Nutritional Value and Productivity Potential of the Marine Microalgae Nitzschia laevis, Phaeodactylum tricornutum and Isochrysis galbana
Abstract
:1. Introduction
2. Results and Discussion
2.1. Growth Characteristics and Carbon Partitioning of P. tricornutum, I. galbana and N. laevis
2.2. Amino Acid Composition of P. tricornutum, I. galbana and N. laevis
2.3. Monosaccharide Profiles of P. tricornutum, I. galbana and N. laevis
2.4. Fatty Acids Profiles of P. tricornutum, I. galbana and N. laevis
2.5. Fucoxanthin and PUFAs Productivities of P. tricornutum, I. galbana and N. laevis
3. Materials and Methods
3.1. Strains and Mediums
3.2. Culture Conditions
3.3. Determination of Microalgal Biomass
3.4. Analysis of Protein and Amino Acids
3.5. Analysis of Carbohydrates and Monosac Charides
3.6. Analysis of Lipids and Fatty Acids
3.7. Analysis of Pigments and Fucoxanthin
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- de Jesus Raposo, M.F.; de Morais, R.M.S.C.; de Morais, A.M.M.B. Health applications of bioactive compounds from marine microalgae. Life Sci. 2013, 93, 479–486. [Google Scholar] [CrossRef]
- Sun, H.; Wu, T.; Chen, S.H.Y.; Ren, Y.; Yang, S.; Huang, J.; Mou, H.; Chen, F. Powerful tools for productivity improvements in microalgal production. Renew. Sustain. Energy Rev. 2021, 152, 111609. [Google Scholar] [CrossRef]
- Morales, M.; Sánchez, L.; Revah, S. The impact of environmental factors on carbon dioxide fixation by microalgae. FEMS Microbiol. Lett. 2018, 365, fnx262. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Xiao, M.; Liang, Q.; Yang, S.; Liu, J.; Mou, H.; Sun, H. Upcycling food waste into biorefinery production by microalgae. Chem. Eng. J. 2024, 484, 149532. [Google Scholar] [CrossRef]
- Figueira, F.d.S.; Crizel, T.d.M.; Silva, C.R.; Salas-Mellado, M.d.l.M. Pão sem gluten enriquecido com a microalga Spirulina platensis. Braz. J. Food Technol. 2011, 14, 308–316. [Google Scholar] [CrossRef]
- Rabelo, S.F.; Lemes, A.C.; Takeuchi, K.P.; Frata, M.T.; Carvalho, J.C.M.d.; Danesi, E.D.G. Development of cassava doughnuts enriched with Spirulina platensis biomass. Braz. J. Food Technol. 2013, 16, 42–51. [Google Scholar] [CrossRef]
- Li, Y.; Sun, H.; Wang, Y.; Yang, S.; Wang, J.; Wu, T.; Lu, X.; Chu, Y.; Chen, F. Integrated metabolic tools reveal carbon alternative in Isochrysis zhangjiangensis for fucoxanthin improvement. Bioresour. Technol. 2021, 347, 126401. [Google Scholar] [CrossRef]
- Abreu, A.P.; Martins, R.; Nunes, J. Emerging applications of Chlorella sp. and Spirulina (Arthrospira) sp. Bioengineering 2023, 10, 955. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yao, R.; He, X.S.; Liao, Z.H.; Liu, Y.T.; Gao, B.Y.; Zhang, C.W.; Niu, J. Beneficial contribution of the microalga Odontella aurita to the growth, immune response, antioxidant capacity, and hepatic health of juvenile golden pompano (Trachinotus ovatus). Aquaculture 2022, 555, 738206. [Google Scholar] [CrossRef]
- Xia, S.; Gao, B.; Li, A.; Xiong, J.; Ao, Z.; Zhang, C. Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Mar. Drugs 2014, 12, 4883–4897. [Google Scholar] [CrossRef]
- Behrens, P.W.; Kyle, D.J. Microalgae as a source of fatty acids. J. Food Lipids 1996, 3, 259–272. [Google Scholar] [CrossRef]
