Enhanced Energy Storage Properties of Polypropylene/Glycidyl Methacrylate Grafted Polypropylene/Nano-ZrO2 Ternary System
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Preparation
2.1.1. Preparation of PP-g-GMA Dielectric Composite
2.1.2. Preparation of PP-0.5Zr Dielectric Composite
2.1.3. Preparation of PP-gGMA-0.5Zr Dielectric Composite
2.2. Microstructure Observation
2.3. Crystallization Measurement
2.4. Frequency Domain Spectroscopy Test
2.5. Thermal Stimulated Depolarization Current Test
2.6. DC Breakdown Experiments
2.7. DFT Calculation
3. Results and Discussion
3.1. Quantum Chemical Computation
3.2. Microstructure Characterization
3.3. Crystallization Properties
3.4. Dielectric Properties
3.5. TSDC Analysis
3.6. DC Breakdown Strength
3.7. Energy Storage Density
4. Conclusions
- PP-g-GMA demonstrates a lower LUMO energy level compared to PP, rendering it more prone to electron capture. The grafted GMA moieties, on a molecular scale, introduce deep traps that form fixed electronic coupling with the side surfaces of the molecules, consequently suppressing electron transfer efficiency. This is further supported by the TSDC results of PP-g-GMA, which indeed validate the introduction of deep traps in the composite medium due to the grafted GMA.
- When PP is blended with PP-g-GMA and 0.5 wt% ZrO2, the α-crystalline phase is enhanced while the β-crystalline phase is nearly eliminated compared to pristine PP. Furthermore, the melting temperature is higher than in other instances, indicating its exceptional thermal stability.
- When compared to other conditions, PP-gGMA-0.5Zr not only demonstrates a higher breakdown strength but also possesses a dielectric constant of 2.67. Its energy storage density reaches 1.7275 J/cm3, the highest among all samples. This signifies an improvement of approximately 13.49% compared to the energy storage density of pure PP at 1.5222 J/cm3.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmed Dabbak, S.Z.; Illias, H.A.; Ang, B.C.; Abdul Latiff, N.A.; Makmud, M.Z.H. Electrical Properties of Polyethylene/Polypropylene Compounds for High-Voltage Insulation. Energies 2018, 11, 1448. [Google Scholar] [CrossRef]
- Huang, S.; Zhou, Y.; Hu, S.; Yuan, H.; Yuan, J.; Yang, C.; Hu, J.; Li, Q.; He, J. Comprehensive Properties of Grafted Polypropylene Insulation Materials for AC/DC Distribution Power Cables. Energies 2023, 16, 4701. [Google Scholar] [CrossRef]
- Michelazzi, M.; Fabiani, D. Electrical Conduction in Thin-Film Polypropylene Capacitors. Energies 2023, 16, 6631. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, L. Polymer nanocomposites for electrical energy storage. J. Polym. Sci. B Polym. Phys. 2011, 49, 1421–1429. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Q. Advanced polymer dielectrics for high temperature capacitive energy storage. J. Appl. Phys. 2020, 127, 240902. [Google Scholar] [CrossRef]
- Ma, C.; Min, D.M.; Li, S.T.; Zheng, X.; Li, X.Y.; Min, C.; Zhan, H.X. Trap distribution and direct current breakdown characteristics in polypropylene/Al2O3 nanodielectrics. Acta Phys. Sin. 2017, 66, 281–289. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Liu, H.B.; Ma, Y.W.; Cheng, L.; Liu, W.F.; Chen, D.Y.; Li, S.T. Electrical Properties and Energy Storage Characteristic of Barium Zirconate Titanate/Polypropylene Nanocomposites. Insul. Mater. 2022, 55, 61–68. [Google Scholar] [CrossRef]
