV) system. Solar energy production typically follows a Gaussian bell curve, with peaks at midday. This [...] Read more.
The use of power smoothing for renewable energy resources is attracting increasing attention. One widely used resource that could benefit from this technique is the grid-tied photovoltaic (PV) system. Solar energy production typically follows a Gaussian bell curve, with peaks at midday. This paper confirms this pattern by using the bell curve as a reference; however, climate variations can significantly alter this pattern. Therefore, this study aimed to smooth the power supplied to the grid by a PV system. The proposed controller manages the charge and discharge processes of the energy storage system (ESS) to ensure a smooth Gaussian bell curve output. It adjusts the parameters of this curve to closely match the generated energy, absorbing or supplying fluctuations to maintain the desired profile. This system also aims to provide accurate predictions of the power that should be supplied to the grid by the PV system, based on the capabilities of the ESS and the overall system performance. Although experimental results were not included in this analysis, the system was implemented in SIMULINK using real-world data. The controller utilizes a hybrid ESS comprising a vanadium redox battery (VRB) and supercapacitors (SCs). The design and operation of the controller, including curve tuning and ESS charge–discharge management, are detailed. The simulation results demonstrate excellent performance and are thoroughly discussed. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

32 pages, 5466 KiB  
Article
Comprehensive Energy and Economic Analysis of Selected Variants of a Large-Scale Photovoltaic Power Plant in a Temperate Climate
by Dennis Thom, Artur Bugała, Dorota Bugała and Wojciech Czekała
Energies 2025, 18(15), 4198; https://doi.org/10.3390/en18154198 - 7 Aug 2025
Abstract
In recent years, solar energy has emerged as one of the most advanced renewable energy sources, with its production capacity steadily growing. To maximize output and efficiency, choosing the right configuration for a specific location for these installations is crucial. This study uniquely [...] Read more.
In recent years, solar energy has emerged as one of the most advanced renewable energy sources, with its production capacity steadily growing. To maximize output and efficiency, choosing the right configuration for a specific location for these installations is crucial. This study uniquely integrates detailed multi-variant fixed-tilt PV system simulations with comprehensive economic evaluation under temperate climate conditions, addressing site-specific spatial constraints and grid integration considerations that have rarely been combined in previous works. In this paper, an energy and economic efficiency analysis for a photovoltaic power plant, located in central Poland, designed in eight variants (10°, 15°, 20°, 25°, 30° PV module inclination angle for a south orientation and 10°, 20°, 30° for an east–west orientation) for a limited building area of approximately 300,000 m2 was conducted. In PVSyst computer simulations, PVGIS-SARAH2 solar radiation data were used together with the most common data for describing the Polish local solar climate, called Typical Meteorological Year data (TMY). The most energy-efficient variants were found to be 20° S and 30° S, configurations with the highest surface production coefficient (249.49 and 272.68 kWh/m2) and unit production efficiency values (1123 and 1132 kWh/kW, respectively). These findings highlight potential efficiency gains of up to approximately 9% in surface production coefficient and financial returns exceeding 450% ROI, demonstrating significant economic benefits. In economic terms, the 15° S variant achieved the highest values of financial parameters, such as the return on investment (ROI) (453.2%), the value of the average annual share of profits in total revenues (56.93%), the shortest expected payback period (8.7 years), the value of the levelized cost of energy production (LCOE) (0.1 EUR/kWh), and one of the lowest costs of building 1 MWp of a photovoltaic farm (664,272.7 EUR/MWp). Among the tested variants of photovoltaic farms with an east–west geographical orientation, the most advantageous choice is the 10° EW arrangement. The results provide valuable insights for policymakers and investors aiming to optimize photovoltaic deployment in temperate climates, supporting the broader transition to renewable energy and alignment with national energy policy goals. Full article
Show Figures