- Barta, D.G.; Coman, V.; Vodnar, D.C. Microalgae as sources of omega-3 polyunsaturated fatty acids: Biotechnological aspects. Algal Res. 2021, 58, 102410. [Google Scholar] [CrossRef]
- Kumar, B.R.; Deviram, G.; Mathimani, T.; Duc, P.A.; Pugazhendhi, A. Microalgae as rich source of polyunsaturated fatty acids. Biocatal. Agric. Biotechnol. 2019, 17, 583–588. [Google Scholar] [CrossRef]
- Huerlimann, R.; de Nys, R.; Heimann, K. Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol. Bioeng. 2010, 107, 245–257. [Google Scholar] [CrossRef]
- Reitan, K.I.; Rainuzzo, J.R.; Olsen, Y. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae1. J. Phycol. 1994, 30, 972–979. [Google Scholar] [CrossRef]
- Mason, R.P.; Sherratt, S.C.R.; Eckel, R.H. Omega-3-fatty acids: Do they prevent cardiovascular disease? Best Pract. Res. Clin. Endocrinol. Metab. 2023, 37, 101681. [Google Scholar] [CrossRef]
- Cottin, S.C.; Sanders, T.A.; Hall, W.L. The differential effects of EPA and DHA on cardiovascular risk factors. Proc. Nutr. Soc. 2011, 70, 215–231. [Google Scholar] [CrossRef]
- Siscovick, D.S.; Barringer, T.A.; Fretts, A.M.; Wu, J.H.; Lichtenstein, A.H.; Costello, R.B.; Kris-Etherton, P.M.; Jacobson, T.A.; Engler, M.B.; Alger, H.M.; et al. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease: A science advisory from the American Heart Association. Circulation 2017, 135, e867–e884. [Google Scholar] [CrossRef]
- Laukkanen, J.A.; Bernasconi, A.A.; Lavie, C.J. Bringing the potential benefits of omega-3 to a higher level. Mayo Clin. Proc. 2024, 99, 520–523. [Google Scholar] [CrossRef]
- Li, Y.; Sun, H.; Wu, T.; Fu, Y.; He, Y.; Mao, X.; Chen, F. Storage carbon metabolism of Isochrysis zhangjiangensis under different light intensities and its application for co-production of fucoxanthin and stearidonic acid. Bioresour. Technol. 2019, 282, 94–102. [Google Scholar] [CrossRef]
- Kim, S.M.; Jung, Y.J.; Kwon, O.N.; Cha, K.H.; Um, B.H.; Chung, D.; Pan, C.H. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl. Biochem. Biotechnol. 2012, 166, 1843–1855. [Google Scholar] [CrossRef] [PubMed]
- Zarekarizi, A.; Hoffmann, L.; Burritt, D. Approaches for the sustainable production of fucoxanthin, a xanthophyll with potential health benefits. J. Appl. Phycol. 2019, 31, 281–299. [Google Scholar] [CrossRef]
- Pajot, A.; Hao Huynh, G.; Picot, L.; Marchal, L.; Nicolau, E. Fucoxanthin from algae to human, an extraordinary bioresource: Insights and advances in up and downstream processes. Mar. Drugs 2022, 20, 222. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Yuan, J.P.; Wu, C.F.; Wang, J.H. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Mar. Drugs 2011, 9, 1806–1828. [Google Scholar] [CrossRef]
- Sun, H.; Wang, J.; Li, Y.L.; Yang, S.F.; Chen, D.D.; Tu, Y.D.; Liu, J.; Sun, Z. Synthetic biology in microalgae towards fucoxanthin production for pharmacy and nutraceuticals. Biochem. Pharmacol. 2024, 220, 115958. [Google Scholar] [CrossRef]
- Bae, M.; Kim, M.B.; Park, Y.K.; Lee, J.Y. Health benefits of fucoxanthin in the prevention of chronic diseases. BBA Mol. Cell Biol. Lipids 2020, 1865, 158618. [Google Scholar] [CrossRef]
- Gammone, M.A.; D’Orazio, N. Anti-obesity activity of the marine carotenoid fucoxanthin. Mar. Drugs 2015, 13, 2196–2214. [Google Scholar] [CrossRef] [PubMed]
