Added Value of Ascophyllum nodosum Side Stream Utilization during Seaweed Meal Processing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. Monosaccharide and Uronic Acid Composition
2.3. Trace Elements
2.4. Total Phenolic Content (TPC) and Antioxidant Activities of Press Liquid and Seaweed Extracts
2.4.1. Total Phenolic Content (TPC)
2.4.2. Oxygen Radical Scavenging Activity (ORAC)
2.4.3. DPPH (2,2-Diphenyl-2-picrylhydrazyl hydrate) Radical Scavenging Activity
2.4.4. Metal Chelating Abilities (MC)
2.4.5. Correlation between Total Phenolic Content and Antioxidant Activities
3. Materials and Methods
3.1. Seaweed Sampling and Preparation
3.2. Preperation of Press Liquid and Water Extracts
3.3. Nutritional and Mineral Composition of Seaweed and Its Produce
3.4. Monosaccharide and Uronic Acid Composition
3.5. Total Phenolic Content (TPC)
3.6. Antioxidant Activity
3.6.1. DPPH (2,2-Diphenyl-1-picrylhydrazy) Radical Scavenging
3.6.2. Metal Chelating Ability (MC)
3.6.3. Oxygen Radical Absorbance Capacity (ORAC)
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Global Status of Seaweed Production, Trade and Utilization; FAO Globefish Research Programme: Rome, Italy, 2018; 120p. [Google Scholar]
- McHugh, D.J. A Guide to the Seaweed Industry; FAO Fisheries Technical Paper. No. 441; FAO: Rome, Italy, 2003. [Google Scholar]
- Buschmann, A.H.; Camus, C.; Infante, J.; Neori, A.; Israel, Á.; Hernández-González, M.C.; Pereda, S.V.; Gomez-Pinchetti, J.L.; Golberg, A.; Tadmor-Shalev, N.; et al. Seaweed production: Overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol. 2017, 52, 391–406. [Google Scholar] [CrossRef]
- Mannino, G.; Campobenedetto, C.; Vigliante, I.; Contartese, V.; Gentile, C.; Bertea, C.M. The Application of a Plant Biostimulant Based on Seaweed and Yeast Extract Improved Tomato Fruit Development and Quality. Biomolecules 2020, 10, 1662. [Google Scholar] [CrossRef]
- Campobenedetto, C.; Agliassa, C.; Mannino, G.; Vigliante, I.; Contartese, V.; Secchi, F.; Bertea, C.M. A Biostimulant Based on Seaweed (Ascophyllum nodosum and Laminaria digitata) and Yeast Extracts Mitigates Water Stress Effects on Tomato (Solanum lycopersicum L.). Agriculture 2021, 11, 557. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020; FAO: Rome, Italy, 2020. [Google Scholar]
- Gupta, S.; Abu-Ghannam, N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol. 2011, 22, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Kumar, C.S.; Ganesan, P.; Suresh, P.; Bhaskar, N. Technology, Seaweeds as a source of nutritionally beneficial compounds—A review. J. Food Sci. Technol. 2008, 45, 1–13. [Google Scholar]
- Qin, Y. Bioactive Seaweeds for Food Applications; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Gupta, S.; Abu-Ghannam, N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov. Food Sci. Emerg. Technol. 2011, 12, 600–609. [Google Scholar] [CrossRef]
- McHugh, D.J. Prospects for Seaweed Production in Developing Contries; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002. [Google Scholar]
- Kumar, S.; Sahoo, D. A comprehensive analysis of alginate content and biochemical composition of leftover pulp from brown seaweed Sargassum wightii. Algal Res. 2017, 23, 233–239. [Google Scholar] [CrossRef]
- Pei, J.; Lin, A.; Zhang, F.; Zhu, D.; Li, J.; Wang, G. Using agar extraction waste of Gracilaria lemaneiformis in the papermaking industry. J. Appl. Phycol. 2013, 25, 1135–1141. [Google Scholar] [CrossRef]
- Wang, T.; Jónsdóttir, R.; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Sabeena Farvin, K.H.; Jacobsen, C. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem. 2013, 138, 1670–1681. [Google Scholar] [CrossRef]