- Min, D.; Yan, C.; Mi, R.; Ma, C.; Huang, Y.; Li, S.; Wu, Q.; Xing, Z. Carrier Transport and Molecular Displacement Modulated dc Electrical Breakdown of Polypropylene Nanocomposites. Polymers 2018, 10, 1207. [Google Scholar] [CrossRef]
- Han, L.J.; Wang, H.R.; Tang, Q.; Lang, X.R.; Wang, X.M.; Zong, Y.X.; Zong, C.Z. Preparation of graphene/polypropylene composites with high dielectric constant and low dielectric loss via constructing a segregated graphene network. RSC Adv. 2021, 11, 38264–38272. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Chang, C.-W. Dielectric Constant Enhancement with Low Dielectric Loss Growth in Graphene Oxide/Mica/Polypropylene Composites. J. Compos. Sci. 2021, 5, 52. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, G.Z.; Liu, F.H.; Han, K.; Gadinski, M.R.; Xiong, C.X.; Wang, Q. Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy Environ. Sci. 2015, 8, 922–931. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, W.F.; Liu, C.M.; Liu, X.W.; Li, S.T. Enhanced energy storage properties of polypropylene/maleic anhydride-grafted polypropylene/nano-ZrO2 ternary system. J. Appl. Polym. Sci. 2019, 136, 48211. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, J.; Dang, B.; He, J.L. Effect of different nanoparticles on tuning electrical properties of polypropylene nanocomposites. IEEE Trans. Dielect. Electr. Insul. 2017, 24, 1380–1389. [Google Scholar] [CrossRef]
- Sharmila, D.J.; Brijitta, J.; Sampathkumar, R. Enhanced Dielectric Properties of Polypropylene based Composite using Zinc Oxide Nanorods Filler. J. Surf. Sci. Technol. 2017, 33, 115–120. [Google Scholar] [CrossRef]
- Khedher, N.B.; Ghalambaz, M.; Alghawli, A.S.; Hajjar, A.; Sheremet, M.; Mehryan, S.A.M. Study of tree-shaped optimized fins in a heat sink filled by solid-solid nanocomposite phase change material. Int. Commun. Heat Mass Transf. 2022, 136, 106195. [Google Scholar] [CrossRef]
- Khedher, N.B.; Bantan, R.A.; Kolsi, L.; Omri, M. Performance investigation of a vertically configured LHTES via the combination of nano-enhanced PCM and fins: Experimental and numerical approaches. Int. Commun. Heat Mass Transf. 2022, 137, 106246. [Google Scholar] [CrossRef]
- Luo, W.; Liu, X.; Fu, Y. Melt grafting of maleic anhydride onto polypropylene with assistance of α-methylstyrene. Polym. Eng. Sci. 2012, 52, 814–819. [Google Scholar] [CrossRef]
- Burton, E.L.; Woodhead, M.; Coates, P.; Gough, T. Reactive grafting of glycidyl methacrylate onto polypropylene. J. Appl. Polym. Sci. 2010, 117, 2707–2714. [Google Scholar] [CrossRef]
- Liu, W.; Cheng, L.; Liu, X.; Liu, C.; Chi, X.; Li, S. Correlation between morphology and electrical breakdown strength of the polypropylene/maleic anhydride grafted polypropylene/nano-ZrO2 ternary system. J. Appl. Polym. Sci. 2018, 135, 46842. [Google Scholar] [CrossRef]
- Song, X.J.; Hu, J.; Wang, C.C. Synthesis of highly surface functionalized monodispersed poly(St/DVB/GMA) nanospheres with soap-free emulsion polymerization followed by facile “click chemistry” with functionalized alkylthiols. Colloid Surf. A 2011, 380, 250–256. [Google Scholar] [CrossRef]