- Pocha, C.K.R.; Chia, W.Y.; Chew, K.W.; Munawaroh, H.S.H.; Show, P.L. Current advances in recovery and biorefinery of fucoxanthin from Phaeodactylum tricornutum. Algal Res. 2022, 65, 102735. [Google Scholar] [CrossRef]
- Seth, K.; Kumar, A.; Rastogi, R.P.; Meena, M.; Vinayak, V. Bioprospecting of fucoxanthin from diatoms—Challenges and perspectives. Algal Res. 2021, 60, 102475. [Google Scholar] [CrossRef]
- Pang, Y.; Duan, L.; Song, B.; Cui, Y.; Liu, X.; Wang, T. A Review of fucoxanthin biomanufacturing from Phaeodactylum tricornutum. Bioprocess Biosyst. Eng. 2024, 1–22. [Google Scholar] [CrossRef]
- Chew, K.W.; Yap, J.Y.; Show, P.L.; Suan, N.H.; Juan, J.C.; Ling, T.C.; Lee, D.J.; Chang, J.S. Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 2017, 229, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef]
- Celi, C.; Fino, D.; Savorani, F. Phaeodactylum tricornutum as a source of value-added products: A review on recent developments in cultivation and extraction technologies. Bioresour. Technol. Rep. 2022, 19, 101122. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, W.; Wang, J.; He, Y.; Yang, S.; Sun, H. A comprehensive review on the heterotrophic production of bioactive compounds by microalgae. World J. Microb. Biot. 2024, 40, 210. [Google Scholar] [CrossRef] [PubMed]
- Abu-Ghosh, S.; Fixler, D.; Dubinsky, Z.; Iluz, D. Flashing light in microalgae biotechnology. Bioresour. Technol. 2016, 203, 357–363. [Google Scholar] [CrossRef]
- Gao, B.; Chen, A.; Zhang, W.; Li, A.; Zhang, C. Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions. J. Ocean U. China 2017, 16, 916–924. [Google Scholar] [CrossRef]
- Sun, Z.; Wei, H.; Zhou, Z.; Ashokkumar, M.; Liu, J. Screening of Isochrysis strains and utilization of a two-stage outdoor cultivation strategy for algal biomass and lipid production. Appl. Biochem. Biotechnol. 2018, 185, 1100–1117. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Jiang, Y.; Chen, F. Fatty acid and lipid class composition of the eicosapentaenoic acid-producing microalga, Nitzschia laevis. Food Chem. 2007, 104, 1580–1585. [Google Scholar] [CrossRef]
- Lu, X.; Sun, H.; Zhao, W.; Cheng, K.W.; Chen, F.; Liu, B. A hetero-photoautotrophic two-stage cultivation process for production of fucoxanthin by the marine diatom Nitzschia laevis. Mar. Drugs 2018, 16, 219. [Google Scholar] [CrossRef]
- Wen, Z.Y.; Chen, F. Perfusion culture of the diatom Nitzschia laevis for ultra-high yield of eicosapentaenoic acid. Process Biochem. 2002, 38, 523–529. [Google Scholar] [CrossRef]
- Williamson, E.; Ross, I.L.; Wall, B.T.; Hankamer, B. Microalgae: Potential novel protein for sustainable human nutrition. Trends Plant Sci. 2023, 29, 370–382. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tibbetts, S.M.; McGinn, P.J. Microalgae as sources of high-quality protein for human food and protein supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef]
- Wild, K.J.; Steingaß, H.; Rodehutscord, M. Variability in nutrient composition and in vitro crude protein digestibility of 16 microalgae products. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1306–1319. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Wang, J.; Cheng, K.; Liu, J.; He, Y.; Zhang, Y.; Mou, H.; Sun, H. Microalgal protein for sustainable and nutritious foods: A joint analysis of environmental impacts, health benefits and consumer’s acceptance. Trends Food Sci. Technol. 2024, 143, 104278. [Google Scholar] [CrossRef]
