Three-Dimensional Bowing Measurement of Distal Femur at Actual Size and Clinical Implications of Total Knee Arthroplasty
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bao, Z.; Qiao, L.; Qin, J.; Xu, J.; Zhou, S.; Chen, D.; Shi, D.; Dai, J.; Yao, Y.; Jiang, Q.; et al. The assessment of femoral shaft morphology in the sagittal plane in Chinese patients with osteoarthritis-a radiographic analysis. J. Orthop. Surg. Res. 2017, 12, 127. [Google Scholar] [CrossRef]
- Ko, J.H.; Han, C.D.; Shin, K.H.; Nguku, L.; Yang, I.H.; Lee, W.S.; Kim, K.I.; Park, K.K. Femur bowing could be a risk factor for implant flexion in conventional total knee arthroplasty and notching in navigated total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2476–2482. [Google Scholar] [CrossRef]
- Akamatsu, Y.; Kobayashi, H.; Kusayama, Y.; Kumagai, K.; Saito, T. Femoral shaft bowing in the coronal and sagittal planes on reconstructed computed tomography in women with medial compartment knee osteoarthritis: A comparison with radiograph and its predictive factors. Arch. Orthop. Trauma Surg. 2016, 136, 1227–1232. [Google Scholar] [CrossRef]
- Hyodo, K.; Nishino, T.; Kamada, H.; Nozawa, D.; Mishima, H.; Yamazaki, M. Location of fractures and the characteristics of patients with atypical femoral fractures: Analyses of 38 Japanese cases. J. Bone Miner. Metab. 2017, 35, 209–214. [Google Scholar] [CrossRef]
- Yau, W.P.; Chiu, K.Y.; Tang, W.M.; Ng, T.P. Coronal bowing of the femur and tibia in Chinese: Its incidence and effects on total knee arthroplasty planning. J. Orthop. Surg. 2007, 15, 32–36. [Google Scholar] [CrossRef]
- Park, Y.C.; Song, H.K.; Zheng, X.L.; Yang, K.H. Intramedullary nailing for atypical femoral fracture with excessive anterolateral bowing. J. Bone Jt. Surg. Am. 2017, 99, 726–735. [Google Scholar] [CrossRef]
- Soh, H.H.; Chua, I.T.; Kwek, E.B. Atypical fractures of the femur: Effect of anterolateral bowing of the femur on fracture location. Arch. Orthop. Trauma Surg. 2015, 135, 1485–1490. [Google Scholar] [CrossRef]
- Buford, W.L., Jr.; Turnbow, B.J.; Gugala, Z.; Lindsey, R.W. Three-dimensional computed tomography-based modeling of sagittal cadaveric femoral bowing and implications for intramedullary nailing. J. Orthop. Trauma 2014, 28, 10–16. [Google Scholar] [CrossRef]
- Chon, C.S.; Kang, B.; Kim, H.S.; Jung, G.H. Implications of three-dimensional modeling of the proximal femur for cephalomedullary nailing: An Asian cadaver study. Injury 2017, 48, 2060–2067. [Google Scholar] [CrossRef]
- Thiesen, D.M.; Prange, F.; Berger-Groch, J.; Ntalos, D.; Petersik, A.; Hofstätter, B.; Rueger, J.M.; Klatte, T.O.; Hartel, M.J. Femoral antecurvation-A 3D CT Analysis of 1232 adult femurs. PLoS ONE 2018, 13, e0204961. [Google Scholar] [CrossRef]
- Kong, G.M.; Kwak, J.M.; Jung, G.H. Eliminating projection error of measuring Pauwels’ angle in the femur neck fractures by CT plane manipulation. Orthop. Traumatol. Surg. Res. 2020, 106, 607–611. [Google Scholar] [CrossRef]
- Kim, Y.W.; Jang, J.H.; Jung, G.H. Assessment of osseous corridor for transiliac-transsacral screws and clinical applications: Computational simulation study. Orthop. Traumatol. Surg. Res. 2020, 106, 863–867. [Google Scholar] [CrossRef]
- Uusi-Rasi, K.; Semanick, L.M.; Zanchetta, J.R.; Bogado, C.E.; Eriksen, E.F.; Sato, M.; Beck, T.J. Effects of teriparatide [rhPTH (1–34)] treatment on structural geometry of the proximal femur in elderly osteoporotic women. Bone 2005, 36, 948–958. [Google Scholar] [CrossRef]
