An Evaluation of Potential Strategies in Renewable Energy Systems and Their Importance for South Africa—A Review
Abstract
:1. Introduction
- Assess the current energy scenario in South Africa. This indicates the existing energy landscape in South Africa, highlighting the challenges and opportunities associated with RE integration in modern power grid development.
- Explore the implementation of RE with real data in different locations. The study incorporates data from various places where RE systems have been implemented. Thus, the assessment of the empirical information adds credibility and practicality to the analysis.
- Provide a techno-economic analysis tailored to the South African power network. Therefore, the study includes a comprehensive techno-economic investigation that explicitly considers the characteristics and requirements of the South African power grid. Furthermore, the analysis examines the classification of economically viable solutions for RE integration and their application within the innovation power grid environment.
2. Modelling and Methodology of Renewable Energy Integration
2.1. Stochastic Methods
2.2. Deterministic Methods
2.3. Optimal Control Scheme
3. Distributed Energy Resources
3.1. Solar Power
3.2. Wind Power
3.3. Hybrid System
3.4. Energy Storage System
3.5. Hybrid Energy Storage System
4. System Estimation
4.1. Potential of Renewable Energy in South Africa
4.2. Installed and Potential Renewable Energy in South Africa
4.2.1. Biomass Energy
4.2.2. Hydropower
4.2.3. Wind Energy
4.2.4. Solar Energy
4.3. Techno-Economic Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
MG | microgrid | SC | supercapacitor |
DC | direct current | PSO | particle swarm optimisation |
MW | megawatt | PV | photovoltaic |
DG | diesel generator | WT | wind turbine |
RES | renewable energy source | BT | battery |
RER | renewable energy resource | BA | bat algorithm |
EDP | economic dispatch problem | MPPT | maximum power point tracking |
ESS | energy storage system | DoE | department of energy |
BES | battery energy storage | COE | cost of energy |
HRES | hybrid renewable energy system | MPC | model predictive control |
PFC | power flow control | ANN | artificial neural networks |
RE | renewable energy | SA | South Africa |
HOMER | hybrid optimisation model for electric renewables |
References
- Nkwanyana, T.B.; Siti, M.W.; Wang, Z.; Toudjeu, I.; Mbungu, N.T.; Mulumba, W. An assessment of hybrid-energy storage systems in the renewable environments. J. Energy Storage 2023, 72, 108307. [Google Scholar] [CrossRef]
- Rezvani, A.; Esmaeily, A.; Etaati, H.; Mohammadinodoushan, M. Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and RBFNSM for wind turbine in the grid connected mode. Front. Energy 2017, 13, 131–148. [Google Scholar] [CrossRef]
- Mbungu, N.T.; Naidoo, R.M.; Bansal, R.C.; Siti, M.W.; Tungadio, D.H. An overview of renewable energy resources and grid integration for commercial building applications. J. Energy Storage 2020, 29, 101385. [Google Scholar] [CrossRef]
- Minazhova, S.; Akhambayev, R.; Shalabayev, T.; Bekbayev, A.; Kozhageldi, B.; Tvaronavičienė, M. A Review on Solar Energy Policy and Current Status: Top 5 Countries and Kazakhstan. Energies 2023, 16, 4370. [Google Scholar] [CrossRef]
- Ela, E.; O’Malley, M. Studying the variability and uncertainty impacts of variable generation at multiple timescales. IEEE Trans. Power Syst. 2012, 27, 1324–1333. [Google Scholar] [CrossRef]
- Widén, J.; Carpman, N.; Castellucci, V.; Lingfors, D.; Olauson, J.; Remouit, F.; Bergkvist, M.; Grabbe, M.; Waters, R. Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources. Renew. Sustain. Energy Rev. 2015, 44, 356–375. [Google Scholar] [CrossRef]
- Mbungu, N.T. Dynamic Real Time Electricity Pricing Optimisation for Commercial Building; MEng, Department of Electrical, Electronic and Computer Engineering, University of Pretoria: Pretoria, South Africa, 2017. [Google Scholar]
- Rabu, K.; Rambabu, K. Renewable Energy Based Small Hybrid Power System for Desalination Applications in Remote Locations. In Proceedings of the 2012 IEEE 5th India International Conference on Power Electronics (IICPE), Delhi, India, 6–8 December 2012; Volume 5, pp. 11–15. [Google Scholar]
- Bansal, R.C.; Zobaa, A.F. Handbook of Renewable Energy Technology & Systems; World Scientific: Singapore, 2021. [Google Scholar]
- Mbungu, N.; Madiba, T.; Bansal, R.; Bettayeb, M.; Naidoo, R.; Siti, M.; Adefarati, T. Economic optimal load management control of microgrid system using energy storage system. J. Energy Storage 2022, 46, 103843. [Google Scholar] [CrossRef]
- Ekren, O.; Ekren, B.Y. Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing. Appl. Energy 2010, 87, 592–598. [Google Scholar] [CrossRef]
- Chalikosa, B.; Bansal, R.C.; Mbungu, N.T.; Naidoo, R. Performance analysis of wake models on the energy production of large offshore wind farms. Int. J. Model. Simul. 2022, 43, 223–234. [Google Scholar] [CrossRef]
- Mondejar, M.E.; Avtar, R.; Diaz, H.L.B.; Dubey, R.K.; Esteban, J.; Gómez-Morales, A.; Hallam, B.; Mbungu, N.T.; Okolo, C.C.; Prasad, K.A.; et al. Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet. Sci. Total Environ. 2021, 794, 148539. [Google Scholar] [CrossRef]
- Cavalcanti, G.d.O.; Pimenta, H.C.D. Electric Energy Management in Buildings Based on the Internet of Things: A Systematic Review. Energies 2023, 16, 5753. [Google Scholar] [CrossRef]
- Koottappillil, D.P.; Naidoo, R.M.; Mbungu, N.T.; Bansal, R.C. Distribution of renewable energy through the energy internet: A routing algorithm for energy routers. Energy Rep. 2022, 8, 355–363. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, G. Energy Management Systems in Sustainable Smart Cities Based on the Internet of Energy: A Technical Review. Energies 2023, 16, 6903. [Google Scholar] [CrossRef]