- Damodaran, S.; Parkin, K.L.; Fennema, O.R. Fennema’s Food Chemistry; Taylor & Francis Group: Abingdon, UK, 2008. [Google Scholar]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Ragan, M.A.; Jensen, A. Quantitative studies on brown algal phenols. II. Seasonal variation in polyphenol content of Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus (L.). J. Exp. Mar. Biol. Ecol. 1978, 34, 245–258. [Google Scholar] [CrossRef]
- WHO. Prevention and Reduction of Food and Feed Contamination; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Fellows, P. Food Processing Technology, 2nd ed.; Woodhead Publishing Limited: Cambridge, UK, 2000. [Google Scholar]
- Floreto, E.A.; Hirata, H.; Ando, S.; Yamasaki, S. Effects of Temperature, Light Intensity, Salinity and Source of Nitrogen on the Growth, Total Lipid and Fatty Acid Composition of Ulva pertusa Kjellman (Chlorophyta). Bot. Mar. 1993, 36, 149–158. [Google Scholar] [CrossRef]
- Gerasimenko, N.I.; Skriptsova, A.V.; Busarova, N.G.; Moiseenko, O.P. Effects of the season and growth stage on the contents of lipids and photosynthetic pigments in brown alga Undaria pinnatifida. Russ. J. Plant Physiol. 2011, 58, 885. [Google Scholar] [CrossRef]
- Sánchez-Machado, D.I.; López-Cervantes, J.; López-Hernández, J.; Paseiro-Losada, P. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 2004, 85, 439–444. [Google Scholar] [CrossRef]
- Morrissey, J.; Kraan, S.; Guiry, M.D. A Guide to Commercially Important Seaweeds on the Irish Coast; Martin Ryan Institute, NUI, Galway: Dublin, Ireland, 2001. [Google Scholar]
- Peinado, I.; Girón, J.; Koutsidis, G.; Ames, J.M. Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Res. Int. 2014, 66, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Agregán, R.; Munekata, P.E.S.; Franco, D.; Carballo, J.; Şahin, S.; Lacomba, R.; Barba, F.J. Proximate Composition and Nutritional Value of Three Macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Mar. Drugs 2017, 15, 360. [Google Scholar] [CrossRef] [Green Version]
- Angell, A.R.; Mata, L.; de Nys, R.; Paul, N.A. The protein content of seaweeds: A universal nitrogen-to-protein conversion factor of five. J. Appl. Phycol. 2016, 28, 511–524. [Google Scholar] [CrossRef]
- Fleurence, J. Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends Food Sci. Technol. 1999, 10, 25–28. [Google Scholar] [CrossRef]
- Saiga, A.; Tanabe, S.; Nishimura, T. Antioxidant Activity of Peptides Obtained from Porcine Myofibrillar Proteins by Protease Treatment. J. Agric. Food Chem. 2003, 51, 3661–3667. [Google Scholar] [CrossRef]
- Saiga, E.A.; Nishimura, T. Antioxidative properties of peptides obtained from porcine myofibrillar proteins by a protease treatment in an Fe (II)-induced aqueous lipid peroxidation system. Biosci. Biotechnol. Biochem. 2013, 77, 2201–2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacArtain, P.; Gill, C.I.R.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional Value of Edible Seaweeds. Nutr. Rev. 2007, 65, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.M.M.; Ross, A.B.; Anastasakis, K.; Hodgson, E.M.; Gallagher, J.A.; Jones, J.M.; Donnison, I.S. Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion. Bioresour. Technol. 2011, 102, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Schiener, P.; Black, K.D.; Stanley, M.S.; Green, D.H. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J. Appl. Phycol. 2015, 27, 363–373. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, W.; Wu, H.; Guang, C.; Mu, W. Mannitol: Physiological functionalities, determination methods, biotechnological production, and applications. Appl. Microbiol. Biotechnol. 2020, 104, 6941–6951. [Google Scholar] [CrossRef]
- Ghoreishi, S.M.; Shahrestani, R.G. Innovative strategies for engineering mannitol production. Trends Food Sci. Technol. 2009, 20, 263–270. [Google Scholar] [CrossRef]
