Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (903)

Search Parameters:
Keywords = α-glucosidase inhibitory activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1195 KiB  
Article
Phytochemical Profiling, Antioxidant Capacity, and α-Amylase/α-Glucosidase Inhibitory Effects of 29 Faba Bean (Vicia faba L.) Varieties from China
by Ying Li, Zhihua Wang, Chengkai Mei, Wenqi Sun, Xingxing Yuan, Jing Wang and Wuyang Huang
Biology 2025, 14(8), 982; https://doi.org/10.3390/biology14080982 (registering DOI) - 2 Aug 2025
Viewed by 226
Abstract
Faba bean (Vicia faba L.), a nutrient-rich legume beneficial to human health, is valued for its high L-3,4-dihydroxyphenylalanine (L-DOPA) and phenolic content. This study investigated phytochemical diversity and bioactivity across 29 Chinese faba bean varieties. Phenolics were profiled using ultrahigh-performance liquid chromatography [...] Read more.
Faba bean (Vicia faba L.), a nutrient-rich legume beneficial to human health, is valued for its high L-3,4-dihydroxyphenylalanine (L-DOPA) and phenolic content. This study investigated phytochemical diversity and bioactivity across 29 Chinese faba bean varieties. Phenolics were profiled using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and quantified via high-performance liquid chromatography (HPLC). Antioxidant capacity was evaluated, including DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)) radical scavenging activity, and ferric reducing antioxidant power (FRAP), along with α-amylase/α-glucosidase inhibitory effects. Twenty-five phenolics were identified, including L-DOPA (11.96–17.93 mg/g, >70% of total content), seven phenolic acids, and seventeen flavonoids. L-DOPA showed potent enzyme inhibition (IC50 values of 22.45 μM for α-amylase and 16.66 μM for α-glucosidase) but demonstrated limited antioxidant effects. Lincan 13 (Gansu) exhibited the strongest antioxidant activity (DPPH, 16.32 μmol trolox/g; ABTS, 5.85 μmol trolox/g; FRAP, 21.38 mmol Fe2+/g), which correlated with it having the highest flavonoid content (40.51 mg rutin/g), while Yican 4 (Yunnan) showed the strongest α-amylase inhibition (43.33%). Correlation analysis confirmed flavonoids as the primary antioxidants, and principal component analysis (PCA) revealed geographical trends (e.g., Jiangsu varieties were particularly phenolic-rich). These findings highlight faba beans’ potential as functional foods and guide genotype selection in targeted breeding programs aimed at enhancing health benefits. Full article
Show Figures

Figure 1

15 pages, 1118 KiB  
Article
Identification of Novel Bioactive Molecules in Black Chiloe’s Giant Garlic (Allium ampeloprasum L.) by Green Microwave-Assisted Extraction and Effect-Directed Analysis Using High-Performance Thin Layer Chromatography-Bioassay and Mass Spectrometry
by Joaquín Fernández-Martínez, David Arráez-Román, Darlene Peterssen, Gerald Zapata, Karem Henríquez-Aedo and Mario Aranda
Antioxidants 2025, 14(8), 913; https://doi.org/10.3390/antiox14080913 - 25 Jul 2025
Viewed by 372
Abstract
Black Chiloe’s giant garlic is a functional food produced by a mild Maillard reaction that contains relevant bioactive molecules like organosulfur compounds (OSCs) and (poly)phenols (PPs). Compared with raw garlic, black garlic has a higher content of PPs and S-allyl cysteine (SAC), a [...] Read more.
Black Chiloe’s giant garlic is a functional food produced by a mild Maillard reaction that contains relevant bioactive molecules like organosulfur compounds (OSCs) and (poly)phenols (PPs). Compared with raw garlic, black garlic has a higher content of PPs and S-allyl cysteine (SAC), a key OSC due to its bioactivities. The objective of the present work was to optimize by chemometric tools a green microwave-assisted extraction (MAE) of SAC and PPs present in black Chiloe’s giant garlic to detect and identify novel bioactive molecules with antioxidant and/or inhibitory activities over cyclooxygenase, α-glucosidase, and acetylcholinesterase enzymes. The MAE factors were optimized using a central composite design, establishing optimal PP and SAC yields at 67 °C, 0% ethanol, 12 min and 30 °C, 40% ethanol, 3 min, respectively. PP and SAC values were 9.19 ± 0.18 mg GAE/g DW and 2.55 ± 0.10 mg SAC/g DW. Applying effect-directed analysis using high-performance thin layer chromatography-bioassay and mass spectrometry, the bioactive molecules present in the MAE extract with antioxidant and inhibitory activities over cyclooxygenase, α-glucosidase, and acetylcholinesterase enzymes were identified as N-fructosyl-glutamyl-S-(1-propenyl)cysteine, N-fructosyl-glutamylphenylalanine, and Harmane. Full article
Show Figures