- Sarker, A.K.; Azad, A.K.; Rasul, M.G.; Doppalapudi, A.T. Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review. Energies 2023, 16, 1556. [Google Scholar] [CrossRef]
- Lagioia, G.; Spinelli, M.P.; Amicarelli, V. Blue and green hydrogen energy to meet European Union decarbonisation objectives. An overview of perspectives and the current state of affairs. Int. J. Hydrogen Energy 2023, 48, 1304–1322. [Google Scholar] [CrossRef]
- Raihan, A. The dynamic nexus between economic growth, renewable energy use, urbanization, industrialization, tourism, agricultural productivity, forest area, and carbon dioxide emissions in the Philippines. Energy Nexus 2023, 9, 100180. Available online: https://www.sciencedirect.com/science/article/pii/S2772427123000104 (accessed on 11 October 2023). [CrossRef]
- Kumar, C.M.S.; Singh, S.; Gupta, M.K.; Nimdeo, Y.M.; Raushan, R.; Deorankar, A.V.; Ananda Kumar, T.M.; Rout, P.K.; Chanotiya, C.S.; Pakhale, V.D.; et al. Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. Sustain. Energy Technol. Assess. 2023, 55, 102905. Available online: https://www.sciencedirect.com/science/article/pii/S2213138822009535?casa_token=NDC6uoZzLRMAAAAA:TAvwHbjlC2oZHopDUSwdnizgFGFTKAaxMRZwY0qIy2L4s5vjvsJFDUdJXPn2C8QdAPq1y4OccJI (accessed on 11 October 2023). [CrossRef]
- Li, C.; Umair, M. Does green finance development goals affects renewable energy in China. Renew. Energy 2023, 203, 898–905. [Google Scholar] [CrossRef]
- Mbungu, N.T.; Naidoo, R.M.; Bansal, R.C.; Vahidinasab, V. Overview of the Optimal Smart Energy Coordination for Microgrid Applications. IEEE Access 2019, 7, 163063–163084. [Google Scholar] [CrossRef]
- Adibi, M.; van der Woude, J. Distributed Learning Control for Economic Power Dispatch: A Privacy Preserved Approach. In Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, The Netherlands, 17–19 June 2020; pp. 821–826. [Google Scholar]
- Ullah, K.; Ullah, Z.; Aslam, S.; Salam, M.S.; Salahuddin, M.A.; Umer, M.F.; Shaheer, H. Wind Farms and Flexible Loads Contribution in Automatic Generation Control: An Extensive Review and Simulation. Energies 2023, 16, 5498. [Google Scholar] [CrossRef]
- Formulation, P. Contents 2. Metal Powder Rep. 2017, 72, 2–14. [Google Scholar] [CrossRef]
- Hlalele, T.G.; Naidoo, R.M.; Zhang, J.; Bansal, R.C. Dynamic Economic Dispatch With Maximal Renewable Penetration Under Renewable Obligation. IEEE Access 2020, 8, 38794–38808. [Google Scholar] [CrossRef]
- Jayabarathi, T.; Raghunathan, T.; Adarsh, B.; Suganthan, P.N. Economic dispatch using hybrid grey wolf optimizer. Energy 2016, 111, 630–641. [Google Scholar] [CrossRef]
- Kunya, A.B.; Abubakar, A.S.; Yusuf, S.S. Review of economic dispatch in multi-area power system: State-of-the-art and future prospective. Electr. Power Syst. Res. 2023, 217, 109089. [Google Scholar] [CrossRef]
- Basak, S.; Dey, B.; Bhattacharyya, B. Uncertainty-based dynamic economic dispatch for diverse load and wind profiles using a novel hybrid algorithm. Environ. Dev. Sustain. 2023, 25, 4723–4763. [Google Scholar] [CrossRef]
- Thirunavukkarasu, M.; Sawle, Y.; Lala, H. A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques. Renew. Sustain. Energy Rev. 2023, 176, 113192. [Google Scholar] [CrossRef]
- Mbungu, N.; Naidoo, R.; Bansal, R.; Siti, M. Model predictive control: A survey of dynamic energy management. In Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2021, Online Streaming, 6–8 July 2021; pp. 123–129. [Google Scholar] [CrossRef]
- Nirmala, P.; Ramkumar, G.; Sahoo, S.; Anitha, G.; Ramesh, S.; Shifani, S.A.; Shata, A.S. Artificial Intelligence to Analyze the Performance of the Ceramic-Coated Diesel Engine Using Digital Filter Optimization. Adv. Mater. Sci. Eng. 2021, 2021, 7663348. [Google Scholar] [CrossRef]
- Sahoo, S.; Amirthalakshmi, T.M.; Ramesh, S.; Ramkumar, G.; Dhanraj, J.A.; Ranjith, A.; Al Obaid, S.; Alfarraj, S.; Kumar, S.S. Artificial Deep Neural Network in Hybrid PV System for Controlling the Power Management. Int. J. Photoenergy 2022, 2022, 9353470. [Google Scholar] [CrossRef]
- Ma, C.; Li, C.; Zhang, X.; Li, G.; Han, Y. Reconfiguration of Distribution Networks with Distributed Generation Using a Dual Hybrid Particle Swarm Optimization Algorithm. Math. Probl. Eng. 2017, 2017, 1517435. [Google Scholar] [CrossRef]
- Rathish, R.J.; Mahadevan, K.; Selvaraj, S.K.; Booma, J. Multi-objective evolutionary optimization with genetic algorithm for the design of off-grid PV-wind-battery-diesel system. Soft Comput. 2020, 25, 3175–3194. [Google Scholar] [CrossRef]
- Suresh, V.; Muralidhar, M.; Kiranmayi, R. Modelling and optimization of an off-grid hybrid renewable energy system for electrification in a rural areas. Energy Rep. 2020, 6, 594–604. [Google Scholar] [CrossRef]
- Suryoatmojo, H.; Hiyama, T.; Elbaset, A.A.; Ashari, M. Optimal design of wind-pv-diesel-battery system using genetic algorithm. IEEJ Trans. Power Energy 2009, 129, 413–420. [Google Scholar] [CrossRef]
- Bhongade, S.; Agarwal, S. An optimal solution for Combined Economic and Emission Dispatch problem using Artificial Bee Colony Algorithm. In Proceedings of the 2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE), Bengaluru, India, 21–23 January 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Wan, C.; Xu, Z.; Pinson, P.; Dong, Z.Y.; Wong, K.P. Optimal prediction intervals of wind power generation. IEEE Trans. Power Syst. 2013, 29, 1166–1174. [Google Scholar] [CrossRef]
- Taheri, B.; Aghajani, G.; Sedaghat, M. Economic dispatch in a power system considering environmental pollution using a multi-objective particle swarm optimization algorithm based on the Pareto criterion and fuzzy logic. Int. J. Energy Environ. Eng. 2017, 8, 99–107. [Google Scholar] [CrossRef]