- Rioux, L.-E.; Turgeon, S.L. Chapter 7—Seaweed carbohydrates. In Seaweed Sustainability; Tiwari, B.K., Troy, D.J., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 141–192. [Google Scholar]
- Mišurcová, L.; Škrovánková, S.; Samek, D.; Ambrožová, J.; Machů, L. Chapter 3—Health Benefits of Algal Polysaccharides in Human Nutrition. In Advances in Food and Nutrition Research; Henry, J., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 66, pp. 75–145. [Google Scholar]
- Randelhoff, A.; Sundfjord, A.; Reigstad, M. Seasonal variability and fluxes of nitrate in the surface waters over the Arctic shelf slope. Geophys. Res. Lett. 2015, 42, 3442–3449. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Jasso, R.M.; Mussatto, S.I.; Pastrana, L.; Aguilar, C.N.; Teixeira, J.A. Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr. Polym. 2011, 86, 1137–1144. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Jayawardena, T.U.; Yang, H.-W.; Lee, H.G.; Kang, M.-C.; Sanjeewa, K.K.A.; Oh, J.Y.; Jeon, Y.-J. Isolation, Characterization, and Antioxidant Activity Evaluation of a Fucoidan from an Enzymatic Digest of the Edible Seaweed, Hizikia fusiforme. Antioxidants 2020, 9, 363. [Google Scholar] [CrossRef]
- Rani, V.; Shakila, R.J.; Jawahar, P.; Srinivasan, A. Influence of Species, Geographic Location, Seasonal Variation and Extraction Method on the Fucoidan Yield of the Brown Seaweeds of Gulf of Mannar, India. Indian J. Pharm. Sci. 2017, 79, 65–71. [Google Scholar] [CrossRef]
- Mak, W. Extraction, Characterization and Antioxidant Activity of Fucoidan from New Zealand Undaria pinnatifida (Harvey) Suringar. Master’s Thesis, Auckland University of Technology, Auckland, New Zealand, 2012. [Google Scholar]
- Ferreira, R.M.; Ramalho Ribeiro, A.; Patinha, C.; Silva, A.M.S.; Cardoso, S.M.; Costa, R. Water Extraction Kinetics of Bioactive Compounds of Fucus vesiculosus. Molecules 2019, 24, 3408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draget, K.I.; Taylor, C. Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll. 2011, 25, 251–256. [Google Scholar] [CrossRef]
- Stephen, A.M.; Phyllips, G.O.; Williams, P.A. Food Polysaccharides and Their Apllications; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Monteiro, M.S.; Sloth, J.J.; Holdt, S.L.; Hansen, M. Analysis and Risk Assessment of Seaweed. EFSA J. 2019, 17, e170915. [Google Scholar]
- Inse, P.; Ross, D.; Kimberly, M.; Bernstein, M. Nutrition, 5th ed.; Jones & Bartlett Publishers: Burlington, MA, USA, 2014. [Google Scholar]
- WHO. Evaluation of Certain Contaminants in Food: Seventy-Second Report of the Joint FAO/WHO Expert Committee in Food Additives; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- EFSA (European Food Safety Authority). Scientific Opinion on Arsenic in Food. EFSA J. 2009, 7, 1315. [Google Scholar] [CrossRef]
- European Commission. Directive 2002/32/EC of 7 May 2002 on undesirable substances in animal feed—Council statement. Off. J. Eur. Union 2002, L 140, 10–22. [Google Scholar]
- EFSA (European Food Safety Authority). Cadmium in food–Scientific opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2009, 980, 1–139. [Google Scholar]
- EFSA (European Food Safety Authority). Scientific Opinion on the Risk for Public Health Related to the Presence of Mercury and Methylmercury in Food; European Food Safety Authority (EFSA): Parma, Italy, 2012. [Google Scholar]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, L 364, 5–24. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 1570. [Google Scholar]
- Nordic Council of Ministers. Nordic Nutrition Recommendations 2012: Integrating Nutrition and Physical Activity, 5th ed.; Nordic Council of Ministers: Copenhagen, Denmark, 2014. [Google Scholar]