Figure 1

16 pages, 776 KiB  
Article
Phytochemical Profile and Functional Properties of the Husk of Argania spinosa (L.) Skeel
by Antonietta Cerulli, Natale Badalamenti, Francesco Sottile, Maurizio Bruno, Sonia Piacente, Vincenzo Ilardi, Rosa Tundis, Roberta Pino and Monica Rosa Loizzo
Plants 2025, 14(15), 2288; https://doi.org/10.3390/plants14152288 - 24 Jul 2025
Viewed by 266
Abstract
Due to the limited scientific exploration of Argania spinosa (L.) skeel husk, this study presents the first investigation of the metabolite profile of methanol and acetone extracts analyzed by liquid chromatography coupled with electrospray ionization and high-resolution multistage mass spectrometry (LC-ESI/HRMSMS). A total [...] Read more.
Due to the limited scientific exploration of Argania spinosa (L.) skeel husk, this study presents the first investigation of the metabolite profile of methanol and acetone extracts analyzed by liquid chromatography coupled with electrospray ionization and high-resolution multistage mass spectrometry (LC-ESI/HRMSMS). A total of 43 compounds, including hydroxycinnamic acid and flavonoid derivatives, saponins, and triterpenic acids, were identified, some of which have not been previously reported in this species. The total phenols (TPC) and flavonoids (TFC) content were spectrophotometrically determined. A multi-target approach was applied to investigate the antioxidant potential using 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), β-carotene bleaching, and Ferric Reducing Ability Power (FRAP) tests. Carbohydrate hydrolyzing enzymes and lipase inhibitory activities were also assessed. The acetone extract exhibited the highest TPC and TFC values, resulting in being the most active in β-carotene bleaching test with IC50 values of 26.68 and 13.82 µg/mL, after 30 and 60 min of incubation, respectively. Moreover, it was the most active against both α-glucosidase and α-amylase enzymes with IC50 values of 12.37 and 18.93 µg/mL, respectively. These results pointed out that this by-product is a rich source of bioactive phytochemicals potentially useful for prevention of type 2 diabetes and obesity. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

32 pages, 57374 KiB  
Article
Enhancement of Phytochemicals and Antioxidant Activity of Thai Fermented Soybean Using Box–Behnken Design Guided Microwave-Assisted Extraction
by Piya Temviriyanukul, Woorawee Inthachat, Ararat Jaiaree, Jirarat Karinchai, Pensiri Buacheen, Supachai Yodkeeree, Tanongsak Laowanitwattana, Teera Chewonarin, Uthaiwan Suttisansanee, Arisa Imsumran, Ariyaphong Wongnoppavich and Pornsiri Pitchakarn
Foods 2025, 14(15), 2603; https://doi.org/10.3390/foods14152603 - 24 Jul 2025
Viewed by 302
Abstract
Thai fermented soybeans (TFSs) contain phytochemicals with anti-diabetic benefits. In this study, an initial non-optimized TFS extract (TFSE) was prepared using a conventional triplicate 80% ethanol extraction method and evaluated for its biological activity. TFSE effectively reversed TNF-α-induced insulin resistance in 3T3-L1 adipocytes [...] Read more.
Thai fermented soybeans (TFSs) contain phytochemicals with anti-diabetic benefits. In this study, an initial non-optimized TFS extract (TFSE) was prepared using a conventional triplicate 80% ethanol extraction method and evaluated for its biological activity. TFSE effectively reversed TNF-α-induced insulin resistance in 3T3-L1 adipocytes by enhancing insulin-stimulated glucose uptake, indicating anti-diabetic potential. TFSE also upregulated the phosphorylation of AKT (a key insulin signaling mediator) and the expression of adipogenic proteins (PPARγ, CEBPα) in TNF-α-exposed 3T3-L1, suggesting the mitigation of adipocyte dysfunction; however, the results did not reach statistical significance. The conventional extraction process was labor-intensive and time-consuming, and to enhance extraction efficiency and bioactivity, the process was subsequently optimized using environmentally friendly microwave-assisted extraction (MAE) in combination with the Box–Behnken design (BBD) and response surface methodology (RSM). The optimized extract (O-TFSE) was obtained over a significantly shorter extraction time and exhibited higher levels of total flavonoids and antioxidant activity in comparison to TFSE, while showing reduced levels of isoflavones (daidzein, genistein, and glycitein) in relation to TFSE. Interestingly, O-TFSE retained similar efficacy in reversing TNF-α-induced insulin resistance and demonstrated significantly stronger α-glucosidase and α-amylase inhibitory activities, indicating its enhanced potential for diabetes management. These results support the use of MAE as an efficient method for extracting functional compounds from TFS for functional foods targeting insulin resistance and type 2 diabetes mellitus. Full article
Show Figures