- Arabi-Nowdeh, S.; Nasri, S.; Saftjani, P.B.; Naderipour, A.; Abdul-Malek, Z.; Kamyab, H.; Jafar-Nowdeh, A. Multi-criteria optimal design of hybrid clean energy system with battery storage considering off- and on-grid application. J. Clean. Prod. 2021, 290, 125808. [Google Scholar] [CrossRef]
- Ellahi, M.; Abbas, G. A Hybrid Metaheuristic Approach for the Solution of Renewables-Incorporated Economic Dispatch Problems. IEEE Access 2020, 8, 127608–127621. [Google Scholar] [CrossRef]
- Siti, M.; Tiako, R.; Bansal, R. A model predictive control strategy for grid-connected solar-wind with pumped hydro storage. In Proceedings of the 5th IET International Conference on Renewable Power Generation (RPG) 2016, London, UK, 21–23 September 2016; Volume 2016, pp. 1–6. [Google Scholar]
- Bemporad, A.; Borrelli, F.; Morari, M. Model predictive control based on linear programming—The explicit solution. IEEE Trans. Autom. Control 2002, 47, 1974–1985. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, J.; Elaiw, A. An application of model predictive control to the dynamic economic dispatch of power generation. Control Eng. Pract. 2011, 19, 638–648. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, Q.; Xiong, X.; Ouyang, J.; Xuan, P.; Xie, P.; Zou, J. Multi-time-scale robust economic dispatching method for the power system with clean energy. J. Eng. 2018, 2019, 1377–1381. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Ahn, S.-H. Demand-side management for off-grid solar-powered microgrids: A case study of rural electrification in Tanzania. Energy 2021, 224, 120229. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, S.; Zhang, G. Machine-learning based study on the on-site renewable electrical performance of an optimal hybrid PCMs integrated renewable system with high-level parameters’ uncertainties. Renew. Energy 2019, 151, 403–418. [Google Scholar] [CrossRef]
- Patel, A.; Swathika, O.V.G.; Subramaniam, U.; Babu, T.S.; Tripathi, A.; Nag, S.; Karthick, A.; Muhibbullah, M. A Practical Approach for Predicting Power in a Small-Scale Off-Grid Photovoltaic System using Machine Learning Algorithms. Int. J. Photoenergy 2022, 2022, 9194537. [Google Scholar] [CrossRef]
- Yin, X.; Lei, M. Jointly improving energy efficiency and smoothing power oscillations of integrated offshore wind and photovoltaic power: A deep reinforcement learning approach. Prot. Control Mod. Power Syst. 2023, 8, 25. [Google Scholar] [CrossRef]
- Aslam, S.; Herodotou, H.; Mohsin, S.M.; Javaid, N.; Ashraf, N.; Aslam, S. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renew. Sustain. Energy Rev. 2021, 144, 110992. [Google Scholar] [CrossRef]
- Zhou, K.; Fu, C.; Yang, S. Big data driven smart energy management: From big data to big insights. Renew. Sustain. Energy Rev. 2016, 56, 215–225. [Google Scholar] [CrossRef]
- Zec, L.; Mikulović, J. Load management in an off-grid hybrid PV–wind–battery system using the power flow control algorithm and fuzzy logic controller. Electr. Eng. 2022, 104, 2185–2195. [Google Scholar] [CrossRef]
- Al-Sakkaf, S.; Kassas, M.; Khalid, M.; Abido, M.A. An energy management system for residential autonomous DC microgrid using optimized fuzzy logic controller considering economic dispatch. Energies 2019, 12, 1457. [Google Scholar] [CrossRef]
- Ali, M.; Hossain, I. Shafiullah Fuzzy Logic for Energy Management in Hybrid Energy Storage Systems Integrated DC Microgrid. In Proceedings of the 2022 International Conference on Power Energy Systems and Applications (ICoPESA), Singapore, 25–27 February 2022; pp. 424–429. [Google Scholar]
- Ganesan, T.; Vasant, P.; Elamvazuthi, I. Hopfield neural networks approach for design optimization of hybrid power systems with multiple renewable energy sources in a fuzzy environment. J. Intell. Fuzzy Syst. 2014, 26, 2143–2154. [Google Scholar] [CrossRef]
- Azaroual, M.; Mbungu, N.T.; Ouassaid, M.; Siti, M.W.; Maaroufi, M. Toward an intelligent community microgrid energy management system based on optimal control schemes. Int. J. Energy Res. 2022, 46, 21234–21256. [Google Scholar] [CrossRef]
- Boualem, S.; Kraa, O.; Benmeddour, M.; Kermadi, M.; Maamir, M.; Cherif, H. Power management strategy based on Elman neural network for grid-connected photovoltaic-wind-battery hybrid system. Comput. Electr. Eng. 2022, 99, 107823. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Sharshir, S.W.; Abd Elaziz, M.; Kabeel, A.E.; Guilan, W.; Haiou, Z. Modeling of solar energy systems using artificial neural network: A comprehensive review. Sol. Energy 2019, 180, 622–639. [Google Scholar] [CrossRef]
- Pancholi, R.; Chahar, S. Improved PV- wind hybrid system with efficacious neural network technique indeed dynamic voltage restorer. In Proceedings of the 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020; pp. 1–7. [Google Scholar]
- Zheng, S.; Shahzad, M.; Asif, H.M.; Gao, J.; Muqeet, H.A. Advanced optimizer for maximum power point tracking of photovoltaic systems in smart grid: A roadmap towards clean energy technologies. Renew. Energy 2023, 206, 1326–1335. [Google Scholar] [CrossRef]
- Mbungu, N.T.; Bansal, R.C.; Naidoo, R.M.; Bettayeb, M.; Siti, M.W.; Bipath, M. A dynamic energy management system using smart metering. Appl. Energy 2020, 280, 115990. [Google Scholar] [CrossRef]
- Akorede, M.F. Design and performance analysis of off-grid hybrid renewable energy systems. In Hybrid Technologies for Power Generation; Elsevier Inc.: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Abo-Khalil, A.G.; Abdalla, M.; Bansal, R.C.; Mbungu, N.T. A critical assessment of islanding detection methods of solar photovoltaic systems. Case Stud. Therm. Eng. 2023, 52, 103681. [Google Scholar] [CrossRef]
