Ishophloroglucin A, a Novel Phlorotannin for Standardizing the Anti-α-Glucosidase Activity of Ishige okamurae
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition of I. okamurae
2.2. Identification of Ishophloroglucin A
2.3. α-Glucosidase Inhibitory Activity of Ishophloroglucin A
2.4. Method Validation
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Collection of I. okamurae
3.3. Spectrometric Analyses
3.4. Isolation of Ishophloroglucin A
3.5. Measurement of α-Glucosidase Inhibitory Activity
3.6. Method Validation
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marinho-Soriano, E.; Fonseca, P.; Carneiro, M.; Moreira, W. Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour. Technol. 2006, 97, 2402–2406. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Z.; Vonshak, A.; Richmond, A. The effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum. In The Metabolism, Structure, and Function of Plant Lipids; Stumpf, P.K., Mudd, J.B., Nes, W.D., Eds.; Springer: Boston, MA, USA, 1987; pp. 641–643. [Google Scholar]
- Lee, K.M.; Yang, E.C.; Coyer, J.A.; Zuccarello, G.C.; Wang, W.-L.; Choi, C.G.; Boo, S.M. Phylogeography of the seaweed Ishige okamurae (phaeophyceae): Evidence for glacial refugia in the northwest pacific region. Mar. Biol. 2012, 159, 1021–1028. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, C.; Liu, B.; Lin, L.; Sarker, S.D.; Nahar, L.; Yu, H.; Cao, H.; Xiao, J. Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends Food Sci. Technol. 2018, 72, 1–12. [Google Scholar] [CrossRef]
- Collado-González, J.; Grosso, C.; Valentão, P.; Andrade, P.B.; Ferreres, F.; Durand, T.; Guy, A.; Galano, J.-M.; Torrecillas, A.; Gil-Izquierdo, Á. Inhibition of α-glucosidase and α-amylase by Spanish extra virgin olive oils: The involvement of bioactive compounds other than oleuropein and hydroxytyrosol. Food Chem. 2017, 235, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Rengasamy, K.R.; Kulkarni, M.G.; Stirk, W.A.; Van Staden, J. Advances in algal drug research with emphasis on enzyme inhibitors. Biotechnol. Adv. 2014, 32, 1364–1381. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Cifuentes, A.; Ibáñez, E. In the search of new functional food ingredients from algae. Trends Food Sci. Technol. 2008, 19, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Ahn, G.-N.; Kim, K.-N.; Cha, S.-H.; Song, C.-B.; Lee, J.; Heo, M.-S.; Yeo, I.-K.; Lee, N.-H.; Jee, Y.-H.; Kim, J.-S. Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and H2O2-mediated DNA damage. Eur. Food Res. Technol. 2007, 226, 71–79. [Google Scholar] [CrossRef]
- Kakegawa, H.; Matsumoto, H.; Satoh, T. Inhibitory effects of some natural products on the activation of hyaluronidase and their antiallergic actions. Chem. Pharm. Bull. 1992, 40, 1439–1442. [Google Scholar] [CrossRef] [PubMed]
- Rajauria, G. Optimization and validation of reverse phase HPLC method for qualitative and quantitative assessment of polyphenols in seaweed. J. Pharm. Biomed. Anal. 2018, 148, 230–237. [Google Scholar] [CrossRef] [PubMed]