- Apostolidis, E.; Karayannakidis, P.D.; Kwon, Y.-I.; Lee, C.M.; Seeram, N.P. Seasonal Variation of Phenolic Antioxidant-mediated α-glucosidase Inhibition of Ascophyllum nodosum. Plant Foods Hum. Nutr. 2011, 66, 313–319. [Google Scholar] [CrossRef]
- Parys, S.; Kehraus, S.; Pete, R.; Küpper, F.C.; Glombitza, K.-W.; König, G.M. Seasonal variation of polyphenolics in Ascophyllum nodosum (Phaeophyceae). Eur. J. Phycol. 2009, 44, 331–338. [Google Scholar] [CrossRef]
- Jormalainen, V.; Honkanen, T.J. Variation in natural selection for growth and phlorotannins in the brown alga Fucus vesiculosus. J. Evol. Biol. 2004, 17, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Pavia, H.; Brock, E. Extrinsic factors influencing phlorotannin production in the brown alga Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 2000, 193, 285–294. [Google Scholar] [CrossRef]
- Pavia, H.; Toth, G.B.; Lindgren, A.; Åberg, P. Intraspecific variation in the phlorotannin content of the brown alga Ascophyllum nodosum. Phycologia 2003, 42, 378–383. [Google Scholar] [CrossRef]
- Svensson, C.J.; Pavia, H.; Toth, G.B. Do plant density, nutrient availability, and herbivore grazing interact to affect phlorotannin plasticity in the brown seaweed Ascophyllum nodosum. Mar. Biol. 2007, 151, 2177–2181. [Google Scholar] [CrossRef]
- Pavia, H.; Toth, G.B. Induced chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum. Ecology 2000, 81, 3212–3225. [Google Scholar] [CrossRef]
- Prior, R.L.; Hoang, H.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agric. Food Chem. 2003, 51, 3273–3279. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Ganske, F.; Dell, E.J. ORAC Assay on the Fluorstar Optima to Determine Antioxidant Capacity; Application Note of BMG Labtech; BMG Labtech Inc.: Cary, NC, USA, 2006. [Google Scholar]
- Baardseth, E. Synopsis of biological data on knobbed wrack Ascophyllum nodosum (Linnaeus) Le Jolis. FAO Fish. Synop. 1970, 38, 1–38. [Google Scholar]
- Apak, R.; Gorinstein, S.; Böhm, V.; Schaich, K.M.; Özyürek, M.; Güçlü, K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 957–998. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Escrig, A.; Jiménez-Jiménez, I.; Pulido, R.; Saura-Calixto, F. Antioxidant activity of fresh and processed edible seaweeds. J. Sci. Food Agric. 2001, 81, 530–534. [Google Scholar] [CrossRef]
- Frankel, E.N. Antioxidants in lipid foods and their impact on food quality. Food Chem. 1996, 57, 51–55. [Google Scholar] [CrossRef]
- Wang, L.-S.; Huang, J.-C.; Chen, Y.-L.; Huang, M.; Zhou, G.-H. Identification and Characterization of Antioxidant Peptides from Enzymatic Hydrolysates of Duck Meat. J. Agric. Food Chem. 2015, 63, 3437–3444. [Google Scholar] [CrossRef] [PubMed]
- Koivikko, R.; Loponen, J.; Honkanen, T.; Jormalainen, V. Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J. Chem. Ecol. 2005, 31, 195–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Wang, S.Y. Antioxidant Activity and Phenolic Compounds in Selected Herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef] [PubMed]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Kaur, C.; Kapoor, H.C. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int. J. Food Sci. Technol. 2002, 37, 153–161. [Google Scholar] [CrossRef]
- ISO 6496:1999; Animal Feeding Stuffs—Determination of Moisture and Other Volatile Matter Content; The International Organization for Standardization: Geneva, Switzerland, 1999.
- AOCS. AOCS Official Method Ba-3-38. In Official Methods and Recommended Practicec of the AOCS; AOCS: Urbana, IL, USA, 2009. [Google Scholar]
- ISO 5983-1:2005; Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 1: Kjeldahl method; The International Organization for Standardization: Geneva, Switzerland, 2005.