- Rabaia, M.K.H.; Abdelkareem, M.A.; Sayed, E.T.; Elsaid, K.; Chae, K.-J.; Wilberforce, T.; Olabi, A. Environmental impacts of solar energy systems: A review. Sci. Total. Environ. 2020, 754, 141989. [Google Scholar] [CrossRef]
- Wilberforce, T.; Baroutaji, A.; El Hassan, Z.; Thompson, J.; Soudan, B.; Olabi, A. Prospects and challenges of concentrated solar photovoltaics and enhanced geothermal energy technologies. Sci. Total Environ. 2018, 659, 851–861. [Google Scholar] [CrossRef]
- Poti, K.D.; Naidoo, R.M.; Mbungu, N.T.; Bansal, R.C. Intelligent solar photovoltaic power forecasting. Energy Rep. 2023, 9, 343–352. [Google Scholar] [CrossRef]
- Jäger-Waldau, A. Snapshot of Photovoltaics—February 2020. Energies 2020, 13, 930. [Google Scholar] [CrossRef]
- Ramalingam, K.; Indulkar, C. Solar Energy and Photovoltaic Technology. Distrib. Gener. Syst. 2017, 69–147. [Google Scholar] [CrossRef]
- Kannan, N.; Vakeesan, D. Solar energy for future world—A review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [Google Scholar] [CrossRef]
- Tsalikis, G.; Martinopoulos, G. Solar energy systems potential for nearly net zero energy residential buildings. Sol. Energy 2015, 115, 743–756. [Google Scholar] [CrossRef]
- Aman, M.; Solangi, K.; Hossain, M.; Badarudin, A.; Jasmon, G.; Mokhlis, H.; Bakar, A.; Kazi, S. A review of Safety, Health and Environmental (SHE) issues of solar energy system. Renew. Sustain. Energy Rev. 2015, 41, 1190–1204. [Google Scholar] [CrossRef]
- Shah, T.R.; Ali, H.M. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: A critical review. Sol. Energy 2019, 183, 173–203. [Google Scholar] [CrossRef]
- Siecker, J.; Kusakana, K.; Numbi, B. A review of solar photovoltaic systems cooling technologies. Renew. Sustain. Energy Rev. 2017, 79, 192–203. [Google Scholar] [CrossRef]
- Hamid, A.K.; Mbungu, N.T.; Elnady, A.; Bansal, R.C.; A Ismail, A.; A AlShabi, M. A systematic review of grid-connected photovoltaic and photovoltaic/thermal systems: Benefits, challenges and mitigation. Energy Environ. 2022, 34, 2775–2814. [Google Scholar] [CrossRef]
- Abo-Khalil, A.G.; Bansal, R.C.; Mbungu, N.T. A Comprehensive Study for Maximum Power Point Tracking Methodologies for Wind Power Systems. In International Conference on Communication, Devices and Computing; Springer Nature: Singapore, 2023; pp. 245–262. [Google Scholar]
- Hannan, M.A.; Al-Shetwi, A.Q.; Mollik, M.S.; Ker, P.J.; Mannan, M.; Mansor, M.; Mahlia, T.I. Wind Energy Conversions, Controls, and Applications: A Review for Sustainable Technologies and Directions. Sustainability 2023, 15, 3986. [Google Scholar] [CrossRef]
- Minz, J.; Kleidon, A.; Mbungu, N.T.; Miller, L.M. Estimating the Technical Wind Energy Potential of Kansas that Incorporates the Atmospheric Response for Policy Applications. 2022, pp. 1–31. Available online: https://arxiv.org/abs/2211.01276v1 (accessed on 6 July 2023).
- Ren, G.; Liu, J.; Wan, J.; Guo, Y.; Yu, D. Overview of wind power intermittency: Impacts, measurements, and mitigation solutions. Appl. Energy 2017, 204, 47–65. [Google Scholar] [CrossRef]
- Gholami, M.; Fathi, S.H.; Milimonfared, J.; Chen, Z.; Deng, F. The effect of turbulence and wake on the power fluctuation in the wind farms. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; pp. 1148–1153. [Google Scholar] [CrossRef]
- Shamshirband, S.; Petković, D.; Anuar, N.B.; Gani, A. Adaptive neuro-fuzzy generalization of wind turbine wake added turbulence models. Renew. Sustain. Energy Rev. 2014, 36, 270–276. [Google Scholar] [CrossRef]
- Li, P.; Banakar, H.; Keung, P.-K.; Far, H.G.; Ooi, B.-T. Macromodel of Spatial Smoothing in Wind Farms. IEEE Trans. Energy Convers. 2007, 22, 119–128. [Google Scholar] [CrossRef]
- Herbert, G.J.; Iniyan, S.; Sreevalsan, E.; Rajapandian, S. A review of wind energy technologies. Renew. Sustain. Energy Rev. 2007, 11, 1117–1145. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S. Impacts of wind energy on environment: A review. Renew. Sustain. Energy Rev. 2015, 49, 437–443. [Google Scholar] [CrossRef]
- Longcore, T.; Rich, C.; Mineau, P.; MacDonald, B.; Bert, D.G.; Sullivan, L.M.; Mutrie, E.; Gauthreaux, S.A.; Avery, M.L.; Crawford, R.L.; et al. An estimate of avian mortality at communication towers in the United States and Canada. PLoS ONE 2012, 7, e34025. [Google Scholar] [CrossRef] [PubMed]
- For, R.; By, R. Scoping Report for the Midwest Wind Energy Multi-Species Habitat Conservation Plan Environmental Impact Statement; ICF International: Portland, OR, USA, 2015. [Google Scholar]
- Sovacool, B.K. The avian benefits of wind energy: A 2009 update. Renew. Energy 2013, 49, 19–24. [Google Scholar] [CrossRef]
- Novacheck, J.; Johnson, J.X. Diversifying wind power in real power systems. Renew. Energy 2017, 106, 177–185. [Google Scholar] [CrossRef]
- Verdejo, H.; Awerkin, A.; Saavedra, E.; Kliemann, W.; Vargas, L. Stochastic modeling to represent wind power generation and demand in electric power system based on real data. Appl. Energy 2016, 173, 283–295. [Google Scholar] [CrossRef]
- Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind power generation. Renew. Energy 2012, 37, 1–8. [Google Scholar] [CrossRef]
- Koshy, S.; Rahul, S.; Sunitha, R.; Cheriyan, E.P. 8 Smart grid–based big data analytics using machine learning and artificial intelligence: A survey. Artif. Intell. Internet Things Renew. Energy Syst. 2021, 12, 241. [Google Scholar]
- Mbungu, N.T.; Bansal, R.C.; Naidoo, R. Smart energy coordination of a hybrid wind/ PV with battery storage connected to grid. J. Eng. 2019, 2019, 5109–5113. [Google Scholar] [CrossRef]
- Yang, A.-S.; Su, Y.-M.; Wen, C.-Y.; Juan, Y.-H.; Wang, W.-S.; Cheng, C.-H. Estimation of wind power generation in dense urban area. Appl. Energy 2016, 171, 213–230. [Google Scholar] [CrossRef]