- Zheng, X.; He, L.; Yu, G.; Li, Y. Effect of Tea Polyphenols on the Melt Grafting of Glycidyl Methacrylate onto Polypropylene. Polymers 2022, 14, 5253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yin, Z.; Na, T.; Yin, J. Morphology, mechanical properties and interfacial behaviour of PA1010/PP/PP-g-GMA ternary blends. Polymers 1997, 38, 5905–5912. [Google Scholar] [CrossRef]
- Tao, Y.J.; Mai, K.C. Non-isothermal crystallization and melting behavior of compatibilized poly-propylene/recycled poly(ethylene terephthalate) blends. Eur. Polym. J. 2007, 43, 3538–3549. [Google Scholar] [CrossRef]
- Xia, X.F.; Zhang, J.H.; Fan, J.M.; Jiang, Q.L.; Xu, S.A. Effect of functionalization on non-isothermal crystallization behavior of polypropylene. Int. J. Polym. Anal. Charact. 2016, 21, 697–707. [Google Scholar] [CrossRef]
- Qiu, Z.; Wang, J.; Yang, K.; Guo, J.; Wang, W.; Pan, R.; Wu, G. Simultaneous enhancements of mechanical properties and hydrophilic properties of polypropylene via nano-silicon dioxide modified by polydopamine. J. Appl. Polym. Sci. 2017, 134, 45004. [Google Scholar] [CrossRef]
- Jacob, S.; Suma, K.K.; Mendez, J.M.; George, K.E. Reinforcing effect of nanosilica on polypropylene–nylon fibre composite. Mater. Sci. Eng. B 2010, 168, 245–249. [Google Scholar] [CrossRef]
- Chi, X.H.; Cheng, L.; Liu, W.F.; Zhang, X.H.; Li, S.T. Dynamic mechanism of breakdown in polypropylene-based nano-dielectric. AIP Adv. 2019, 9, 015135. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, Z.; Ma, L.; Gao, J.; Guo, N. Enhanced breakdown strength and electrical tree resistance properties of MMT/SiO2/LDPE multielement composites. J. Appl. Polym. Sci. 2019, 136, 47364. [Google Scholar] [CrossRef]
- Lv, Y.; Ge, Y.; Wang, L.; Sun, Z.; Zhou, Y.; Huang, M.; Qi, B. Effects of nanoparticle materials on prebreakdown and breakdown properties of transformer oil. Appl. Sci. 2018, 8, 601. [Google Scholar] [CrossRef]
- Tian, F.Q.; Bu, W.B.; Shi, L.S.; Yang, C.; Wang, Y.; Lei, Q.Q. Theory of modified thermally stimulated current and direct determination of trap level distribution. J. Electrostat. 2011, 69, 7–10. [Google Scholar] [CrossRef]
- Yuan, C.; Zhou, Y.; Zhu, Y.; Hu, S.; Liang, J.; Luo, Z.; Li, Q. Improved high-temperature electrical properties of polymeric material by grafting modification. ACS Sustain. Chem. Eng. 2022, 10, 8685–8693. [Google Scholar] [CrossRef]
- Wang, S.; Shao, L.; Song, Z.; Zhao, J.; Feng, Y. Preparation of epoxy functionalized PP with unique structure and its post-ring open reaction. J. Appl. Polym. Sci. 2012, 124, 4827–4837. [Google Scholar] [CrossRef]
- Zhu, L. Exploring strategies for high dielectric constant and low loss polymer dielectrics. J. Phys. Chem. Lett. 2014, 5, 3677–3687. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Yuan, H.; Zhang, Q.; Li, J.; Wang, M.; Huang, S.; He, J. Deep trap origins, characteristics, and related mechanisms in chemically grafted polypropylene with enhanced direct current volume resistivity. J. Phys. Chem. C 2022, 126, 16280–16288. [Google Scholar] [CrossRef]