- ISO 5983-2:2009; Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 2: Block Digestion and Steam Distillation Method; The International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 5984:2002; Animal Feeding Stuffs—Determination of Crude Ash; The International Organization for Standardization: Geneva, Switzerland, 2002.
- AOAC. Official Method of Analysis 937.18. Salt (Chlorine as Sodium Chloride) in Seafood, 17th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2000. [Google Scholar]
- NMKL. Trace Elements—As, Cd, Hg, Pb and Other Elements: Determination by ICP-MS after Pressure Digestion. Oslo: NMKL. NMKL 186; Nordic Committee on Food Analysis: Copenhagen, Denmark, 2007. [Google Scholar]
- Wychen, S.V.; Laurens, L.M.L. Determination of Total Carbohydrates in Algal Biomass: Laboratory Analytical Procedure (LAP); National Renewable Energy Laboratory: Golden, CO, USA, 2013. [Google Scholar]
- Basumallick, L.; Rohrer, J. Determination of Uronic Acids and Wood Sugars in Wood-Based Hydrolysates; Thermo Fisher Scientific: Sunnyvale, CA, USA, 2017. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Boyer, R.F.; Grabill, T.W.; Petrovich, R.M. Reductive release of ferritin iron: A kinetic assay. Anal. Biochem. 1988, 174, 17–22. [Google Scholar] [CrossRef]
Harvesting Time | Sample ID | Moisture (g/100 g Sample) (n = 3) | Lipids (g/100 g Sample) (n = 4) | Protein (g/100 g Sample) (n = 4) | Salt (g/100 g Sample) (n = 4) | Salt free ash (g/100 g Sample) (n = 4) | Carbohydrates (g/100 g Sample) (n = 3) |
---|---|---|---|---|---|---|---|
June | Fresh seaweed | 79.6 ± 0.2 a | 0.3 ± 0.2 | 1.6 ± 0.1 | 1.4 ± 0.0 b | 3.3 ± 0.1 c | 13.9 ± 0.2 c |
Press liquid | NA | NA | NA | NA | NA | NA | |
Press cake | NA | NA | NA | NA | NA | NA | |
Seaweed meal | 9.1 ± 0.2 a | 0.5 ± 0.1 c | 6.0 ± 0.3 a | 5.8 ± 0.3 b | 13.7 ± 0.3 b | 64.0 ± 2.1 b | |
July | Fresh seaweed | 70.3 ± 0.2 c,y | 0.2 ± 0.1 | 1.2 ± 0.2 | 1.3 ± 0.0 b | 4.5 ± 0.1 a,x | 22.5 ± 0.2 a,x |
Press liquid | 94.9 ± 0.1 | <0.01 | 0.2 ± 0.0 | 0.9 ± 0.0 | 0.3 ± 0.2 a | 3.5 ± 0.1 b | |
Press cake | 80.7 ± 0.1 x | 0.2 ± 0.1 b | 1.0 ± 0.1 | 0.6 ± 0.0 | 2.9 ± 0.2 y | 14.6 ± 0.4 y | |
Seaweed meal | 6.9 ± 0.2 b | 1.6 ± 0.0 a | 4.7 ± 0.2 c | 5.8 ± 0.6 b | 14.1 ± 0.7 b | 67.0 ± 1.4 a | |
October | Fresh seaweed | 71.9 ± 0.3 b,y | 0.2 ± 0.2 | 1.1 ± 0.3 | 1.7 ± 0.0 a | 4.0 ± 0.1 b,x | 21.1 ± 0.4 b,x |
Press liquid | 94.8 ± 0.0 | <0.01 | 0.2 ± 0.0 | 1.0 ± 0.0 | 0.2 ± 0.1 b | 3.8 ± 0.1 a | |