- Pinson, P.; Girard, R. Evaluating the quality of scenarios of short-term wind power generation. Appl. Energy 2012, 96, 12–20. [Google Scholar] [CrossRef]
- Mbungu, N.T.; Ismail, A.A.; AlShabi, M.; Bansal, R.C.; Elnady, A.; Hamid, A.K. Control and estimation techniques applied to smart microgrids: A review. Renew. Sustain. Energy Rev. 2023, 179, 113251. [Google Scholar] [CrossRef]
- Madiba, T.; Bansal, R.; Mbungu, N.; Bettayeb, M.; Naidoo, R.; Siti, M. Under-frequency load shedding of microgrid systems: A review. Int. J. Model. Simul. 2021, 42, 653–679. [Google Scholar] [CrossRef]
- Masaud, T.M.; El-Saadany, E.F. Correlating Optimal Size, Cycle Life Estimation, and Technology Selection of Batteries: A Two-Stage Approach for Microgrid Applications. IEEE Trans. Sustain. Energy 2019, 11, 1257–1267. [Google Scholar] [CrossRef]
- Xie, P.; Cai, Z.; Liu, P.; Li, X.; Zhang, Y.; Xu, D. Microgrid System Energy Storage Capacity Optimization Considering Multiple Time Scale Uncertainty Coupling. IEEE Trans. Smart Grid 2018, 10, 5234–5245. [Google Scholar] [CrossRef]
- Moghaddam, I.N.; Chowdhury, B.H.; Mohajeryami, S. Predictive Operation and Optimal Sizing of Battery Energy Storage With High Wind Energy Penetration. IEEE Trans. Ind. Electron. 2017, 65, 6686–6695. [Google Scholar] [CrossRef]
- Ahmed, S.D.; Al-Ismail, F.S.; Shafiullah, M.; El-Amin, I.M. Grid Integration Challenges of Wind Energy: A Review. IEEE Access 2020, 8, 10857–10878. [Google Scholar] [CrossRef]
- Ahmed, M.; Kuriry, S.; Shafiullah, M.D.; Abido, M.A. DC Microgrid Energy Management with Hybrid Energy Storage Systems. In Proceedings of the 2019 23rd International Conference on Mechatronics Technology (ICMT), Salerno, Italy, 23–26 October 2019; pp. 1–6. [Google Scholar]
- Alonso-Travesset, À.; Coppitters, D.; Martín, H.; de la Hoz, J. Economic and Regulatory Uncertainty in Renewable Energy System Design: A Review. Energies 2023, 16, 882. [Google Scholar] [CrossRef]
- Gholami, M.; Shahryari, O.; Rezaei, N.; Bevrani, H. Optimum storage sizing in a hybrid wind-battery energy system considering power fluctuation characteristics. J. Energy Storage 2022, 52, 104634. [Google Scholar] [CrossRef]
- Teixeira, T.P.; Borges, C.L. Operation strategies for coordinating battery energy storage with wind power generation and their effects on system reliability. J. Mod. Power Syst. Clean Energy 2020, 9, 190–198. [Google Scholar] [CrossRef]
- Mbungu, N.T.; Ismail, A.A.; Bansal, R.C.; Hamid, A.K.; Naidoo, R.M. An optimal energy management scheme of a vehicle to home. In Proceedings of the 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 14–16 June 2022; pp. 1056–1060. [Google Scholar]
- Barton, J.P.; Infield, D.G. Energy storage and its use with intermittent renewable energy. IEEE Trans. Energy Convers. 2004, 19, 441–448. [Google Scholar] [CrossRef]
- Mbungu, N.T.; Milambo, K.D.; Siti, M.W.; Bansal, R.C.; Naidoo, R.M.; Kamabu, T.P.; Banza, B.B. Assessing and mapping electricity access patterns in a developing country. Energy Rep. 2023, 9, 193–201. [Google Scholar] [CrossRef]
- Banza, B.B.; Mbungu, N.T.; Siti, M.W.; Tungadio, D.H.; Bansal, R.C. Critical analysis of the electricity market in developing country municipality. Energy Rep. 2022, 8, 329–337. [Google Scholar] [CrossRef]
- Ueckerdt, F.; Brecha, R.; Luderer, G. Analyzing major challenges of wind and solar variability in power systems. Renew. Energy 2015, 81, 1–10. [Google Scholar] [CrossRef]
- Weschenfelder, F.; de Novaes Pires Leite, G.; Araújo da Costa, A.C.; de Castro Vilela, O.; Ribeiro, C.M.; Villa Ochoa, Á.A.; Araújo, A.M. A review on the complementarity between grid-connected solar and wind power systems. J. Clean. Prod. 2020, 257, 120617. [Google Scholar] [CrossRef]
- Adaramola, M.S.; Agelin-Chaab, M.; Paul, S.S. Analysis of hybrid energy systems for application in southern Ghana. Energy Convers. Manag. 2014, 88, 284–295. [Google Scholar] [CrossRef]
- Ismail, A.A.; Mbungu, N.T.; Elnady, A.; Bansal, R.C.; Hamid, A.-K.; AlShabi, M. Impact of electric vehicles on smart grid and future predictions: A survey. Int. J. Model. Simul. 2022, 43, 1041–1057. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, X.; Yang, M.; Chen, X.; Zhou, H.; Yang, Q. Fuzzy Decision-Based Optimal Energy Dispatch for Integrated Energy Systems With Energy Storage. Front. Energy Res. 2021, 9, 809024. [Google Scholar] [CrossRef]
- Mbungu, N.T.; Bansal, R.C.; Naidoo, R.; Miranda, V.; Bipath, M. An optimal energy management system for a commercial building with renewable energy generation under real-time electricity prices. Sustain. Cities Soc. 2018, 41, 392–404. [Google Scholar] [CrossRef]
- Katiraei, F.; Iravani, R.; Hatziargyriou, N.; Dimeas, A. Controls and Operation Aspects of Microgrids. In Proceedings of the 2011 International Conference on Networking, Sensing and Control, Delft, The Netherlands, 11–13 April 2011; pp. 54–65. [Google Scholar]
- Anttila, S.; Döhler, J.S.; Oliveira, J.G.; Boström, C. Grid forming inverters: A review of the state of the art of key elements for microgrid operation. Energies 2022, 15, 5517. [Google Scholar] [CrossRef]
- Siti, M.; Mbungu, N.; Tungadio, D.; Banza, B.; Ngoma, L. Application of load frequency control method to a multi-microgrid with energy storage system. J. Energy Storage 2022, 52, 104629. [Google Scholar] [CrossRef]
- Ahmadi, A.; Aldeen, M. Robust overlapping load frequency output feedback control of multi-area interconnected power systems. Int. J. Electr. Power Energy Syst. 2017, 89, 156–172. [Google Scholar] [CrossRef]
- Tungadio, D.H.; Sun, Y. Energy stored management of islanded distributed generations interconnected. J. Energy Storage 2021, 44, 103290. [Google Scholar] [CrossRef]
- Teleke, S.; E Baran, M.; Bhattacharya, S.; Huang, A. Validation of battery energy storage control for wind farm dispatching. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–7. [Google Scholar]