- Yuan, H.; Hu, S.X.; Zhou, Y.; Yuan, C.; Song, W.B.; Shao, Q.; Shi, H.W.; Li, J.; Hu, J.; Li, Q.; et al. Enhanced Electrical Properties of Styrene-grafted Polypropylene Insulation for Bulk Power Transmission HVDC Cable. CSEE J. Power Energy Syst. 2021, 12, 11–18. [Google Scholar] [CrossRef]
- Zhai, J.T.; Li, W.K.; Zha, J.W.; Cheng, Q.; Bian, X.M.; Dang, Z.M. Space Charge Suppression of Polyethylene Induced by Blending with Ethylene-butyl Acrylate Copolymer. CSEE J. Power Energy Syst. 2020, 6, 152–159. [Google Scholar] [CrossRef]
- Tian, F.Q.; Lei, Q.Q.; Wang, X.; Wang, Y. Effect of Deep Trapping States on Space Charge Suppression in Polyethylene/ZnO Nanocomposite. Appl. Phys. Lett. 2011, 99, 142903. [Google Scholar] [CrossRef]
- Peng, S.; Dang, B.; Zhou, Y.; Hu, J.; He, J. Functionalized TiO2 nanoparticles tune the aggregation structure and trapping property of polyethylene nanocomposites. J. Phys. Chem. C 2016, 120, 24754–24761. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, J.; Chi, M.; Zhang, J.; Tan, P. Experimental study on trap characteristics of nano-montmorillonite composite pressboards. Energies 2018, 11, 1732. [Google Scholar] [CrossRef]
- Han, T.; Du, B.; Ma, T.; Wang, F.; Gao, Y.; Lei, Z.; Li, C. Electrical tree in HTV silicone rubber with temperature gradient under repetitive pulse voltage. IEEE Access 2019, 7, 41250–41260. [Google Scholar] [CrossRef]
- Xie, H.; Luo, H.; Pei, Z.; Chen, S.; Zhang, D. Improved discharge energy density and efficiency of polypropylene-based dielectric nanocomposites utilizing BaTiO3@TiO2 nanoparticles. Mater. Today Energy 2022, 30, 2468–6069. [Google Scholar] [CrossRef]
- Ai, D.; Li, H.; Zhou, Y.; Ren, L.; Han, Z.; Yao, B.; Zhou, W.; Zhao, L.; Xu, J.; Wang, Q. Tuning Nanofillers in In Situ Prepared Polyimide Nanocomposites for High-Temperature Capacitive Energy Storage. Adv. Energy Mater. 2020, 10, 1903881. [Google Scholar] [CrossRef]
Sample | Scale Parameter/(MV) | Shape Parameters |
---|---|---|
PP | 368.66 | 10.60 |
PP-g-GMA | 333.51 | 7.03 |
PP-0.5Zr | 375.62 | 11.22 |
PP-gGMA-0.5Zr | 382.29 | 11.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Xing, Z.; Chen, X.; Guo, S.; Liu, H.; Cheng, L.; Liu, W. Enhanced Energy Storage Properties of Polypropylene/Glycidyl Methacrylate Grafted Polypropylene/Nano-ZrO2 Ternary System. Energies 2023, 16, 7621. https://doi.org/10.3390/en16227621
Zhang C, Xing Z, Chen X, Guo S, Liu H, Cheng L, Liu W. Enhanced Energy Storage Properties of Polypropylene/Glycidyl Methacrylate Grafted Polypropylene/Nano-ZrO2 Ternary System. Energies. 2023; 16(22):7621. https://doi.org/10.3390/en16227621
Chicago/Turabian StyleZhang, Chong, Zhaoliang Xing, Xin Chen, Shaowei Guo, Hongbo Liu, Lu Cheng, and Wenfeng Liu. 2023. "Enhanced Energy Storage Properties of Polypropylene/Glycidyl Methacrylate Grafted Polypropylene/Nano-ZrO2 Ternary System" Energies 16, no. 22: 7621. https://doi.org/10.3390/en16227621
APA StyleZhang, C., Xing, Z., Chen, X., Guo, S., Liu, H., Cheng, L., & Liu, W. (2023). Enhanced Energy Storage Properties of Polypropylene/Glycidyl Methacrylate Grafted Polypropylene/Nano-ZrO2 Ternary System. Energies, 16(22), 7621. https://doi.org/10.3390/en16227621