Press cake | 80.4 ± 0.2 x | 0.4 ± 0.1 a | 0.9 ± 0.2 | 0.6 ± 0.0 | 2.9 ± 0.2 y | 14.9 ± 0.3 y | |
Seaweed meal | 6.2 ± 0.2 c | 1.1 ± 0.1 b | 5.5 ± 0.2 b | 6.8 ± 0.1 a | 15.6 ± 0.2 a | 64.9 ± 0.2 b |
Monosaccharides | Uronic Acids | ||||||
---|---|---|---|---|---|---|---|
Harvesting Time | Sample ID | Mannitol | Fucose | Glucose | Xylose/Mannose | Hexa-Mannuronic Acid | Glucuronic Acid |
June | Fresh seaweed | 7.1 ± 0.3 b | 7.0 ± 0.7 b | 5.1 ± 0.2 b | 2.8 ± 0.3 b | 5.1 ± 0.3 | 6.0 ± 0.4 b |
Press liquid | NA | NA | NA | NA | NA | NA | |
Press cake | NA | NA | NA | NA | NA | NA | |
Seaweed meal | 13.6 ± 0.9 b | 11.8 ± 0.9 a | 5.4 ± 0.5 | 5.1 ± 0.5 | 7.6 ± 0.8 | 8.0 ± 0.9 | |
July | Fresh seaweed | 10.4 ± 1.2 a | 7.4 ± 0.0 b | 7.1 ± 0.1 b | 3.5 ± 0.1 b | 7.1 ± 3.1 | 12.9 ± 0.3 a |
Press liquid | 41.9 ± 3.4 b | 1.7 ± 0.1 a | 12.3 ± 0.9 b | 1.1 ± 0.1 a | ND | 1.4 ± 0.1 | |
Press cake | 8.5 ± 0.6 | 14.1 ± 1.0 b | 6.8 ± 0.3 b | 5.8 ± 0.4 | 10.4 ± 1.1 | 14.1 ± 2.0 | |
Seaweed meal | 20.0 ± 1.6 a | 7.1 ± 3.0 b | 5.8 ± 2.2 | 3.7 ± 1.6 | 8.7 ± 0.5 | 11.0 ± 1.3 | |
October | Fresh seaweed | 11.1 ± 0.8 a | 11.6 ± 1.0 a | 11.0 ± 1.6 a | 4.6 ± 0.45 a | 8.4 ± 0.4 | 12.4 ± 0.3 a |
Press liquid | 52.4 ± 2.5 a | 1.2 ± 0.1 b | 32.8 ± 1.2 a | 0.6 ± 0.1 b | ND | 1.5 ± 0.1 | |
Press cake | 8.2 ± 1.5 | 17.2 ± 1.6 a | 11.2 ± 1.7 a | 7.0 ± 1.0 | 9.9 ± 0.7 | 13.9 ± 0.5 | |
Seaweed meal | 18.4 ± 2.3 a | 5.6 ± 0.4 b | 4.3 ± 0.5 | 2.7 ± 0.3 | 5.1 ± 0.2 | 6.9 ± 0.1 |
Harvesting Time | Sample ID | Mercury (mg/kg Sample) | Cadmium (mg/kg Sample) | Arsenic (mg/kg Sample) | Inorganic Arsenic (mg/kg Sample) | Lead (mg/kg Sample) | Iodine (ug/g Sample) |
---|---|---|---|---|---|---|---|
June | Fresh seaweed | <0.01 | 0.263 ± 0.006 a | 7.1 ± 0.2 | <0.01 | <0.01 | 156.7 ± 5.8 b |
Press liquid | NA | NA | NA | NA | NA | NA | |
Press cake | NA | NA | NA | NA | NA | NA | |
Seaweed meal | 0.023 ± 0.001 | 0.950 ± 0.034 b | 30.8 ± 0.8 a | <0.01 | 0.039 ± 0.005 b | 670.0 ± 112.7 b | |
July | Fresh seaweed | <0.01 | 0.28 ± 0.02 a | 7.3 ± 0.5 | <0.01 | <0.01 | 263.3 ± 55.1 a |
Press liquid | <0.01 | 0.04 ± 0.0 a | 3.8 ± 0.01 a | <0.01 | <0.01 | 169.3 ± 1.7 a | |
Press cake | 0.015 ± 0.001 | 0.18 ± 0.01 a | 4.4 ± 0.1 a | <0.01 | 0.010 ± 0.005 b | 183.3 ± 15.8 a | |
Seaweed meal | 0.022 ± 0.002 | 0.933 ± 0.026 b | 28.5 ± 0.5 b | 0.19 ± 0.01 | 0.056 ± 0.004 a | 893.3 ± 21.2 a | |
October | Fresh seaweed | <0.01 | 0.083 ± 0.002 b | 7.5 ± 0.2 | <0.01 | <0.01 | 313.3 ± 5.8 a |