- Hauer, I.; Balischewski, S.; Ziegler, C. Design and operation strategy for multi-use application of battery energy storage in wind farms. J. Energy Storage 2020, 31, 101572. [Google Scholar] [CrossRef]
- Belouda, M.; Hajjaji, M.; Sliti, H.; Mami, A. Bi-objective optimization of a standalone hybrid PV–Wind–battery system generation in a remote area in Tunisia. Sustain. Energy Grids Netw. 2018, 16, 315–326. [Google Scholar] [CrossRef]
- Yamujala, S.; Jain, A.; Bhakar, R.; Mathur, J. Multi-service based economic valuation of grid-connected battery energy storage systems. J. Energy Storage 2022, 52, 104657. [Google Scholar] [CrossRef]
- Beltran, H.; Cardo-Miota, J.; Segarra-Tamarit, J.; Pérez, E. Battery size determination for photovoltaic capacity firming using deep learning irradiance forecasts. J. Energy Storage 2020, 33, 102036. [Google Scholar] [CrossRef]
- Fong, G.; Moreira, R.; Strbac, G. Economic analysis of energy storage business models. In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017; pp. 1–6. [Google Scholar]
- He, G.; Chen, Q.; Kang, C.; Xia, Q.; Poolla, K. Cooperation of Wind Power and Battery Storage to Provide Frequency Regulation in Power Markets. IEEE Trans. Power Syst. 2016, 32, 3559–3568. [Google Scholar] [CrossRef]
- Namor, E.; Sossan, F.; Cherkaoui, R.; Paolone, M. Control of battery storage systems for the simultaneous provision of multiple services. IEEE Trans. Smart Grid 2018, 10, 2799–2808. [Google Scholar] [CrossRef]
- Worthmann, K.; Kellett, C.M.; Braun, P.; Grune, L.; Weller, S.R. Distributed and Decentralized Control of Residential Energy Systems Incorporating Battery Storage. IEEE Trans. Smart Grid 2015, 6, 1914–1923. [Google Scholar] [CrossRef]
- Yan, X.; Gu, C.; Wyman-pain, H.; Li, F. Capacity Share Optimization for Multiservice. IEEE Trans. Ind. Electron. 2019, 66, 1598–1607. [Google Scholar] [CrossRef]
- Tian, Y.; Bera, A.; Benidris, M.; Mitra, J. Stacked Revenue and Technical Benefits of a Grid-Connected Energy Storage System. IEEE Trans. Ind. Appl. 2018, 54, 3034–3043. [Google Scholar] [CrossRef]
- Bera, A.; Almasabi, S.; Tian, Y.; Byrne, R.H.; Chalamala, B.; Nguyen, T.A.; Mitra, J. Maximising the investment returns of a grid-connected battery considering degradation cost. IET Gener. Transm. Distrib. 2020, 14, 4711–4718. [Google Scholar] [CrossRef]
- Rayit, N.S.; Chowdhury, J.I.; Balta-Ozkan, N. Techno-economic optimisation of battery storage for grid-level energy services using curtailed energy from wind. J. Energy Storage 2021, 39, 102641. [Google Scholar] [CrossRef]
- Gu, T.; Wang, P.; Liang, F.; Xie, G.; Guo, L.; Zhang, X.-P.; Shi, F. Placement and capacity selection of battery energy storage system in the distributed generation integrated distribution network based on improved NSGA-II optimization. J. Energy Storage 2022, 52, 104716. [Google Scholar] [CrossRef]
- Esparcia, E.A.; Castro, M.T.; Odulio, C.M.F.; Ocon, J.D. A stochastic techno-economic comparison of generation-integrated long duration flywheel, lithium-ion battery, and lead-acid battery energy storage technologies for isolated microgrid applications. J. Energy Storage 2022, 52, 104681. [Google Scholar] [CrossRef]
- Shi, L.; Yang, W.; Zha, X.; Zeng, Q.; Tu, D.; Li, Y.; Yang, Y.; Xu, J.; Chen, F. In situ deposition of conducting polymer on metal organic frameworks for high performance hybrid supercapacitor electrode materials. J. Energy Storage 2022, 52, 104729. [Google Scholar] [CrossRef]
- Shao, Y.; El-Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef]
- Li, X.; Wei, B. Supercapacitors based on nanostructured carbon. Nano Energy 2013, 2, 159–173. [Google Scholar] [CrossRef]
- Verma, S.; Arya, S.; Gupta, V.; Mahajan, S.; Furukawa, H.; Khosla, A. Erratum: Performance analysis, challenges and future perspectives of nickel based nanostructured electrodes for electrochemical supercapacitors (J Mater Res Technol (2021) 11 (564–599). J. Mater. Res. Technol. 2022; 18, 5452. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, H.; Xiong, T.; Adekoya, D.; Qiu, W.; Wang, Z.; Zhang, S.; Balogun, M.-S. Adsorption energy engineering of nickel oxide hybrid nanosheets for high areal capacity flexible lithium-ion batteries. Energy Storage Mater. 2019, 25, 41–51. [Google Scholar] [CrossRef]
- Li, G.; Ouyang, T.; Xiong, T.; Jiang, Z.; Adekoya, D.; Wu, Y.; Huang, Y.; Balogun, M.-S. All-carbon-frameworks enabled thick electrode with exceptional high-areal-capacity for Li-Ion storage. Carbon 2020, 174, 1–9. [Google Scholar] [CrossRef]
- Li, M.; Yu, J.; Wang, X.; Yang, Z. 3D porous MnO2@carbon nanosheet synthesized from rambutan peel for high-performing supercapacitor electrodes materials. Appl. Surf. Sci. 2020, 530, 147230. [Google Scholar] [CrossRef]
- Jin, K.; Zhou, M.; Zhao, H.; Zhai, S.; Ge, F.; Zhao, Y.; Cai, Z. Electrodeposited CuS nanosheets on carbonized cotton fabric as flexible supercapacitor electrode for high energy storage. Electrochimica Acta 2018, 295, 668–676. [Google Scholar] [CrossRef]
- Meng, Z.; Xu, J.; Yu, P.; Hu, X.; Wu, Y.; Zhang, Q.; Li, Y.; Qiao, L.; Zeng, Y.; Tian, H. Double perovskite La2CoMnO6 hollow spheres prepared by template impregnation for high-performance supercapacitors. Chem. Eng. J. 2020, 400, 125966. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, B.; Sun, Q.; Wennersten, R. Application of energy storage in integrated energy systems—A solution to fluctuation and uncertainty of renewable energy. J. Energy Storage 2022, 52, 104812. [Google Scholar] [CrossRef]
- Schaefer, E.; Hoogsteen, G.; Hurink, J.; van Leeuwen, R. Sizing of hybrid energy storage through analysis of load profile characteristics: A household case study. J. Energy Storage 2022, 52, 104768. [Google Scholar] [CrossRef]