Figure 1

28 pages, 5869 KiB  
Article
Comparison of Classical and Artificial Intelligence Algorithms to the Optimization of Photovoltaic Panels Using MPPT
by João T. Sousa and Ramiro S. Barbosa
Algorithms 2025, 18(8), 493; https://doi.org/10.3390/a18080493 - 7 Aug 2025
Abstract
This work investigates the application of artificial intelligence techniques for optimizing photovoltaic systems using maximum power point tracking (MPPT) algorithms. Simulation models were developed in MATLAB/Simulink (Version 2024), incorporating conventional and intelligent control strategies such as fuzzy logic, genetic algorithms, neural networks, and [...] Read more.
This work investigates the application of artificial intelligence techniques for optimizing photovoltaic systems using maximum power point tracking (MPPT) algorithms. Simulation models were developed in MATLAB/Simulink (Version 2024), incorporating conventional and intelligent control strategies such as fuzzy logic, genetic algorithms, neural networks, and Deep Reinforcement Learning. A DC/DC buck converter was designed and tested under various irradiance and temperature profiles, including scenarios with partial shading conditions. The performance of the implemented MPPT algorithms was evaluated using such metrics as Mean Absolute Error (MAE), Integral Absolute Error (IAE), mean squared error (MSE), Integral Squared Error (ISE), efficiency, and convergence time. The results highlight that AI-based methods, particularly neural networks and Deep Q-Network agents, outperform traditional approaches, especially in non-uniform operating conditions. These findings demonstrate the potential of intelligent controllers to enhance the energy harvesting capability of photovoltaic systems. Full article
(This article belongs to the Special Issue Algorithmic Approaches to Control Theory and System Modeling)
Show Figures

Figure 1

26 pages, 3734 KiB  
Article
Impact of PM2.5 Pollution on Solar Photovoltaic Power Generation in Hebei Province, China
by Ankun Hu, Zexia Duan, Yichi Zhang, Zifan Huang, Tianbo Ji and Xuanhua Yin
Energies 2025, 18(15), 4195; https://doi.org/10.3390/en18154195 - 7 Aug 2025
Abstract
Atmospheric aerosols significantly impact solar photovoltaic (PV) energy generation through their effects on surface solar radiation. This study quantifies the impact of PM2.5 pollution on PV power output using observational data from 10 stations across Hebei Province, China (2018–2019). Our analysis reveals [...] Read more.
Atmospheric aerosols significantly impact solar photovoltaic (PV) energy generation through their effects on surface solar radiation. This study quantifies the impact of PM2.5 pollution on PV power output using observational data from 10 stations across Hebei Province, China (2018–2019). Our analysis reveals that elevated PM2.5 concentrations substantially attenuate solar irradiance, resulting in PV power losses reaching up to a 48.2% reduction in PV power output during severe pollution episodes. To capture these complex aerosol–radiation–PV interactions, we developed and compared the following six machine learning models: Support Vector Regression, Random Forest, Decision Tree, K-Nearest Neighbors, AdaBoost, and Backpropagation Neural Network. The inclusion of PM2.5 as a predictor variable systematically enhanced model performance across all algorithms. To further optimize prediction accuracy, we implemented a stacking ensemble framework that integrates multiple base learners through meta-learning. The optimal stacking configuration achieved superior performance (MAE = 0.479 MW, indicating an average prediction error of 479 kilowatts; R2 = 0.967, reflecting that 96.7% of the variance in power output is explained by the model), demonstrating robust predictive capability under diverse atmospheric conditions. These findings underscore the importance of aerosol–radiation interactions in PV forecasting and provide crucial insights for grid management in pollution-affected regions. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

24 pages, 19050 KiB  
Article
Innovative Deposition of AZO as Recombination Layer on Silicon Nanowire Scaffold for Potential Application in Silicon/Perovskite Tandem Solar Cell
by Grażyna Kulesza-Matlak, Marek Szindler, Magdalena M. Szindler, Milena Kiliszkiewicz, Urszula Wawrzaszek, Anna Sypień, Łukasz Major and Kazimierz Drabczyk
Energies 2025, 18(15), 4193; https://doi.org/10.3390/en18154193 - 7 Aug 2025
Abstract
Transparent conductive aluminum-doped zinc oxide (AZO) films were investigated as potential recombination layers for perovskite/silicon tandem solar cells, comparing the results of atomic layer deposition (ALD) and magnetron sputtering (MS) on vertically aligned silicon nanowire (SiNW) scaffolds. Conformality and thickness control were examined [...] Read more.
Transparent conductive aluminum-doped zinc oxide (AZO) films were investigated as potential recombination layers for perovskite/silicon tandem solar cells, comparing the results of atomic layer deposition (ALD) and magnetron sputtering (MS) on vertically aligned silicon nanowire (SiNW) scaffolds. Conformality and thickness control were examined by cross-sectional SEM/TEM and profilometry, revealing fully conformal ALD coatings with tunable thicknesses (40–120 nm) versus tip-capped, semi-uniform MS films (100–120 nm). Optical transmission measurements on glass substrates showed that both 120 nm ALD and MS layers exhibit interference maxima near 450–500 nm and 72–89% transmission across 800–1200 nm; the thinnest ALD films reached up to 86% near-IR transparency. Four-point probe analysis demonstrated that ALD reduces surface resistance from 1150 Ω/□ at 40 nm to 245 Ω/□ at 120 nm, while MS layers achieved 317 Ω/□ at 120 nm. These results delineate the balance between conformality, transparency, and conductivity, providing design guidelines for AZO recombination interfaces in next-generation tandem photovoltaics. Full article
(This article belongs to the Special Issue Perovskite Solar Cells and Tandem Photovoltaics)
Show Figures