- Yin, M.; Wang, X. Impact of temperature fluctuations on fatty acid composition and nutritional quality of tilapia fillet (Oreochromis niloticus). J. Food Meas. Charact. 2024, 18, 1679–1689. [Google Scholar] [CrossRef]
- Moreira, J.B.; Vaz, B.D.S.; Cardias, B.B.; Cruz, C.G.; Almeida, A.C.A.D.; Costa, J.A.V.; Morais, M.G.D. Microalgae polysaccharides: An alternative source for food production and sustainable agriculture. Polysaccharides 2022, 3, 441–457. [Google Scholar] [CrossRef]
- Bratchkova, A.; Kroumov, A.D. Microalgae as producers of biologically active compounds with antibacterial, antiviral, antifungal, antialgal, antiprotozoal, antiparasitic and anticancer activity. Acta Microbiol. Bulg. 2020, 36, 79–89. [Google Scholar]
- Synytsya, A.; Sushytskyi, L.; Saloň, I.; Babayeva, T.; Čopíková, J. Intracellular and extracellular carbohydrates in microalgae. In Handbook of Food and Feed from Microalgae, 1st ed.; Jacob-Lopes, E., Queiroz, M.I., Maroneze, M.M., Zepka, L.Q., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 87–102. [Google Scholar]
- Trincone, A. Polysaccharides produced by microalgae. In Polysaccharides of Microbial Origin: Biomedical Applications, 1st ed.; Oliveira, J.M., Radhouani, H., Reis, R.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 341–362. [Google Scholar]
- Sui, Z.; Gizaw, Y.; BeMiller, J.N. Extraction of polysaccharides from a species of Chlorella. Carbohydr. Polym. 2012, 90, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Enamala, M.K.; Enamala, S.; Chavali, M.; Donepudi, J.; Yadavalli, R.; Kolapalli, B.; Aradhyula, T.V.; Velpuri, J.; Kuppam, C. Production of biofuels from microalgae-A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renew. Sust. Energ. Rev. 2018, 94, 49–68. [Google Scholar] [CrossRef]
- Maltsev, Y.; Maltseva, K. Fatty acids of microalgae: Diversity and applications. Rev. Environ. Sci. Bio/Technol. 2021, 20, 515–547. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Liu, J. Screening of Isochrysis strains for simultaneous production of docosahexaenoic acid and fucoxanthin. Algal Res. 2019, 41, 101545. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Chen, L.; Cheng, W.; Liu, T. Combined production of fucoxanthin and EPA from two diatom strains Phaeodactylum tricornutum and Cylindrotheca fusiformis cultures. Bioprocess Biosyst. Eng. 2018, 41, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Wang, K.; Wan, L.; Li, A.; Hu, Q.; Zhang, C. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar. Drugs 2013, 11, 2667–2681. [Google Scholar] [CrossRef]
- Ores, J.D.C.; Amarante, M.C.A.; Kalil, S.J. Co-production of carbonic anhydrase and phycobiliproteins by Spirulina sp. and Synechococcus nidulans. Bioresour. Technol. 2016, 219, 219–227. [Google Scholar] [CrossRef]
- Sui, Y.; Muys, M.; Van de Waal, D.B.; D’Adamo, S.; Vermeir, P.; Fernandes, T.V.; Vlaeminck, S.E. Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity. Bioresour. Technol. 2019, 287, 121398. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; You, Y.; Liu, X.; Ho, S.H.; Xie, Y.; Chen, J. Highly efficient co-production of fucoxanthin and eicosapentaenoic acid by heterotrophic cultivation of a newly isolated microalga Nitzschia sp. FZU62. Algal Res. 2023, 71, 103046. [Google Scholar] [CrossRef]