- López-Gutiérrez, N.; Romero-González, R.; Plaza-Bolaños, P.; Vidal, J.L.M.; Frenich, A.G. Identification and quantification of phytochemicals in nutraceutical products from green tea by UHPLC–Orbitrap-MS. Food Chem. 2015, 173, 607–618. [Google Scholar] [CrossRef] [PubMed]
- González, O.; Blanco, M.E.; Iriarte, G.; Bartolomé, L.; Maguregui, M.I.; Alonso, R.M. Bioanalytical chromatographic method validation according to current regulations, with a special focus on the non-well defined parameters limit of quantification, robustness and matrix effect. J. Chromatogr. A 2014, 1353, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Gao, G.; Liu, P.; Pan, M.; Chai, Y.; Liu, X.; Lu, C. Development and validation of an ultra performance liquid chromatography Q-Exactive Orbitrap mass spectrometry for the determination of fipronil and its metabolites in tea and chrysanthemum. Food Chem. 2018, 246, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Neto, J.M. Marine Algae: Biodiversity, Taxonomy, Environmental Assessment, and Biotechnology; CRC Press: Coimbra, Portugal, 2014. [Google Scholar]
- Solan, M.; Whiteley, N. Stressors in the Marine Environment: Physiological and Ecological Responses; Societal Implications; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Mostafa, S.M.S. Microalgal biotechnology: Prospects and applications. In Plant Science; InTech: London, UK, 2012. [Google Scholar]
- Harley, C.D.; Randall Hughes, A.; Hultgren, K.M.; Miner, B.G.; Sorte, C.J.; Thornber, C.S.; Rodriguez, L.F.; Tomanek, L.; Williams, S.L. The impacts of climate change in coastal marine systems. Ecol. Lett. 2006, 9, 228–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, D.F.; Lu, Y.H. Influence of environmental and nutritional factors on growth, toxicity, and toxin profile of dinoflagellate Alexandrium minutum. Toxicon 2000, 38, 1491–1503. [Google Scholar] [CrossRef]
- Heo, S.-J.; Hwang, J.-Y.; Choi, J.-I.; Han, J.-S.; Kim, H.-J.; Jeon, Y.-J. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur. J. Pharmacol. 2009, 615, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.-J.; Hwang, J.-Y.; Choi, J.-I.; Lee, S.-H.; Park, P.-J.; Kang, D.-H.; Oh, C.; Kim, D.-W.; Han, J.-S.; Jeon, Y.-J. Protective effect of diphlorethohydroxycarmalol isolated from Ishige okamurae against high glucose-induced-oxidative stress in human umbilical vein endothelial cells. Food Chem. Toxicol. 2010, 48, 1448–1454. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Choi, J.-I.; Heo, S.-J.; Park, M.-H.; Park, P.-J.; Jeon, B.-T.; Kim, S.-K.; Han, J.-S.; Jeon, Y.-J. Diphlorethohydroxycarmalol isolated from Pae (Ishige okamurae) protects high glucose-induced damage in RINm5F pancreatic β cells via its antioxidant effects. Food Sci. Biotechnol. 2012, 21, 239–246. [Google Scholar] [CrossRef]