Figure 1

24 pages, 4295 KiB  
Article
Acrocomia aculeata Oil-Loaded Nanoemulsion: A Promising Candidate for Cancer and Diabetes Management
by Ariadna Lafourcade Prada, Jesus Rafael Rodríguez Amado, Renata Trentin Perdomo, Giovanna Bicudo Gomes, Danielle Ayr Tavares de Almeida, Leandro Fontoura Cavalheiro, Arquimedes Gasparotto Junior, Serafim Florentino Neto and Marco Antonio Utrera Martines
Pharmaceuticals 2025, 18(8), 1094; https://doi.org/10.3390/ph18081094 - 24 Jul 2025
Viewed by 339
Abstract
Background: Diabetes and cancer are two of the most life-threatening disorders affecting individuals of all ages worldwide. This study aimed to develop a novel Acrocomia aculeata (bocaiuva) fruit pulp oil-loaded nanoemulsion and evaluate its inhibitory effects on α-glucosidase and pancreatic lipase, as well [...] Read more.
Background: Diabetes and cancer are two of the most life-threatening disorders affecting individuals of all ages worldwide. This study aimed to develop a novel Acrocomia aculeata (bocaiuva) fruit pulp oil-loaded nanoemulsion and evaluate its inhibitory effects on α-glucosidase and pancreatic lipase, as well as its antiglycant activity and cytotoxicity against cancer cells. Additionally, this study assessed the impact of both the oil and the nanoemulsion on blood cells. Methods: The pulp oil was extracted by cold pressing. The oil’s physicochemical properties were determined according to the AOAC and the Brazilian Pharmacopeia. The lipid profile was performed by GC-MS. The nanoemulsion was prepared by the phase inversion method using ultrasonic stirring for particle size reduction and for homogenization. Response Surface Methodology was used for optimizing nanoemulsion preparation. Enzyme inhibition tests were conducted using assay kits. Cytotoxicity in cancer cells was evaluated using the Sulforhodamine B assay. Results: Comprehensive physicochemical and chemical characterization of bocaiuva oil was performed, identifying oleic acid (71.25%) as the main component. The oil contains 23.04% saturated fatty acids, 73.79% monounsaturated acids, and 3.0% polyunsaturated fatty acids. The nanoemulsion (particle size 173.6 nm; zeta potential −14.10 mV) inhibited α-glucosidase (IC50: 43.21 µg/mL) and pancreatic lipase (IC50: 41.99 µg/mL), and revealed a potent antiglycation effect (oxidative IC50: 18.36 µg/mL; non-oxidative pathway IC50: 16.33 µg/mL). The nanoemulsion demonstrated good cytotoxicity and selectivity against prostate cancer cells (IC50: 19.13 µg/mL) and breast cancer cells (IC50: 27.22 µg/mL), without inducing hemolysis, platelet aggregation, or anticoagulant effects. Conclusions: In this study, a comprehensive physical and chemical characterization of bocaiuva fruit pulp oil was conducted for the first time as a preliminary step toward its future standardization as an active ingredient in cosmetic and pharmaceutical formulations. The resulting nanoemulsion represents a novel alternative for managing diabetes and cancer. Although the nanoemulsion exhibited lower cytotoxicity compared to doxorubicin, it remains promising due to its composition of essential fatty acids, phenols, and carotenoids, which offer multiple health benefits. Further studies are needed to validate its efficacy and safety in clinical applications. Full article
(This article belongs to the Special Issue Nanotechnology in Biomedical Applications)
Show Figures