- Mohammadi, F.; Faghihi, F.; Kazemi, A.; Salemi, A.H. The effect of multi -uncertainties on battery energy storage system sizing in smart homes. J. Energy Storage 2022, 52, 104765. [Google Scholar] [CrossRef]
- Jaszczur, M.; Hassan, Q. An optimisation and sizing of photovoltaic system with supercapacitor for improving self-consumption. Appl. Energy 2020, 279, 115776. [Google Scholar] [CrossRef]
- Fahmi, M.I.; Rajkumar, R.; Arelhi, R.; Isa, D. The performance of a solar PV system using supercapacitor and varying loads. In Proceedings of the 2014 IEEE Student Conference on Research and Development, SCOReD 2014, Penang, Malaysia, 16–17 December 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Şahin, M.E.; Blaabjerg, F. A Hybrid PV-battery/supercapacitor system and a basic active power control proposal in MATLAB/simulink. Electronics 2020, 9, 129. [Google Scholar] [CrossRef]
- Abbassi, A.; Dami, M.A.; Jemli, M. A statistical approach for hybrid energy storage system sizing based on capacity distributions in an autonomous PV/Wind power generation system. Renew. Energy 2017, 103, 81–93. [Google Scholar] [CrossRef]
- Mamen, A.; Supatti, U. A survey of hybrid energy storage systems applied for intermittent renewable energy systems. In Proceedings of the 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand, 27–30 June 2017; pp. 729–732. [Google Scholar]
- Shayeghi, H.; Monfaredi, F.; Dejamkhooy, A.; Shafie-Khah, M.; Catalão, J. Assessing hybrid supercapacitor-battery energy storage for active power management in a wind-diesel system. Int. J. Electr. Power Energy Syst. 2020, 125, 106391. [Google Scholar] [CrossRef]
- Masaki, M.S.; Zhang, L.; Xia, X. Fuzzy logic control of plug-in supercapacitor storage for thermoelectric management of batteries. Renew. Energy Focus 2022, 43, 59–73. [Google Scholar] [CrossRef]
- Amusa, H.; Amusa, K.; Mabugu, R. Aggregate demand for electricity in South Africa: An analysis using the bounds testing approach to cointegration. Energy Policy 2009, 37, 4167–4175. [Google Scholar] [CrossRef]
- Bowman, A. Parastatals and economic transformation in South Africa: The political economy of the Eskom crisis. Afr. Aff. 2020, 119, 395–431. [Google Scholar] [CrossRef]
- Pereira, M.G.; Sena, J.A.; Freitas, M.A.V.; da Silva, N.F. Evaluation of the impact of access to electricity: A comparative analysis of South Africa, China, India and Brazil. Renew. Sustain. Energy Rev. 2011, 15, 1427–1441. [Google Scholar] [CrossRef]
- Giglmayr, S.; Brent, A.C.; Gauché, P.; Fechner, H. Utility-scale PV power and energy supply outlook for South Africa in 2015. Renew. Energy 2015, 83, 779–785. [Google Scholar] [CrossRef]
- Kenny, A. The rise and fall of Eskom—And how to fix it now. Policy Bull. 2015, 2, 1–13. [Google Scholar]
- Thomas, R.; Van Zyl, S.; Naidoo, R.M.; Bansal, R.C.; Mbungu, N.T.; Bipath, M. Recloser based energy exposure assessment of a distribution network. J. Energy South. Afr. 2019, 30, 41–50. [Google Scholar] [CrossRef]
- Czarnowska, L.; Frangopoulos, C.A. Dispersion of pollutants, environmental externalities due to a pulverized coal power plant and their effect on the cost of electricity. Energy 2012, 41, 212–219. [Google Scholar] [CrossRef]
- Banks, D.; Schäffler, J. The Potential Contribution of Renewable Energy in South Africa; Draft Update Report; Sustainable Energy & Climate Change Project (SECCP): Johannesburg, South Africa, 2005; p. 116. [Google Scholar]
- Mutombo, N.M.-A.; Numbi, B. Assessment of renewable energy potential in Kwazulu-Natal province, South Africa. Energy Rep. 2019, 5, 874–881. [Google Scholar] [CrossRef]
- Bridle, R.; Muzondo, C.; Schmidt, M.; Laan, T.; Viswamohanan, A.; Geddes, A. South Africa’s Energy Policies; International Institute for Sustainable Development: Winnipeg, Canada, 2022; pp. 1–36. [Google Scholar]
- Van der Walt, M.-L.; Van den Berg, J.; Cameron, M. Renewable Energy State of South Africa; Department of Energy: Pretoria, South Africa, 2017; pp. 1–180. [Google Scholar]
- Srivastava, R.K.; Shetti, N.P.; Reddy, K.R.; Kwon, E.E.; Nadagouda, M.N.; Aminabhavi, T.M. Biomass utilization and production of biofuels from carbon neutral materials. Environ. Pollut. 2021, 276, 116731. [Google Scholar] [CrossRef]
- Volk, T.A.; Abrahamson, L.P.; Aneshansley, D.J. Developing a willow biomass crop enterprise for bioenergy and bioproducts in the United States. Proc. Bioenergy 2000, 2000. [Google Scholar]
- Petrie, B.; Macqueen, D. South African biomass energy: Little heeded but much needed. In IIED Briefing Paper—International Institute for Environment and Development; International Institute for Environment and Development: London, UK, 2013; p. 4. [Google Scholar]
- Botai, C.M.; Botai, J.O.; Dlamini, L.C.; Zwane, N.S.; Phaduli, E. Characteristics of droughts in South Africa: A case study of free state and North West provinces. Water 2016, 8, 439. [Google Scholar] [CrossRef]
- Reid, H. Climate Change and Human Development; Bloomsbury Publishing: London, UK, 2014. [Google Scholar]
- Anani, A.; Abu-Allan, F. Potential of renewable energy in Jordan. Sol. Wind. Technol. 1988, 5, 451–454. [Google Scholar] [CrossRef]
- Hau, E. Wind Turbines: Fundamentals, Technologies, Application, Economics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hosking, J.L.; du Preez, M.; Sharp, G. Generating Guidance on Public Preferences for the Location of Wind Turbine Farms in the Eastern Cape. Doctoral Dissertation, Nelson Mandela Metropolitan University, Gqeberha, South Africa, 2012. [Google Scholar]
- Akinbami, O.M.; Oke, S.R.; Bodunrin, M.O. The state of renewable energy development in South Africa: An overview. Alex. Eng. J. 2021, 60, 5077–5093. [Google Scholar] [CrossRef]