Figure 1

30 pages, 4254 KiB  
Article
Ultra-Short-Term Photovoltaic Power Prediction Based on Predictable Component Reconstruction and Spatiotemporal Heterogeneous Graph Neural Networks
by Yingjie Liu and Mao Yang
Energies 2025, 18(15), 4192; https://doi.org/10.3390/en18154192 - 7 Aug 2025
Abstract
Ultra-short-term PV power prediction (USTPVPP) results provide a basis for the development of intra-day rolling power generation plans. However, due to the feature information and the unpredictability of meteorology, the current ultra-short-term PV power prediction accuracy improvement still faces technical challenges. In this [...] Read more.
Ultra-short-term PV power prediction (USTPVPP) results provide a basis for the development of intra-day rolling power generation plans. However, due to the feature information and the unpredictability of meteorology, the current ultra-short-term PV power prediction accuracy improvement still faces technical challenges. In this paper, we propose a combined prediction framework that takes into account the reconfiguration of the predictable components of PV stations and the spatiotemporal heterogeneous maps. A circuit singular spectral decomposition (CISSD) intrinsic predictable component extraction method is adopted to obtain specific frequency components in sensitive meteorological variables, a mechanism based on radiation characteristics and PV power trend predictable component extraction and reconstruction is proposed to enhance power predictability, and a spatiotemporal heterogeneous graph neural network (STHGNN) combined with a Non-stationary Transformer (Ns-Transformer) combination architecture to achieve joint prediction for different PV components. The proposed method is applied to a PV power plant in Gansu, China, and the results show that the prediction method based on the proposed combined spatio-temporal heterogeneous graph neural network model combined with the proposed predictable component extraction achieves an average reduction of 6.50% in the RMSE, an average reduction of 2.50% in the MAE, and an average improvement of 11.93% in the R2 over the direct prediction method, respectively. Full article
(This article belongs to the Special Issue Advances on Solar Energy and Photovoltaic Devices)
Show Figures

Figure 1

26 pages, 5304 KiB  
Article
Multi-Criteria Optimization and Techno-Economic Assessment of a Wind–Solar–Hydrogen Hybrid System for a Plateau Tourist City Using HOMER and Shannon Entropy-EDAS Models
by Jingyu Shi, Ran Xu, Dongfang Li, Tao Zhu, Nanyu Fan, Zhanghua Hong, Guohua Wang, Yong Han and Xing Zhu
Energies 2025, 18(15), 4183; https://doi.org/10.3390/en18154183 - 7 Aug 2025
Abstract
Hydrogen offers an effective pathway for the large-scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy, hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein, the wind–solar–hydrogen stand-alone and [...] Read more.
Hydrogen offers an effective pathway for the large-scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy, hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein, the wind–solar–hydrogen stand-alone and grid-connected systems in the plateau tourist city of Lijiang City in Yunnan Province are modeled and techno-economically evaluated by using the HOMER Pro software (version 3.14.2) with the multi-criteria decision analysis models. The system is composed of 5588 kW solar photovoltaic panels, an 800 kW wind turbine, a 1600 kW electrolyzer, a 421 kWh battery, and a 50 kW fuel cell. In addition to meeting the power requirements for system operation, the system has the capacity to provide daily electricity for 200 households in a neighborhood and supply 240 kg of hydrogen per day to local hydrogen-fueled buses. The stand-alone system can produce 10.15 × 106 kWh of electricity and 93.44 t of hydrogen per year, with an NPC of USD 8.15 million, an LCOE of USD 0.43/kWh, and an LCOH of USD 5.26/kg. The grid-connected system can generate 10.10 × 106 kWh of electricity and 103.01 ton of hydrogen annually. Its NPC is USD 7.34 million, its LCOE is USD 0.11/kWh, and its LCOH is USD 3.42/kg. This study provides a new solution for optimizing the configuration of hybrid renewable energy systems, which will develop the hydrogen economy and create low-carbon-emission energy systems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