Graphical abstract

17 pages, 13984 KiB  
Article
Isolation and Purification of Novel Antioxidant Peptides from Mussel (Mytilus edulis) Prepared by Marine Bacillus velezensis Z-1 Protease
by Jing Lu, Pujing Shi, Yutian Cao, Bingxin Shi, Huilin Shen, Shuai Zhao, Yuchen Gao, Huibing Chi, Lei Wang and Yawei Shi
Mar. Drugs 2025, 23(8), 294; https://doi.org/10.3390/md23080294 - 23 Jul 2025
Viewed by 280
Abstract
Mussels are nutrient-rich but perishable, resulting in substantial resource loss. A protease-producing strain (Bacillus velezensis Z-1, Mytilus edulis) isolated from marine sludge was used to hydrolyze mussels, producing Y-1, a hydrolysate with antioxidant activity. In this study, ultrafiltration, gel chromatography, and [...] Read more.
Mussels are nutrient-rich but perishable, resulting in substantial resource loss. A protease-producing strain (Bacillus velezensis Z-1, Mytilus edulis) isolated from marine sludge was used to hydrolyze mussels, producing Y-1, a hydrolysate with antioxidant activity. In this study, ultrafiltration, gel chromatography, and LC-MS/MS were employed to isolate and identify bioactive peptides from the hydrolysate. The results revealed that the hydrolysate exhibited antioxidant activity, pancreatic cholesterol esterase inhibitory activity, pancreatic lipase inhibitory activity, and α-glucosidase inhibitory activity. Molecular docking using AutoDock Tools 1.5.6 was performed to analyze the interactions of peptides with CD38 and Keap1, leading to the identification of five potentially bioactive peptides: VPPFY, IMLFP, LPFLF, FLPF, and FPRIM. These peptides formed hydrogen bonds and hydrophobic interactions with CD38 and Keap1, demonstrating strong DPPH radical scavenging and superoxide anion radical scavenging capacities. This study highlights the multifunctional bioactive potential of these peptides, offering insights into their therapeutic applications. The findings provide a novel approach for the effective utilization of mussel resources and highlight their potential application value in the development of functional foods. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Figure 1

17 pages, 5515 KiB  
Article
Hypoglycemic Effects of Silphium perfoliatum L. In Vitro and In Vivo and Its Active Composition Identification by UPLC-Triple-TOF-MS/MS
by Guoying Zhang, Liying Liu, Wenjing Jia, Luya Wang, Jihong Tao, Wei Zhang, Huilan Yue, Dejun Zhang and Xiaohui Zhao
Pharmaceuticals 2025, 18(8), 1087; https://doi.org/10.3390/ph18081087 - 23 Jul 2025
Viewed by 260
Abstract
Background: Reducing postprandial blood glucose (PBG) is a crucial strategy for treating diabetes and minimizing the risk of complications. Developing efficient and safe α-glycosidase inhibitors from natural products to lower PBG has attracted much attention. Silphium perfoliatum L. (SP), a traditional herbal [...] Read more.
Background: Reducing postprandial blood glucose (PBG) is a crucial strategy for treating diabetes and minimizing the risk of complications. Developing efficient and safe α-glycosidase inhibitors from natural products to lower PBG has attracted much attention. Silphium perfoliatum L. (SP), a traditional herbal medicine of North American Indigenous tribes, has efficacy of treating metabolic diseases, but its hypoglycemic activity and bioactive components have not been fully studied. Methods: In vitro α-glucosidase inhibition and in vivo sucrose/maltose/starch tolerance assays were performed to assess the hypoglycemic effects of SP extracts, and UPLC-Triple-TOF-MS/MS analysis was used to tentatively identify its chemical structure composition. In vitro enzyme inhibition and molecular docking were used to verify the effective ingredients. Results: In vitro hypoglycemic activities of four extracts of SP (SP-10/SP-40/SP-60/SP-C) showed that SP-10 exhibited strong α-glucosidase (sucrase and maltase) inhibitory effects with IC50 of 67.81 μg/mL and 62.99 μg/mL, respectively. Carbohydrate tolerance assays demonstrated that SP-10 could significantly reduce the PBG levels of diabetic mice, with a significant hypoglycemic effect at a dosage of 20 mg/kg. A total of 26 constituents, including 11 caffeoylquinic acids (CQAs) and 15 flavonol glycosides, were tentatively identified by mainly analyzing secondary MS fragmentation. Moreover, three CQAs rich in SP-10, namely chlorogenic acid (CGA), neochlorogenic acid (NCGA), and cryptochlorogenic acid (CCGA), may be the main hypoglycemic substances, as evidenced by their inhibitory effects on sucrase and maltase. Conclusions: The α-glucosidase inhibitory effects of SP extract both in vitro and in vivo and its active ingredients were systematically studied for the first time. Results indicated that SP extract, rich in CQAs, had significant hypoglycemic activity, supporting the considerable potential of SP as hypoglycemic functional food or cost-effective therapeutic agents for diabetes treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