- Abdin, Z.; Webb, C.J.; Gray, E.M. Solar hydrogen hybrid energy systems for off-grid electricity supply: A critical review. Renew. Sustain. Energy Rev. 2015, 52, 1791–1808. [Google Scholar] [CrossRef]
- Ayompe, L.; Duffy, A. An assessment of the energy generation potential of photovoltaic systems in Cameroon using satellite-derived solar radiation datasets. Sustain. Energy Technol. Assessments 2014, 7, 257–264. [Google Scholar] [CrossRef]
- Mutombo NM, A.; Inambao, F.L. Photovoltaic Panel Temperature and Power Output Analysis Tool. R D J. S. Afr. Inst. Mech. Eng. 2012, 28, 10–23. [Google Scholar]
- Mutombo, N.M.-A.; Inambao, F.; Bright, G. Performance analysis of thermosyphon hybrid photovoltaic thermal collector. J. Energy S. Afr. 2016, 27, 28–38. [Google Scholar] [CrossRef]
- Kebede, A.A.; Coosemans, T.; Messagie, M.; Jemal, T.; Behabtu, H.A.; Van Mierlo, J.; Berecibar, M. Techno-economic analysis of lithium-ion and lead-acid batteries in stationary energy storage application. J. Energy Storage 2021, 40, 102748. [Google Scholar] [CrossRef]
- Merei, G.; Leuthold, M.; Sauer, D.U. Optimization of an Off-grid hybrid PV-Wind-Diesel system with different battery technologies-Sensitivity Analysis. In Proceedings of the Intelec 2013; 35th International Telecommunications Energy Conference, Smart Power and Efficiency, Hamburg, Germany, 13–17 October 2013; p. 6. [Google Scholar]
- Duman, S.; Güvenç, U.; Sönmez, Y.; Yörükeren, N. Optimal power flow using gravitational search algorithm. Energy Convers. Manag. 2012, 59, 86–95. [Google Scholar] [CrossRef]
- Javadi, F.; Metselaar, H.; Ganesan, P. Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review. Sol. Energy 2020, 206, 330–352. [Google Scholar] [CrossRef]
- Valinejad, J.; Marzband, M.; Akorede, M.F.; Elliott, I.D.; Godina, R.; Matias, J.C.d.O.; Pouresmaeil, E. Long-term decision on wind investment with considering different load ranges of power plant for sustainable electricity energy market. Sustainability 2018, 10, 3811. [Google Scholar] [CrossRef]
- Tavakkoli, M.; Shokridehaki, F.; Funsho Akorede, M.; Marzband, M.; Vechiu, I.; Pouresmaeil, E. CVaR-based energy management scheme for optimal resilience and operational cost in commercial building microgrids. Int. J. Electr. Power Energy Syst. 2018, 100, 1–9. [Google Scholar] [CrossRef]
- Rousis, A.O.; Tzelepis, D.; Konstantelos, I.; Booth, C.; Strbac, G. Design of a hybrid AC/DC microgrid using HOMER pro: Case study on an islanded residential application. Inventions 2018, 3, 55. [Google Scholar] [CrossRef]
- Ye, Y.; Hinkelman, K.; Lou, Y.; Zuo, W.; Wang, G.; Zhang, J. Evaluating the energy impact potential of energy efficiency measures for retrofit applications: A case study with U.S. medium office buildings. Build. Simul. 2021, 14, 1377–1393. [Google Scholar] [CrossRef]
- Confronting the Energy Crisis: An Action Plan to End Load Shedding. Available online: https://www.gov.za/sites/default/files/gcis_document/202207/confronting-energy-crisisan-action-plan-end-load-shedding.pdf (accessed on 1 August 2023).
- Pendem, S.R.; Mikkili, S. Modeling, simulation and performance analysis of solar PV array configurations (Series, Series–Parallel and Honey-Comb) to extract maximum power under Partial Shading Conditions. Energy Rep. 2018, 4, 274–287. [Google Scholar] [CrossRef]
Coal | Wind | Solar PV | Solar CSP | Biomass | Nuclear | Hydro-Electric |
---|---|---|---|---|---|---|
46,259 | 1705 | 1520 | 400 | 63 | 1800 | 1545 |
Coal | Wind | Solar PV | Solar CSP | Biomass | Nuclear | Hydro-Electric |
---|---|---|---|---|---|---|
51,509 | 8705 | 5880 | 1200 | 313 | 1800 | 2545 |
Coal | Wind | Solar PV | Solar CSP | Biomass | Nuclear | Hydro-Electric |
---|---|---|---|---|---|---|
5250 | 7000 | 4360 | 800 | 250 | 0 | 1000 |
Software Name | Advantages | Disadvantages |
---|---|---|
HOMER | Efficiency results graph. Very simple to understand | Employs linear equations of the first degree. Inability to recognize time series data. |
iHOGA | Uses either single or multiple objective optimizers. With a short simulation step time, the computer will not need to restart as often. | Lack of Probability and Sensitivity Analysis. Everyday workload constraints (10 kWh). |
Hybrid2 | Numerous load electrical options. Options for Detailed Dispatch | Long simulation times. Although the project was created without significant problems, there were issues with the simulation. |
RET Screen | Top meteorological database. Application based on Excel. | Reduced need for information entry. Failure to accept time series data. |
TRNSYS | Simulator adaptability. The visuals are quite precise. | Not all power plants can be modelled, including hydroelectric plants. Optimisation choices are unavailable. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skosana, B.; Siti, M.W.; Mbungu, N.T.; Kumar, S.; Mulumba, W. An Evaluation of Potential Strategies in Renewable Energy Systems and Their Importance for South Africa—A Review. Energies 2023, 16, 7622. https://doi.org/10.3390/en16227622
Skosana B, Siti MW, Mbungu NT, Kumar S, Mulumba W. An Evaluation of Potential Strategies in Renewable Energy Systems and Their Importance for South Africa—A Review. Energies. 2023; 16(22):7622. https://doi.org/10.3390/en16227622
Chicago/Turabian StyleSkosana, Busiswe, Mukwanga W. Siti, Nsilulu T. Mbungu, Sonu Kumar, and Willy Mulumba. 2023. "An Evaluation of Potential Strategies in Renewable Energy Systems and Their Importance for South Africa—A Review" Energies 16, no. 22: 7622. https://doi.org/10.3390/en16227622
APA StyleSkosana, B., Siti, M. W., Mbungu, N. T., Kumar, S., & Mulumba, W. (2023). An Evaluation of Potential Strategies in Renewable Energy Systems and Their Importance for South Africa—A Review. Energies, 16(22), 7622. https://doi.org/10.3390/en16227622