- Gao, G.; Clare, A.S.; Rose, C.; Caldwell, G.S. Reproductive sterility increases the capacity to exploit the green seaweed Ulva rigida for commercial applications. Algal Res. 2017, 24, 64–71. [Google Scholar] [CrossRef]
- Oser, B.L. Method for integrating essential amino acid content in the nutritional evaluation of protein. J. Am. Diet. Assoc. 1951, 27, 396–402. [Google Scholar] [CrossRef]
- Sun, H.; Ren, Y.; Fan, Y.; Lu, X.; Zhao, W.; Chen, F. Systematic metabolic tools reveal underlying mechanism of product biosynthesis in Chromochloris zofingiensis. Bioresour. Technol. 2021, 337, 125406. [Google Scholar] [CrossRef]
- Búriová, E.; Medová, M.; Macášek, F.; Brúder, P. Separation and detection of oxidation products of fluorodeoxyglucose and glucose by high-performance liquid chromatography–electrospray ionisation mass spectrometry. J. Chromatogr. A 2004, 1034, 133–137. [Google Scholar] [CrossRef]
- Dai, J.; Wu, Y.; Chen, S.W.; Zhu, S.; Yin, H.P.; Wang, M.; Tang, J.A. Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohydr. Polym. 2010, 82, 629–635. [Google Scholar] [CrossRef]
- Lu, X.; Liu, B.; He, Y.J.; Guo, B.B.; Sun, H.; Chen, F. Novel insights into mixotrophic cultivation of Nitzschia laevis for co-production of fucoxanthin and eicosapentaenoic acid. Bioresour. Technol. 2019, 294, 122145. [Google Scholar] [CrossRef] [PubMed]
- He, Y.J.; Wang, X.F.; Zhang, Y.; Guo, Z.; Jiang, Y.; Chen, F. Enzymatic ethanolysis subjected to Schizochytrium biomass: Sequential processing for DHA enrichment and biodiesel production. Energy Convers. Manag. 2019, 184, 159–171. [Google Scholar] [CrossRef]
- Chokshi, K.; Pancha, I.; Ghosh, A.; Mishra, S. Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus. Biotechnol. Biofuels 2017, 10, 60. [Google Scholar] [CrossRef]
Carbon Partitioning Content (%DCW) b | P. tricornutum | I. galbana | N. laevis |
---|---|---|---|
Protein | 43.29 ± 0.76 | 31.60 ± 0.15 | 32.28 ± 0.25 |
Carbohydrate | 14.85 ± 1.12 | 25.40 ± 1.38 | 21.97 ± 0.84 |
Lipid | 23.56 ± 0.61 | 26.84 ± 0.70 | 21.25 ± 0.53 |
Pigment | 7.31 ± 0.43 | 3.07 ± 0.22 | 2.45 ± 0.17 |
Amino Acid b | FAO/WHO Standard (2013) | Amino Acid Content (mg/g) | ||
---|---|---|---|---|
P. tricornutum | I. galbana | N. laevis | ||
Non-essential Amino Acid (NEAA) | ||||
Gly | 2.89 ± 011 | 3.32 ±0.04 | 2.20 ± 0.15 | |
Ala | 4.62 ± 0.09 | 6.39 ±0.06 | 3.50 ± 0.18 | |
Ser | 3.16 ± 0.08 | 3.83 ±0.01 | 3.19 ± 0.24 | |
Cys | 0.53 ± 0.01 | 0.70 ±0.01 | 0.53 ± 0.01 | |
Asp | 7.90 ± 0.23 | 9.11 ±0.09 | 6.38 ± 0.31 | |
Asn | 0.05 ± 0.00 | 0.06 ±0.00 | 0.03 ± 0.00 | |
Glu | 8.48 ± 0.23 | 12.37 ± 0.01 | 7.78 ± 0.41 | |
Gln | 0.49 ± 0.03 | 0.16 ± 0.00 | 0.09 ± 0.02 | |
Tyr | 0.83 ± 0.04 | 1.36 ± 0.08 | 0.87 ± 0.01 | |
Pro | 2.75 ± 0.04 | 3.61 ± 0.03 | 1.95 ± 0.10 | |
Arg | 4.30 ± 0.08 | 4.75 ± 0.16 | 4.21 ± 0.23 | |
Essential amino acid (EAA) | ||||
Val | 4.00 | 3.51 ± 0.03 | 4.68 ± 0.07 | 2.85 ± 0.13 |
Thr | 2.50 | 3.30 ± 0.12 | 4.11 ± 0.04 | 2.73 ± 0.17 |
Ile | 3.00 | 3.33 ± 0.10 | 3.70 ± 0.08 | 2.23 ± 0.14 |
Met | 1.02 ± 0.02 | 1.46 ± 0.05 | 0.74 ± 0.06 | |
His | 1.60 | 1.22 ± 0.01 | 1.68 ± 0.01 | 0.90 ± 0.06 |