23 pages, 8387 KiB  
Article
Solvent Fractionation of Polygonum cuspidatum Sieb. et Zucc. for Antioxidant, Biological Activity, and Chromatographic Characterization
by Yuchen Cheng, Yuri Kang and Woonjung Kim
Int. J. Mol. Sci. 2025, 26(14), 7011; https://doi.org/10.3390/ijms26147011 - 21 Jul 2025
Viewed by 330
Abstract
This study investigated the natural bioactive compounds in Polygonum cuspidatum Sieb. et Zucc. (P. cuspidatum) by fractionating a 70% ethanol extract using n-hexane, chloroform, ethyl acetate, n-butanol, and water. The total polyphenol and flavonoid contents of each fraction were [...] Read more.
This study investigated the natural bioactive compounds in Polygonum cuspidatum Sieb. et Zucc. (P. cuspidatum) by fractionating a 70% ethanol extract using n-hexane, chloroform, ethyl acetate, n-butanol, and water. The total polyphenol and flavonoid contents of each fraction were determined, and their antioxidant activities were evaluated using DPPH, ABTS, and FRAP assays. Additionally, the anti-diabetic potential was assessed via α-glucosidase inhibitory activity, while anti-obesity activity was evaluated using lipase inhibitory activity. The fractions were also tested for tyrosinase and elastase inhibitory activities to assess their skin-whitening and anti-wrinkle potential, and their antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa was determined using the agar diffusion method. Finally, bioactive compounds were identified and quantified using HPLC and GC–MSD. The results showed that the ethyl acetate fraction possessed the highest total polyphenol content (0.53 ± 0.01 g GAE/g) and total flavonoid content (0.19 ± 0.02 g QE/g). It also exhibited strong antioxidant activity, with the lowest DPPH radical scavenging IC50 (0.01 ± 0.00 mg/mL), ABTS radical scavenging IC50 (0.06 ± 0.00 mg/mL), and the highest FRAP value (6.02 ± 0.30 mM Fe2+/mg). Moreover, it demonstrated potent enzyme inhibitory activities, including tyrosinase inhibitory activity (67.78 ± 2.50%), elastase inhibitory activity (83.84 ± 1.64%), α-glucosidase inhibitory activity (65.14 ± 10.29%), and lipase inhibitory activity (85.79 ± 1.04%). In the antibacterial activity, the ethyl acetate fraction produced a clear inhibitory zone of 19.50 mm against Staphylococcus aureus, indicating notable antibacterial activity. HPLC-PDA and GC–MSD analyses identified tannic acid and emodin as the major bioactive constituents. These findings suggest that the ethyl acetate fraction of P. cuspidatum extract, rich in polyphenol and flavonoid compounds, is a promising natural source of bioactive ingredients for applications in the food, pharmaceutical, and cosmetic industries. Further research is needed to explore its mechanisms and therapeutic applications. Full article
Show Figures

Figure 1

21 pages, 2042 KiB  
Article
Ultrasound and Microwave-Assisted Synthesis and Antidiabetic and Hematopoietic Activity of Diphenhydramine Derivatives
by Anuar Dauletbakov, Yelizaveta Belyankova, Saniya Assylbekova, Darya Zolotareva, Sarah Bayazit, Layilya Baktybayeva, Ulan Kemelbekov, Valentina Yu, Nailya Ibragimova and Alexey Zazybin
Molecules 2025, 30(14), 2967; https://doi.org/10.3390/molecules30142967 - 15 Jul 2025
Viewed by 283
Abstract
This study presents the synthesis and antidiabetic and hematopoietic activity of ionic compounds based on 2-(diphenylmethoxy)-N,N-dimethylethanamine (diphenhydramine). Synthesis is carried out under ultrasonic (US) and microwave (MW) irradiation as well as using a conventional method (thermal activation). The synthesized [...] Read more.
This study presents the synthesis and antidiabetic and hematopoietic activity of ionic compounds based on 2-(diphenylmethoxy)-N,N-dimethylethanamine (diphenhydramine). Synthesis is carried out under ultrasonic (US) and microwave (MW) irradiation as well as using a conventional method (thermal activation). The synthesized ionic compounds have been tested for antidiabetic effect according to the inhibitory action against α-glucosidase and α-amylase (in vitro). All the synthesized derivatives of diphenhydramine showed higher inhibitory activity against α-glucosidase than commercially available diphenhydramine hydrochloride. Moreover, two of them, 1m (66.9%) and 1k (64.2%), had a greater inhibitory activity than the reference drug acarbose (51.8%). The hematopoietic activity was studied in albino laboratory female rats (in vivo). The compounds 1b, 1f, and 1k can restore immune blood cells (hematopoietic activity), equal to or exceeding that of the commercially available diphenhydramine hydrochloride and control (methyluracil). Full article
Show Figures