30 pages, 4444 KiB  
Article
Unveiling the Potential of Novel Ternary Chalcogenide SrHfSe3 for Eco-Friendly, Self-Powered, Near-Infrared Photodetectors: A SCAPS-1D Simulation Study
by Salah Abdo, Ambali Alade Odebowale, Amer Abdulghani, Khalil As’ham, Sanjida Akter, Haroldo Hattori, Nicholas Kanizaj and Andrey E. Miroshnichenko
Sci 2025, 7(3), 113; https://doi.org/10.3390/sci7030113 - 6 Aug 2025
Abstract
Ternary chalcogenide-based sulfide materials with distorted morphologies such as BaZrS3, CaZrS3, and SrZrS3, have recently gained much attention in optoelectronics and photovoltaics due to their high structural and thermal stability and compatibility with low-cost, earth-abundant synthesis routes. [...] Read more.
Ternary chalcogenide-based sulfide materials with distorted morphologies such as BaZrS3, CaZrS3, and SrZrS3, have recently gained much attention in optoelectronics and photovoltaics due to their high structural and thermal stability and compatibility with low-cost, earth-abundant synthesis routes. However, their relatively large bandgaps often limit their suitability for near-infrared (NIR) photodetectors. Here, we conducted a comprehensive investigation of SrHfSe3, a ternary chalcogenide with an orthorhombic crystal structure and distinctive needle-like morphology, as a promising candidate for NIR photodetection. SrHfSe3 exhibits a direct bandgap of 1.02 eV, placing it well within the NIR range. Its robust structure, high temperature stability, phase stability and natural abundance make it a compelling material for next-generation, self-powered NIR photodetectors. An in-depth analysis of the SrHfSe3-based photodetector was performed using SCAPS-1D simulations, focusing on key performance metrics such as J–V behavior, photoresponsivity, and specific detectivity. Device optimization was achieved by thoroughly altering each layer thickness, doping concentrations, and defect densities. Additionally, the influence of interface defects, absorber bandgap, and operating temperature was assessed to enhance the photoresponse. Under optimal conditions, the device achieved a short-circuit current density (Jsc) of 45.88 mA/cm2, an open-circuit voltage (Voc) of 0.7152 V, a peak photoresponsivity of 0.85 AW−1, and a detectivity of 2.26 × 1014 Jones at 1100 nm. A broad spectral response spanning 700–1200 nm confirms its efficacy in the NIR region. These results position SrHfSe3 as a strong contender for future NIR photodetectors and provide a foundation for experimental validation in advanced optoelectronic applications. Full article
Show Figures

Figure 1

30 pages, 2505 KiB  
Article
Battery Energy Storage Systems: Energy Market Review, Challenges, and Opportunities in Frequency Control Ancillary Services
by Gian Garttan, Sanath Alahakoon, Kianoush Emami and Shantha Gamini Jayasinghe
Energies 2025, 18(15), 4174; https://doi.org/10.3390/en18154174 - 6 Aug 2025
Abstract
Battery energy storage systems (BESS) are considered a good energy source to maintain supply and demand, mitigate intermittency, and ensure grid stability. The primary contribution of this paper is to provide a comprehensive overview of global energy markets and a critical analysis of [...] Read more.
Battery energy storage systems (BESS) are considered a good energy source to maintain supply and demand, mitigate intermittency, and ensure grid stability. The primary contribution of this paper is to provide a comprehensive overview of global energy markets and a critical analysis of BESS’ participation in frequency control ancillary service (FCAS) markets. This review synthesises the current state of knowledge on the evolution of the energy market and the role of battery energy storage systems in providing grid stability, particularly frequency control services, with a focus on their integration into evolving high-renewable-energy-source (RES) market structures. Specifically, solar PV and wind energy are emerging as the main drivers of RES expansion, accounting for approximately 61% of the global market share. A BESS offers greater flexibility in storage capacity, scalability and rapid response capabilities, making it an effective solution to address emerging security risks of the system. Moreover, a BESS is able to provide active power support through power smoothing when coupled with solar photovoltaic (PV) and wind generation. In this paper, we provide an overview of the current status of energy markets, the contribution of battery storage systems to grid stability and flexibility, as well as the challenges that BESS face in evolving electricity markets. Full article
Show Figures