- Grace, M.H.; Warlick, C.W.; Neff, S.A.; Lila, M.A. Efficient preparative isolation and identification of walnut bioactive components using high-speed counter-current chromatography and LC-ESI-IT-TOF-MS. Food Chem. 2014, 158, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Waffo-Téguo, P.; Paissoni, M.A.; Jourdes, M.; Teissedre, P.-L. New insight into the unresolved HPLC broad peak of Cabernet Sauvignon grape seed polymeric tannins by combining CPC and Q-ToF approaches. Food Chem. 2018, 249, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Boonloed, A.; Weber, G.L.; Ramzy, K.M.; Dias, V.R.; Remcho, V.T. Centrifugal partition chromatography: A preparative tool for isolation and purification of xylindein from Chlorociboria aeruginosa. J. Chromatogr. A 2016, 1478, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J. Chromatogr. A 2005, 1065, 145–168. [Google Scholar] [CrossRef] [PubMed]
- U.S. Pharmacopeia. United States Pharmacopeial Convention; U.S. Pharmacopeia: Rockville, MD, USA, 2011. [Google Scholar]
- Jaksch, F.; Wang, M.; Roman, M. Handbook of Analytical Methods for Dietary Supplements; American Pharmacists Association: Washington, DC, USA, 2005. [Google Scholar]
- Watanabe, J.; Kawabata, J.; Kurihara, H.; Niki, R. Isolation and identification of α-glucosidase inhibitors from tochu-cha (Eucommia ulmoides). Biosci. Biotechnol. Biochem. 1997, 61, 177–178. [Google Scholar] [CrossRef] [PubMed]
Species | Harvest Location | Extract | Harvest Time | IC50 α-Glucosidase Inhibition (mg/mL) |
---|---|---|---|---|
Ishige Okamurae | Seongsan, JeJu | A | April 2016 | 0.22 ± 0.05 |
B | June 2016 | 0.48 ± 0.05 | ||
C | March 2017 | 0.28 ± 0.06 | ||
D | June 2017 | 0.52 ± 0.03 |
No | δH (Mult, J) | δC (mult) | No | δH (Mult, J) | δC (Mult) | No | δH (Mult, J) | δC (Mult) | No | δH (Mult, J) | δC (Mult) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 156.2 (s) | 26 | 5.85 (1H, s) | 94.7 (d) | 51 | 5.85 (1H, s) | 94.7 (d) | 76 | 154.0 (s) | ||
2 | 5.95 (1H, d, J = 1.6 Hz) | 94.2 (d) | 27 | 151.1 (s) | 52 | 154.0 (s) | 77 | 5.85 (1H, s) | 94.7 (d) | ||
3 | 151.1 (s) | 28 | 122.0 (s) | 53 | 5.85 (1H, s) | 94.7 (d) | 78 | 151.1 (s) | |||
4 | 122.0 (s) | 29 | 151.1 (s) | 54 | 151.1 (s) | 79 | 152.7 (s) | ||||
5 | 151.1 (s) | 30 | 5.85 (1H, s) | 94.7 (d) | 55 | 123.4 (s) | 80 | 123.5 (s) | |||
6 | 5.95 (1H, d, J = 1.6 Hz) | 94.2 (d) | 31 | 154.1 (s) | 56 | 150.8 (s) | 81 | 150.8 (s) | |||
7 | 154.0 (s) | 32 | 5.85 (1H, s) | 94.7 (d) | 57 | 5.60 (1H, d, J = 1.6 Hz) | 94.1 (d) | 82 | 5.70 (1H, d, J = 1.8 Hz) | 94.9 (d) | |
8 | 5.85 (1H, s) | 94.7 (d) | 33 | 151.1 (s) | 58 | 153.0 (s) | 83 | 152.9 (s) | |||
9 | 151.1 (s) | 34 | 122.0 (s) | 59 | 5.75 (1H, dd, J = 1.8, 1.6 Hz) | 94.7 (d) | 84 | 5.75 (1H, dd, J = 1.8, 1.6 Hz) | 94.7 (d) | ||
10 | 122.0 (s) | 35 | 151.1 (s) | 60 | 152.7 (s) | 85 | 122.0 (s) | ||||
11 | 151.1 (s) | 36 | 5.85 (1H, s) | 94.7 (d) | 61 | 123.4 (s) | 86 | 151.1 (s) | |||
12 | 5.85 (1H, s) | 94.7 (d) | 37 | 154.1 (s) | 62 | 152.7 (s) | 87 | 5.85 (1H,s) | 94.7 (d) | ||
13 | 154.1 (s) | 38 | 5.85 (1H, s) | 94.7 (d) | 63 | 5.75 (1H, dd, J = 1.8, 1.6 Hz) | 94.7 (d) | 88 | 154.5 (s) | ||
14 | 5.85 (1H, s) | 94.7 (d) | 39 | 151.1 (s) | 64 | 153.0 (s) | 89 | 5.85 (1H,s) | 94.7 (d) | ||