Figure 1

22 pages, 1090 KiB  
Article
Functional Properties of Campomanesia xanthocarpa Infusions: Phenolic Profile, Digestive Stability, Enzyme Inhibition, and Glycemic Effects
by Cristiane Maria Chitolina Tremea, Vanessa Ruana Ferreira da Silva, Larissa Cunico, Vinícius Gottardo Boff, Carolina Turnes Pasini Deolindo, Aleksandro Shafer da Silva and Aniela Pinto Kempka
Foods 2025, 14(14), 2469; https://doi.org/10.3390/foods14142469 - 14 Jul 2025
Viewed by 298
Abstract
This study investigated the functional potential of Campomanesia xanthocarpa leaf and fruit infusions through phytochemical profiling, simulated gastrointestinal digestion, enzyme inhibition assays, and in vivo evaluation of glycemic markers. Leaf infusions exhibited a more diverse phenolic profile, higher total phenolic content, and greater [...] Read more.
This study investigated the functional potential of Campomanesia xanthocarpa leaf and fruit infusions through phytochemical profiling, simulated gastrointestinal digestion, enzyme inhibition assays, and in vivo evaluation of glycemic markers. Leaf infusions exhibited a more diverse phenolic profile, higher total phenolic content, and greater antioxidant capacity compared to fruit infusions. Simulated digestion confirmed the bioaccessibility of key phenolic compounds, particularly glycosylated flavonoids such as quercetin-3-glucoside and kaempferol derivatives, with leaf extracts showing superior gastrointestinal stability. In vitro assays revealed a strong inhibitory activity of leaf infusions against α-amylase and β-glucosidase. In a 32-day trial with healthy dogs, the consumption of biscuits enriched with leaf infusion did not alter fasting glucose or amylase levels but resulted in a significant treatment × time interaction for serum fructosamine, indicating a delayed modulation of glycemic control, potentially associated with antioxidant or anti-glycation activity. These findings highlight the potential of C. xanthocarpa leaves as a functional ingredient in foods aimed at supporting glycemic regulation and metabolic health. Full article
Show Figures

Graphical abstract

23 pages, 11933 KiB  
Article
Combined Metabolomics and Network Pharmacology to Reveal Anti-Diabetic Mechanisms and Potential Pharmacological Components of Synsepalum dulcificum
by Yong Huang, Shiyu Wang, Rong Ding and Shaohua Wu
Plants 2025, 14(14), 2132; https://doi.org/10.3390/plants14142132 - 10 Jul 2025
Viewed by 437
Abstract
The plant Synsepalum dulcificum is notable for its considerable edible and medicinal value, with a longstanding history as a folk remedy for diabetes. Its chemical constituents are rich and structurally diverse. However, there is limited information regarding the metabolic basis of these characteristics, [...] Read more.
The plant Synsepalum dulcificum is notable for its considerable edible and medicinal value, with a longstanding history as a folk remedy for diabetes. Its chemical constituents are rich and structurally diverse. However, there is limited information regarding the metabolic basis of these characteristics, and the biological activities and mechanisms underlying its blood glucose-lowering effects remain incompletely understood. In this study, we conducted a widely targeted metabolomics analysis of the stems, leaves, and fruits of S. dulcificum using UPLC-ESI-MS/MS to compare the differences in metabolite profiles among these three tissue types. Our analysis identified a total of 2544 secondary metabolites, primarily consisting of flavonoids and triterpenes, categorized into thirteen distinct compound classes. We selected differential metabolites through multivariate statistical analysis, revealing significant differences among the metabolite profiles of the three tissue types, with flavonoids being the most abundant compounds. Furthermore, we investigated the anti-diabetic mechanisms and potential pharmacological components of S. dulcificum utilizing network pharmacology and molecular docking techniques. Finally, the α-glucosidase inhibitory activity of the potential active components was evaluated using in vitro experiments. These findings establish a foundation for the future application of S. dulcificum in the prevention and treatment of diabetes. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