Figure 1

12 pages, 3840 KiB  
Article
Evaluation of Incident Light Characteristics for Vehicle-Integrated Photovoltaics Installed on Roofs and Hoods Across All Types of Vehicles: A Case Study of Commercial Passenger Vehicles
by Shota Matsushita, Kenji Araki, Yasuyuki Ota and Kensuke Nishioka
Appl. Sci. 2025, 15(15), 8702; https://doi.org/10.3390/app15158702 - 6 Aug 2025
Abstract
The output of vehicle-integrated photovoltaics (VIPVs) varies due to complex surface interactions, shading, weather conditions, module temperature, and module configuration, making accurate predictions of power generation challenging. This study examines the characteristics of incident light on VIPVs, focusing on installations on automobile roofs [...] Read more.
The output of vehicle-integrated photovoltaics (VIPVs) varies due to complex surface interactions, shading, weather conditions, module temperature, and module configuration, making accurate predictions of power generation challenging. This study examines the characteristics of incident light on VIPVs, focusing on installations on automobile roofs and hoods. Surface element data were collected from areas near the target locations (hood and roof), with shading effects taken into account. The calculations evaluated how the angle of incoming light impacts the intensity on specific parts of the vehicle, identifying which surfaces are most likely to receive maximum illumination. For example, the hood exhibited the highest incident light intensity when sunlight approached directly from the front at a solar altitude of 71°, reaching approximately 98% of the light intensity. These calculations enable the assessment of incident light intensity characteristics for various vehicle parts, including the hood and roof. Additionally, by utilizing database information, it is possible to calculate the incident light on vehicle surfaces at any given time and location. Full article
(This article belongs to the Special Issue New Insights into Solar Cells and Their Applications)
Show Figures

Figure 1

16 pages, 715 KiB  
Review
Public Perceptions and Social Acceptance of Renewable Energy Projects in Epirus, Greece: The Role of Education, Demographics and Visual Exposure
by Evangelos Tsiaras, Stergios Tampekis and Costas Gavrilakis
World 2025, 6(3), 111; https://doi.org/10.3390/world6030111 - 6 Aug 2025
Abstract
The social acceptance of Renewable Energy Sources (RESs) is a decisive factor in the successful implementation of clean energy projects. This study explores the attitudes, demographic profiles, and common misconceptions of citizens in the Region of Epirus, Greece, toward photovoltaic and wind energy [...] Read more.
The social acceptance of Renewable Energy Sources (RESs) is a decisive factor in the successful implementation of clean energy projects. This study explores the attitudes, demographic profiles, and common misconceptions of citizens in the Region of Epirus, Greece, toward photovoltaic and wind energy installations. Special attention is given to the role of education, age, and access to information—as well as spatial factors such as visual exposure—in shaping public perceptions and influencing acceptance of RES deployment. A structured questionnaire was administered to 320 participants across urban and rural areas, with subdivision between regions with and without visual exposure to RES infrastructure. Findings indicate that urban residents exhibit greater acceptance of RES, while rural inhabitants—especially those in proximity to installations—express skepticism, often grounded in esthetic concerns or perceived procedural injustice. Misinformation and lack of knowledge dominate in areas without visual contact. Statistical analysis confirms that younger and more educated participants are more supportive and environmentally aware. The study highlights the importance of targeted educational interventions, transparent consultation, and spatially sensitive communication strategies in fostering constructive engagement with renewable energy projects. The case of Epirus underscores the need for inclusive, place-based policies to bridge the social acceptance gap and support the national energy transition. Full article
Show Figures

Graphical abstract

Back to TopTop