15 | 151.1 (s) | 40 | 122.0 (s) | 65 | 5.60 (1H, d, J = 1.6 Hz) | 94.1 (d) | 90 | 151.1 (s) | |||
16 | 122.0 (s) | 41 | 151.1 (s) | 66 | 150.8 (s) | 91 | 161.0 (s) | ||||
17 | 151.1 (s) | 42 | 5.85 (1H, s) | 122.0 (s) | 67 | 123.4 (s) | 92 | 6.15 (2H, d, J = 1.6 Hz) | 94.9 (d) | ||
18 | 5.85 (1H, s) | 94.7 (d) | 43 | 152.7 (s) | 68 | 150.8 (s) | 93 | 158.6 (s) | |||
19 | 154.1 (s) | 44 | 123.5 (s) | 69 | 5.60 (1H,d, J = 1.6 Hz) | 94.1 (d) | 94 | 5.95 (1H, d, J = 1.6 Hz) | 94.1 (d) | ||
20 | 5.85 (1H, s) | 94.7 (d) | 45 | 150.8 (s) | 70 | 153.0 (s) | 95 | 158.6 (s) | |||
21 | 151.1 (s) | 46 | 5.70 (1H, d, J = 1.8 Hz) | 94.9 (d) | 71 | 5.75 (1H, dd, J = 1.8, 1.6 Hz) | 94.7 (d) | 96 | 6.15 (2H, d, J = 1.6 Hz) | 94.9 (d) | |
22 | 122.0 (s) | 47 | 152.9 (s) | 72 | 152.7 (s) | –OH * | 8.92–9.07 (33 H, m) | ||||
23 | 151.1 (s) | 48 | 5.75 (1H, dd, J = 1.8, 1.6 Hz) | 94.7 (d) | 73 | 122.0 (s) | |||||
24 | 5.85 (1H, s) | 94.7 (d) | 49 | 122.0 (s) | 74 | 151.1 (s) | |||||
25 | 154.1 (s) | 50 | 151.1 (s) | 75 | 5.85 (1H, s) | 94.7 (d) |
Compound | IC50 α-Glucosidase Inhibition |
---|---|
Ishophloroglucin A | 54.97 ± 0.06 µM |
DPHC | 175.78 ± 0.04 µM |
Acarbose | 1050.23 ± 0.09 mM |
RT (RSD) | Pa (RSD) | K’ | N | Tf | Rs |
---|---|---|---|---|---|
0.75 | 0.13 | 5.19 ± 0.21 | 21,217.4 | 0.52 | 3.54 ± 0.03 |
Concentration range (µg/mL) | Slope | Intercept | R2 | LOD (µg/mL) | LOQ (µg/mL) |
---|---|---|---|---|---|
10–1000 | 117.22 | 479.92 | 0.9999 | 3.80 | 11.50 |
Concentration (mg/mL) | Precision | Recovery (Mean, %) | Reproducibility | ||||||
---|---|---|---|---|---|---|---|---|---|
Intra-Day | Inter-Day | Instrument 1 | Instrument 2 | ||||||
RT | Pa | RT | Pa | RT | Pa | RT | Pa | ||
5 | 0.75 | 0.13 | 0.05 | 0.62 | 99.52 ± 2.93 | 0.69 | 0.13 | 0.95 | 0.90 |
1 | 0.26 | 0.21 | 0.76 | 0.53 | 94.25 ± 3.64 | 0.45 | 0.11 | 0.96 | 0.55 |
0.5 | 0.03 | 0.04 | 0.13 | 0.87 | 95.76 ± 3.58 | 0.22 | 0.05 | 0.83 | 0.68 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, B.; Jiang, Y.; Kim, H.-S.; Hyun, J.-M.; Lim, S.-B.; Li, Y.; Jeon, Y.-J. Ishophloroglucin A, a Novel Phlorotannin for Standardizing the Anti-α-Glucosidase Activity of Ishige okamurae. Mar. Drugs 2018, 16, 436. https://doi.org/10.3390/md16110436
Ryu B, Jiang Y, Kim H-S, Hyun J-M, Lim S-B, Li Y, Jeon Y-J. Ishophloroglucin A, a Novel Phlorotannin for Standardizing the Anti-α-Glucosidase Activity of Ishige okamurae. Marine Drugs. 2018; 16(11):436. https://doi.org/10.3390/md16110436
Chicago/Turabian StyleRyu, BoMi, Yunfei Jiang, Hyun-Soo Kim, Jee-Min Hyun, Sang-Bin Lim, Yong Li, and You-Jin Jeon. 2018. "Ishophloroglucin A, a Novel Phlorotannin for Standardizing the Anti-α-Glucosidase Activity of Ishige okamurae" Marine Drugs 16, no. 11: 436. https://doi.org/10.3390/md16110436
APA StyleRyu, B., Jiang, Y., Kim, H. -S., Hyun, J. -M., Lim, S. -B., Li, Y., & Jeon, Y. -J. (2018). Ishophloroglucin A, a Novel Phlorotannin for Standardizing the Anti-α-Glucosidase Activity of Ishige okamurae. Marine Drugs, 16(11), 436. https://doi.org/10.3390/md16110436