Phe | 3.47 ± 0.06 | 3.80 ± 0.01 | 2.01 ± 0.11 | |
Trp | 0.66 | 0.03 ± 0.00 | ||
Lys | 4.80 | 2.73 ± 0.17 | 2.82 ± 0.03 | 2.35 ± 0.08 |
Leu | 6.10 | 5.57 ± 0.06 | 7.28 ± 0.03 | 4.03 ± 0.13 |
Phe + Tyr | 4.10 | 4.30 ± 0.10 | 5.16 ± 0.09 | 2.88 ± 0.12 |
Met + Cys | 2.3 | 1.55 ± 0.03 | 2.15 ± 0.06 | 1.27 ± 0.07 |
EAA/TAA | 40.15 ± 1.06 | 39.29 ± 0.89 | 36.73 ± 2.99 | |
EAA/NEAA | 67.07 ± 2.33 | 64.73 ± 1.67 | 58.06 ± 4.14 | |
EAAI | 88.00 ± 4.67 | 77.30 ± 0.66 | 67.03 ± 6.17 |
Sugar | Abbreviation | Monosaccharide Content (mg/g) | ||
---|---|---|---|---|
P. tricornutum | I. galbana | N. laevis | ||
Guluronic acid | GulA | 10.89 ± 0.81 | 6.45 ± 0.78 | 2.27 ± 0.01 |
Mannuronic acid | ManA | 0.72 ± 0.02 | 0.73 ± 0.03 | |
Mannose | Man | 41.16 ± 3.02 | 5.25 ± 0.45 | 44.26 ± 4.80 |
Ribose | Rib | 2.96 ± 0.33 | 3.45 ± 0.34 | 4.25 ± 0.37 |
Rhamnose | Rham | 3.49 ± 0.23 | 0.35 ± 0.02 | 1.33 ± 0.06 |
Glucosamine | GlcN | 1.25 ± 0.08 | 0.63 ± 0.05 | 2.25 ± 0.04 |
Glucuronic acid | GlcUA | 15.44 ± 0.55 | 4.79 ± 0.15 | 4.84 ± 0.13 |
Galacturonic acid | GalUA | 1.00 ± 0.06 | 1.16 ± 0.08 | 2.85 ± 0.17 |
Galactosamine | GalN | 0.21 ± 0.09 | ||
Glucose | Glc | 257.58 ± 13.30 | 38.11 ± 1.16 | 529.10 ± 2.55 |
Galactose | Gal | 28.70 ± 1.22 | 23.98 ± 2.38 | 10.94 ± 0.95 |
Xylose | Xyl | 6.46 ± 0.55 | 3.31 ± 0.18 | 3.60 ± 0.23 |
Arabinose | Ara | 0.75 ± 0.05 | 7.01 ± 0.67 | 1.21 ± 0.11 |
Fucose | Fuc | 1.72 ± 0.17 | 3.39 ± 0.29 | 2.24 ± 0.28 |
Fatty Acid | Fatty Acid Content (%DCW) | ||
---|---|---|---|
P. tricornutum | I. galbana | N. laevis | |
C14:0 | 0.98 ± 0.00 | 1.71 ± 0.01 | 0.83 ± 0.10 |
C16:0 | 1.57 ± 0.01 | 1.82 ± 0.02 | 1.36 ± 0.12 |
C16:1 | 3.41 ± 0.01 | 0.32 ± 0.01 | 2.89 ± 0.12 |
C16:2 | 0.32 ± 0.01 | 0.45 ± 0.00 | |
C16:3 | 0.50 ± 0.01 | ||
C18:1 | 0.65 ± 0.00 | 3.17 ± 0.03 | 0.19 ± 0.00 |
C18:2n-6 | 0.27 ± 0.01 | 0.29 ± 0.00 | 0.19 ± 0.00 |
C18:3n-3/6 | 1.05 ± 0.01 | 0.30 ± 0.01 | |
C18:4n-3 | 1.20 ± 0.03 | 0.13 ± 0.01 | |
C20:4n-6 | 0.22 ± 0.00 | 0.33 ± 0.02 | |
C20:5n-3 | 2.17 ± 0.03 | 2.18 ± 0.14 | |
C22:6n-3 | 0.91 ± 0.01 | 0.18 ± 0.00 | |
others | 0.22 ± 0.00 | 0.28 ± 0.02 | 0.65 ± 0.01 |
TFA | 10.09 ± 0.06 | 10.95 ± 0.02 | 9.66 ± 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Yang, S.; He, Y.; Zhao, W.; Nie, M.; Sun, H. Nutritional Value and Productivity Potential of the Marine Microalgae Nitzschia laevis, Phaeodactylum tricornutum and Isochrysis galbana. Mar. Drugs 2024, 22, 386. https://doi.org/10.3390/md22090386
Lu X, Yang S, He Y, Zhao W, Nie M, Sun H. Nutritional Value and Productivity Potential of the Marine Microalgae Nitzschia laevis, Phaeodactylum tricornutum and Isochrysis galbana. Marine Drugs. 2024; 22(9):386. https://doi.org/10.3390/md22090386
Chicago/Turabian StyleLu, Xue, Shufang Yang, Yongjin He, Weixuan Zhao, Man Nie, and Han Sun. 2024. "Nutritional Value and Productivity Potential of the Marine Microalgae Nitzschia laevis, Phaeodactylum tricornutum and Isochrysis galbana" Marine Drugs 22, no. 9: 386. https://doi.org/10.3390/md22090386
APA StyleLu, X., Yang, S., He, Y., Zhao, W., Nie, M., & Sun, H. (2024). Nutritional Value and Productivity Potential of the Marine Microalgae Nitzschia laevis, Phaeodactylum tricornutum and Isochrysis galbana. Marine Drugs, 22(9), 386. https://doi.org/10.3390/md22090386