Press liquid | <0.01 | <0.01 b | 2.3 ± 0.1 b | <0.01 | <0.01 | 142.2 ± 4.1 b | |
Press cake | 0.014 ± 0.002 | 0.063 ± 0.004 b | 3.7 ± 0.1 b | <0.01 | 0.023 ± 0.002 a | 130.0 ± 0.0 b | |
Seaweed meal | 0.020 ± 0.002 | 1.43 ± 0.03 a* | 31.3 ± 1.0 a | 0.12 ± 0.00 | 0.035 ± 0.002 b | 980.0 ± 20.0 a |
Harvesting Time | Extracts | TPC * (g PGE/100 g Extract) (n = 3) |
---|---|---|
June | Fresh seaweed extract | 12.0 ± 0.2 a |
Press liquid extract | 10.8 ± 0.5 b,y | |
Seaweed meal extract | 11.0 ± 0.2 b,y | |
July | Fresh seaweed extract | 13.1 ± 0.3 b |
Press liquid extract | 15.2 ± 0.7 a,x | |
Seaweed meal extract | 15.5 ± 0.8 a,y | |
October | Fresh seaweed extract | 12.5 ± 0.8 c |
Press liquid extract | 15.1 ± 0.1 b,x | |
Seaweed meal extract | 17.4 ± 0.7 a,x |
Harvesting Time | Extracts | ORAC Value (μmol of TE/g Extract) | DPPH (% Inhibition) | MC (% Inhibition) |
---|---|---|---|---|
June | Fresh seaweed extract | 507 ± 11 | 94.1 ± 0.3 | 50.9 ± 1.3 |
Press liquid extract | 625 ± 9 | 94.8 ± 0.3 | 50.2 ± 3.8 | |
Seaweed meal extract | 680 ± 71 | 94.8 ± 0.4 | 70.5 ± 2.9 | |
July | Fresh seaweed | 1648 ± 54 | 95.1 ± 0.5 | 49.2 ± 2.8 |
Press liquid extract | 1452 ± 62 | 94.9 ± 0.4 | 44.2 ± 4.9 | |
Seaweed meal extract | 1640 ± 72 | 93.4 ± 0.3 | 76.6 ± 1.9 | |
October | Fresh seaweed extract | 1314 ± 143 | 94.6 ± 0.1 | 44.7 ± 3.8 |
Press liquid extract | 1476 ± 109 | 95.3 ± 0.5 | 45.7 ± 3.7 | |
Seaweed meal extract | 1637 ± 179 | 94.9 ± 0.2 | 78.0 ± 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrólfsdóttir, A.Þ.; Arason, S.; Sveinsdóttir, H.I.; Gudjónsdóttir, M. Added Value of Ascophyllum nodosum Side Stream Utilization during Seaweed Meal Processing. Mar. Drugs 2022, 20, 340. https://doi.org/10.3390/md20060340
Hrólfsdóttir AÞ, Arason S, Sveinsdóttir HI, Gudjónsdóttir M. Added Value of Ascophyllum nodosum Side Stream Utilization during Seaweed Meal Processing. Marine Drugs. 2022; 20(6):340. https://doi.org/10.3390/md20060340
Chicago/Turabian StyleHrólfsdóttir, Anna Þóra, Sigurjón Arason, Hildur Inga Sveinsdóttir, and María Gudjónsdóttir. 2022. "Added Value of Ascophyllum nodosum Side Stream Utilization during Seaweed Meal Processing" Marine Drugs 20, no. 6: 340. https://doi.org/10.3390/md20060340
APA StyleHrólfsdóttir, A. Þ., Arason, S., Sveinsdóttir, H. I., & Gudjónsdóttir, M. (2022). Added Value of Ascophyllum nodosum Side Stream Utilization during Seaweed Meal Processing. Marine Drugs, 20(6), 340. https://doi.org/10.3390/md20060340