18 pages, 1571 KiB  
Article
One-Pot Synthesis of Novel Pyrimidine Derivatives with Potential Antidiabetic Activity Through Dual α-Glucosidase and α-Amylase Inhibitors
by Ohood Al-Shehri, Samar Abubshait, Muhammad Nawaz, Mohamed S. Gomaa and Haya A. Abubshait
Molecules 2025, 30(13), 2857; https://doi.org/10.3390/molecules30132857 - 4 Jul 2025
Viewed by 689
Abstract
This study describes the synthesis of heterocyclic derivatives containing multiple nitrogen atoms serving as important moieties for developing novel antidiabetics through a simple synthetic pathway. We herein describe the synthesis and characterization of novel pyrimidine derivatives using one-pot reactions in a catalyst-free and [...] Read more.
This study describes the synthesis of heterocyclic derivatives containing multiple nitrogen atoms serving as important moieties for developing novel antidiabetics through a simple synthetic pathway. We herein describe the synthesis and characterization of novel pyrimidine derivatives using one-pot reactions in a catalyst-free and efficient manner through a two-stage process involving the synthesis of 2-amino-4-hydrazinyl-6-methoxy pyrimidine, followed by a reaction with phenyl isothiocyanate derivatives. The structures of all the new compounds were confirmed via physical and spectral analysis. Furthermore, we evaluated the synthesized pyrimidine derivatives’ biological activities in relation to their potential roles as novel anti-diabetic agents by testing their activity profiles against the enzymes α-glucosidase and α-amylase. Compound 4 expressed the highest level of activity against α-glucosidase and α-amylase, with a greater inhibitory concentration (IC50 of 12.16 ± 0.12 µM and IC50 11.13 ± 0.12 µM) compared to that of acarbose (IC50 = 10.60 ± 0.17 µM and IC50 = 11.30 ± 0.12 µM), which is widely used as a standard antidiabetic drug. The primary structure activity relationship analysis identified the impact of an electron- withdrawing group, especially with respect to fluorine on inhibitory activity. This was further confirmed in molecular docking studies, which demonstrated that both compounds exhibited similar inhibition patterns and emphasized the significance of incorporating a lipophilic electron-withdrawing substituent on the phenyl ring, along with the 2,4-diaminopyrimidine scaffold. Full article
(This article belongs to the Special Issue Molecular Docking in Drug Discovery, 2nd Edition)
Show Figures

Figure 1

28 pages, 1957 KiB  
Article
Design and Synthesis of Sulfonium and Selenonium Derivatives Bearing 3′,5′-O-Benzylidene Acetal Side Chain Structure as Potent α-Glucosidase Inhibitors
by Xiaosong He, Jiahao Yi, Jianchen Yang, Genzoh Tanabe, Osamu Muraoka and Weijia Xie
Molecules 2025, 30(13), 2856; https://doi.org/10.3390/molecules30132856 - 4 Jul 2025
Viewed by 401
Abstract
A group of sulfonium and selenonium salts bearing diverse benzylidene acetal substituents on their side chain moiety were designed and synthesized. Compared with our previous study, structural modifications in this study focused on multi-substitution of the phenyl ring and bioisosteric replacements at the [...] Read more.
A group of sulfonium and selenonium salts bearing diverse benzylidene acetal substituents on their side chain moiety were designed and synthesized. Compared with our previous study, structural modifications in this study focused on multi-substitution of the phenyl ring and bioisosteric replacements at the sulfonium cation center. In vitro biological evaluation showed that selenonium replacement could significantly improve their α-glucosidase inhibitory activity. The most potent inhibitor 20c (10.0 mg/kg) reduced postprandial blood glucose by 48.6% (15 min), 52.8% (30 min), and 48.1% (60 min) in sucrose-loaded mice, outperforming acarbose (20.0 mg/kg). Docking studies of 20c with ntMGAM presented a new binding mode. In addition to conventional hydrogen bonding and electrostatic interaction, amino residue Ala-576 was first identified to contribute to binding affinity through π-alkyl and alkyl interactions with the chlorinated substituent and aromatic ring. The selected compounds exhibited a high degree of safety in cytotoxicity tests against normal cells. Kinetic characterization of α-glucosidase inhibition confirmed a fully competitive inhibitory mode of action for these sulfonium salts. Full article
(This article belongs to the Special Issue Trends of Drug Synthesis in Medicinal Chemistry)
Show Figures