- Bonnick, S.L.; Beck, T.J.; Cosman, F.; Hochberg, M.C.; Wang, H.; de Papp, A.E. DXA-based hip structural analysis of once-weekly bisphosphonate-treated postmenopausal women with low bone mass. Osteoporos. Int. 2009, 20, 911–921. [Google Scholar] [CrossRef]
- Ito, M.; Sone, T.; Fukunaga, M. Effect of minodronic acid hydrate on hip geometry in Japanese women with postmenopausal osteoporosis. J. Bone Miner. Metab. 2010, 28, 334–341. [Google Scholar] [CrossRef]
- Osterhoff, G.; Morgan, E.F.; Shefelbine, S.J.; Karim, L.; McNamara, L.M.; Augat, P. Bone mechanical properties and changes with osteoporosis. Injury 2016, 47 (Suppl. 2), S11–S20. [Google Scholar] [CrossRef]
- Şİmşek, M.; Bozkurt, M. Clinical significance of the relationship between 3D analysis of the distal femur and femoral shaft anatomy in total knee arthroplasty. Anatomy 2019, 13, 174–182. [Google Scholar]
- Maratt, J.; Schilling, P.L.; Holcombe, S.; Dougherty, R.; Murphy, R.; Wang, S.C.; Goulet, J.A. Variation in the femoral bow: A novel high-throughput analysis of 3922 femurs on cross-sectional imaging. J. Orthop. Trauma 2014, 28, 6–9. [Google Scholar] [CrossRef]
- Sugama, R.; Minoda, Y.; Kobayashi, A.; Iwaki, H.; Ikebuchi, M.; Hashimoto, Y.; Takaoka, K.; Nakamura, H. Sagittal alignment of the lower extremity while standing in female. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 74–79. [Google Scholar] [CrossRef]
- Gao, J.; Hou, Y.; Li, R.; Ke, Y.; Li, Z.; Lin, J. The accelerometer-based navigation system demonstrated superior radiological outcomes in restoring mechanical alignment and component sagittal positioning in total knee arthroplasty. BMC Musculoskelet. Disord. 2021, 22, 351. [Google Scholar] [CrossRef]
- Koenen, P.; Ates, D.M.; Pfeiffer, T.R.; Bouillon, B.; Bäthis, H. Femoral flexion position is a highly variable factor in total knee arthroplasty: An analysis of 593 conventionally aligned total knee replacements. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 1014–1022. [Google Scholar] [CrossRef]
- Maderbacher, G.; Schaumburger, J.; Baier, C.; Zeman, F.; Springorum, H.R.; Birkenbach, A.M.; Grifka, J.; Keshmiri, A. Appropriate sagittal femoral component alignment cannot be ensured by intramedullary alignment rods. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2453–2460. [Google Scholar] [CrossRef]
- Chung, B.J.; Kang, Y.G.; Chang, C.B.; Kim, S.J.; Kim, T.K. Differences between sagittal femoral mechanical and distal reference axes should be considered in navigated TKA. Clin. Orthop. Relat. Res. 2009, 467, 2403–2413. [Google Scholar] [CrossRef]
- Seo, J.G.; Kim, B.K.; Moon, Y.W.; Kim, J.H.; Yoon, B.H.; Ahn, T.K.; Lee, D.H. Bony landmarks for determining the mechanical axis of the femur in the sagittal plane during total knee arthroplasty. Clin. Orthop. Surg. 2009, 1, 128–131. [Google Scholar] [CrossRef]
- Bolognesi, M.; Hofmann, A. Computer navigation versus standard instrumentation for TKA: A single-surgeon experience. Clin. Orthop. Relat. Res. 2005, 440, 162–169. [Google Scholar] [CrossRef]
- Pornrattanamaneewong, C.; Ruangsomboon, P.; Wingprawat, K.; Chareancholvanich, K.; Narkbunnam, R. Accuracy of empirical distal femoral valgus cut angle of 4 degrees to 6 degrees in total knee arthroplasty: A randomized controlled trial. Eur. J. Orthop. Surg. Traumatol. 2022, 32, 175–181. [Google Scholar] [CrossRef]
Total (68) | Male (35) | Female (33) | p-Value | |
---|---|---|---|---|
Age (years) | 69.1 (range, 33–93, SD: 13.97) | 69.1 (range, 33–93, SD 13.97) | 69.1 (range, 33–93, SD 13.97) | 0.059 |
FSB_no (19) | 19 | 14 | 5 | |
FSB_coronal 1 (7) | 22 | 1 | 6 | 0.006 (χ2 = 7.624 *) |
FSB_sagittal 2 (27) | 42 | 15 | 12 | 0.419 |