Graphical abstract

23 pages, 4407 KiB  
Article
Integration Viewpoint Using UHPLC-MS/MS, In Silico Analysis, Network Pharmacology, and In Vitro Analysis to Evaluate the Bio-Potential of Muscari armeniacum Extracts
by Nilofar Nilofar, Gokhan Zengin, Mehmet Veysi Cetiz, Evren Yildiztugay, Zoltán Cziáky, József Jeko, Claudio Ferrante, Tina Kostka, Tuba Esatbeyoglu and Stefano Dall’Acqua
Molecules 2025, 30(13), 2855; https://doi.org/10.3390/molecules30132855 - 4 Jul 2025
Viewed by 515
Abstract
The current study investigates the chemical profiling, antioxidant activities, and enzyme inhibitory and cytotoxic potential of the water and methanolic extracts of different parts (flower, leaf, and bulb) of Muscari armeniacum. Chemical profiling was performed using UHPLC-MS/MS. At the same time, different [...] Read more.
The current study investigates the chemical profiling, antioxidant activities, and enzyme inhibitory and cytotoxic potential of the water and methanolic extracts of different parts (flower, leaf, and bulb) of Muscari armeniacum. Chemical profiling was performed using UHPLC-MS/MS. At the same time, different in vitro assays were employed to support the results for antioxidant potential, such as DPPH, ABTS, FRAP, CUPRAC, metal chelation, and PBD, along with the measurement of total phenolic and flavonoid contents. Enzyme inhibition was investigated for cholinesterase (AChE and BChE), α-amylase, α-glucosidase, and tyrosinase enzymes. Additionally, the relative expression of NRF2, HMOX1, and YGS was evaluated by qPCR. LC-MS/MS analysis indicated the presence of some significant compounds, including apigenin, muscaroside, hyacinthacine A, B, and C, and luteolin. According to the results, the highest TPC and TFC were obtained with both extracts of the leaves, followed by the water extract (flower) and methanolic extract of the bulb. In contrast, the methanolic extract from the bulb exhibited the highest antioxidant potential using DPPH, ABTS, CUPRAC, and FRAP, followed by the extracts of leaves. In contrast, the leaf extracts had the highest values for the PBD assay and maximum chelation ability compared to other tested extracts. According to the enzyme inhibition studies, the methanolic extract from the bulb appeared to be the most potent inhibitor for all the tested enzymes, with the highest values obtained for AChE (1.96 ± 0.05), BChE (2.19 ± 0.33), α-amylase (0.56 ± 0.02), α-glucosidase (2.32 ± 0.01), and tyrosinase (57.19 ± 0.87). Interestingly, the water extract from the bulb did not inhibit most of the tested enzymes. The relative expression of NRF2 based on qPCR analysis was considerably greater in the flower methanol extract compared to the other extracts (p < 0.05). The relative expression of HMOX1 was stable in all the extracts, whereas YGS expression remained stable in all the treatments and had no statistical differences. The current results indicate that the components of M. armeniacum (leaves, flowers, and bulb) may be a useful source of natural bioactive compounds that are effective against oxidative stress-related conditions, including hyperglycemia, skin disorders, and neurodegenerative diseases. Complementary in silico approaches, including molecular docking, dynamics simulations, and transcription factor (TF) network analysis for NFE2L2, supported the experimental findings and suggested possible multi-target interactions for the selected compounds. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

15 pages, 274 KiB  
Article
In Vitro Gastrointestinal Bioaccessibility of the Phenolic Fraction from Agave inaequidens Flower
by Imelda N. Monroy-García, Laura Lucely González-Galván, Catalina Leos-Rivas, Mayra Z. Treviño-Garza, Eduardo Sánchez-García and Ezequiel Viveros-Valdez
Foods 2025, 14(13), 2375; https://doi.org/10.3390/foods14132375 - 4 Jul 2025
Viewed by 372
Abstract
Edible flowers are gaining recognition as rich sources of nutrients and phytochemicals. In Mexico, the flower of Agave inaequidens has been traditionally consumed since pre-Hispanic times. This study investigated its nutritional profile and the in vitro gastrointestinal bioaccessibility of its phenolic fraction. During [...] Read more.
Edible flowers are gaining recognition as rich sources of nutrients and phytochemicals. In Mexico, the flower of Agave inaequidens has been traditionally consumed since pre-Hispanic times. This study investigated its nutritional profile and the in vitro gastrointestinal bioaccessibility of its phenolic fraction. During in vitro digestion (oral, gastric, and intestinal), the total phenolic content of A. inaequidens significantly decreased from 138 to 21 mg GAE/100 g DW (15.22% bioaccessibility), while total flavonoid content dropped from 8 to 4.6 mg CE/100 g DW (57.5% bioaccessibility). Consequently, antioxidant activity, assessed by ABTS, DPPH, and hemolysis inhibition assays, also declined post-digestion. Interestingly, the digestive process modulated the flower’s inhibitory activity against digestive enzymes before and after in vitro digestion: α-amylase inhibition slightly decreased (IC50 1.8 to 2.1 mg/mL), but α-glucosidase (IC50 2.7 to 1.6 mg/mL) and lipase (IC50 > 3 to 1.4 mg/mL) inhibition increased. The A. inaequidens flower is a good source of fiber and low in fat. These findings underscore its potential as a functional food ingredient, offering bioaccessible phenolic compounds with antioxidant and enzyme inhibitory properties. Full article
Back to TopTop