FSB_both 3 (15) | 15 | 5 | 10 | 0.020 (χ2 = 9.784 *) |
Lateral bowing (°) 4 | 3.71 (range, 0.0–10.1, SD: 2.71) | 2.37 (range, 0.0–7.5, SD: 2.05) | 5.14 (range, 0.5–10.1, SD: 2.63) | 0.000 |
Anterior bowing (°) 5 | 11.82 (range, 4.5–18.5, SD: 2.97) | 11.17 (range, 5.7–15.4, SD: 2.62) | 12.50 (range, 4.5–18.5, SD: 3.20) | 0.065 |
Coronal alignment (°) 6 | 6.40 (range, 1.98–11.17, SD: 2.14) | 5.61 (range, 1.98–9.37, SD: 1.84) | 7.24 (range, 2.15–11.17, SD: 2.16) | 0.001 |
Sagittal alignment (°) 7 | 2.66 (range, −1.24–7.35, SD: 2.06). | 2.16 (range, −1.24–5.31, SD: 1.60) | 3.18 (range, −1.24–7.35, SD: 2.06). | 0.044 |
Diameter_BM 5 (mm) 8 | 1501.6 (range, 979.6–2515.8, SD: 317.70) | 1567.1 (range, 1139.5–2515.8, SD: 339.41) | 1432.3 (range, 979.6–2083.9, SD: 281.56) | 0.080 |
Younger Group (28) | Older Group (40) | p-Value | |
---|---|---|---|
FSB_No | 15 | 4 | |
FSB_coronal | 3 | 19 | 0.001 (χ2 = 10.184) |
FSB_sagittal | 13 | 29 | 0.027 (χ2 = 4.741) |
FSB_both | 3 | 12 | 0.000 (χ2 = 19.059) |
Lateral bowing (°) | 2.02 (range, 0.0–5.3, SD: 1.59) | 4.90 (range, 0.3–10.1, SD: 2.72) | 0.000 |
Anterior bowing (°) | 10.60 (range, 5.7–15.4, SD: 2.50) | 12.67 (range, 4.5–18.5, SD: 3.01) | 0.003 |
Coronal alignment (°) | 5.22 (range, 1.98–8.61, SD: 5.22) | 7.23 (range, 2.15–11.17, SD: 2.15) | 0.000 |
Sagittal alignment (°) | 1.90 (range, −1.24–5.64, SD: 1.66) | 3.19 (range, −0.62–7.35, SD: 2.17). | 0.007 |
Diameter_BM (mm) | 1601.8 (range, 1015.2–2515.8, SD: 365.0) | 1431.6 (range, 979.6–2083.9, SD: 262.58) | 0.040 |
Group I (14) | Group II (14) | Group III (21) | Group IV (19) | p-Value | |
---|---|---|---|---|---|
FSB_no † | 8 | 7 | 2 | 2 | |
FSB_coronal | 1 | 2 | 10 | 9 | 0.016 (χ2 = 10.347) |
FSB_sagittal | 6 | 7 | 15 | 14 | 0.178 |
FSB_both | 1 | 2 | 6 | 6 | 0.021 (χ2 = 19.498) |
Lateral bowing (°) | 1.47 ± 1.40 | 2.57 ± 1.62 | 4.82 ± 3.02 | 4.98 ± 2.43 | 0.001 |
Anterior bowing (°) | 10.34 ± 2.53 | 10.84 ± 2.53 | 12.49 ± 2.81 | 12.86 ± 3.29 | 0.035 |
Coronal alignment (°) | 5.10 ± 1.38 | 5.39 ± 1.66 | 7.04 ± 2.34 | 7.43 ± 1.97 | 0.001 |
Sagittal alignment (°) | 1.59 ± 1.51 | 2.21 ± 1.81 | 3.20 ± 2.28 | 3.18 ± 2.10 | 0.068 |
Diameter_BM (mm) | 1713.3 ± 399.50 | 1490.3 ± 300.49 | 1416.7 ± 258.451 | 1448.0 ± 273.22 | 0.037 |
Lateral Bowing | Anterior Bowing | Coronal Alignment | Sagittal Alignment | Diameter of BM | |
---|---|---|---|---|---|
Lateral bowing | 1 | ||||
Anterior bowing | 0.288 * | 1 | |||
Coronal alignment | 0.816 ** | 0.303 * | 1 | ||
Sagittal alignment | 0.326 * | 0.758 ** | 0.400 ** | 1 | |
Diameter of BM | 0.254 * | 0.604 ** | 0.143 | 0.306 * | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, G.-H.; An, Y.-J.; Kang, D.-G. Three-Dimensional Bowing Measurement of Distal Femur at Actual Size and Clinical Implications of Total Knee Arthroplasty. Medicina 2024, 60, 986. https://doi.org/10.3390/medicina60060986
Jung G-H, An Y-J, Kang D-G. Three-Dimensional Bowing Measurement of Distal Femur at Actual Size and Clinical Implications of Total Knee Arthroplasty. Medicina. 2024; 60(6):986. https://doi.org/10.3390/medicina60060986
Chicago/Turabian StyleJung, Gu-Hee, Young-Jue An, and Dong-Geun Kang. 2024. "Three-Dimensional Bowing Measurement of Distal Femur at Actual Size and Clinical Implications of Total Knee Arthroplasty" Medicina 60, no. 6: 986. https://doi.org/10.3390/medicina60060986
APA StyleJung, G.-H., An, Y.-J., & Kang, D.-G. (2024). Three-Dimensional Bowing Measurement of Distal Femur at Actual Size and Clinical Implications of Total Knee Arthroplasty. Medicina, 60(6), 986. https://doi.org/10.3390/medicina60060986