Integrated Genetic and Protein Mechanisms Underlying Glucagon-like Peptide-1 Receptor Agonists in Treating Diabetes Mellitus and Weight Loss
Abstract
1. Introduction
2. Materials and Methods
2.1. Searchable Literature and Web-Based Programs and Database
2.1.1. Literature and Websites Queried
2.1.2. Searchable Web-Based Programs and Databases Queried
STRING Web-Based Integrated Programs and Databases
Pathway Commons Web-Based Program for Gene–Gene Interactions
Biological General Repository for Interaction Datasets (BioGRID) Web-Based Program for Protein–Protein Interactions
3. Results
3.1. STRING Protein–Protein Interactions, Functions, and Analysis
3.2. Pathway Commons Gene-Gene Interactions and Functions
3.3. BioGRID Protein–Protein Interactions and Functions
4. Discussion
4.1. Background and Integrated Genetic and Protein Analysis of GLP1R
4.2. Related Obesity and Metabolic Genetic Factors with Disease Contributions
4.3. Related Mechanisms and Clinical Implications of GLP1R Agonists in Diabetes and Obesity
4.4. GLP1R-Related Studies in Mice
4.5. Study Limitations, Perspectives, and Future Studies
4.6. Summary
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, N.; Zhu, F.; Chen, L.; Chen, K. Proteomics, metabolomics and metagenomics for type 2 diabetes and its complications. Life Sci. 2018, 212, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Ashcroft, F.M.; Rorsman, P. Diabetes mellitus and the β cell: The last ten years. Cell 2012, 148, 1160–1171. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.B.; Florez, J.C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol. 2020, 16, 377–390. [Google Scholar] [CrossRef]
- Cui, K.; Li, Z. Identification and analysis of type 2 diabetes-mellitus-associated autophagy-related genes. Front. Endocrinol. 2023, 14, 1164112. [Google Scholar] [CrossRef]
- Lin, Y.; Li, J.; Wu, D.; Wang, F.; Fang, Z.; Shen, G. Identification of Hub Genes in Type 2 Diabetes Mellitus Using Bioinformatics Analysis. Diabetes Metab. Syndr. Obes. 2020, 13, 1793–1801. [Google Scholar] [CrossRef]
- Azarova, I.; Polonikov, A.; Klyosova, E. Molecular Genetics of Abnormal Redox Homeostasis in Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2023, 24, 4738. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ali, O. Genetics of type 2 diabetes. World J. Diabetes 2013, 4, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.C.; Dampil, O.A.; Marquez, M.M. Efficacy and Safety of Semaglutide for Weight Loss in Obesity Without Diabetes: A Systematic Review and Meta-Analysis. J. ASEAN Fed. Endocr. Soc. 2022, 37, 65–72. [Google Scholar] [CrossRef]
- Jensterle, M.; Rizzo, M.; Haluzík, M.; Janež, A. Efficacy of GLP-1 RA Approved for Weight Management in Patients With or Without Diabetes: A Narrative Review. Adv. Ther. 2022, 39, 2452–2467. [Google Scholar] [CrossRef]
- Nauck, M.A.; Müller, T.D. Incretin hormones and type 2 diabetes. Diabetologia 2023, 66, 1780–1795. [Google Scholar] [CrossRef]
- Chao, A.M.; Tronieri, J.S.; Amaro, A.; Wadden, T.A. Semaglutide for the treatment of obesity. Trends Cardiovasc. Med. 2023, 33, 159–166. [Google Scholar] [CrossRef]
- Ard, J.; Fitch, A.; Fruh, S.; Herman, L. Weight Loss and Maintenance Related to the Mechanism of Action of Glucagon-Like Peptide 1 Receptor Agonists. Adv. Ther. 2021, 38, 2821–2839. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2022, 51, D638–D646. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Nastou, K.; Koutrouli, M.; Kirsch, R.; Mehryary, F.; Hachilif, R.; Hu, D.; Peluso, M.E.; Huang, Q.; Fang, T.; et al. The STRING database in 2025: Protein networks with directionality of regulation. Nucleic Acids Res. 2024, 53, D730–D737. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, S.X.; Kim, A.; Madara, J.C.; Zhu, P.K.; Christenson, L.F.; Lutas, A.; Kalugin, P.N.; Jin, Y.; Pal, A.; Tian, L.; et al. Competition between stochastic neuropeptide signals calibrates the rate of satiation. Res. Sq. 2023, preprint, Update in Nature 2025, 637, 137–144. [Google Scholar] [CrossRef]
- Burnett, L.C.; LeDuc, C.A.; Sulsona, C.R.; Paull, D.; Rausch, R.; Eddiry, S.; Carli, J.F.M.; Morabito, M.V.; Skowronski, A.A.; Hubner, G.; et al. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. J. Clin. Investig. 2017, 127, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, I.; Fricker, L.D. Obesity, POMC, and POMC-processing Enzymes: Surprising Results from Animal Models. Endocrinology 2021, 162, bqab155. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, R.; Kimonis, V.; Butler, M.G. Genetics of Obesity in Humans: A Clinical Review. Int. J. Mol. Sci. 2022, 23, 11005. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G. Single Gene and Syndromic Causes of Obesity: Illustrative Examples. Prog. Mol. Biol. Transl. Sci. 2016, 140, 1–45. [Google Scholar]
- Duis, J.; Butler, M.G. Syndromic and Nonsyndromic Obesity: Underlying Genetic Causes in Humans. Adv. Biol. 2022, 6, e2101154. [Google Scholar] [CrossRef]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes—State-of-the-art. Mol. Metab. 2021, 46, 101102. [Google Scholar] [CrossRef]
- Deng, G.; Ren, J.; Li, R.; Li, M.; Jin, X.; Li, J.; Liu, J.; Gao, Y.; Zhang, J.; Wang, X.; et al. Systematic investigation of the underlying mechanisms of GLP-1 receptor agonists to prevent myocardial infarction in patients with type 2 diabetes mellitus using network pharmacology. Front. Pharmacol. 2023, 14, 1125753. [Google Scholar] [CrossRef]
- Butler, M.G. Imprinting disorders in humans: A review. Curr. Opin. Pediatr. 2020, 32, 719–729. [Google Scholar] [CrossRef]
- Jones, K.L.; Jones, M.C.; del Campo, M. Smith’s Recognizable Patterns of Human Malformation, 7th ed.; Elsevier-Saunders: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Davis, E.M.; Sandoval, D.A. Glucagon-Like Peptide-1: Actions and Influence on Pancreatic Hormone Function. Compr. Physiol. 2020, 10, 577–595. [Google Scholar] [CrossRef]
- Knudsen, L.B.; Lau, J. The Discovery and Development of Liraglutide and Semaglutide. Front. Endocrinol. 2019, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Jalleh, R.J.; Rayner, C.K.; Hausken, T.; Jones, K.L.; Camilleri, M.; Horowitz, M. Gastrointestinal effects of GLP-1 receptor agonists: Mechanisms, management, and future directions. Lancet Gastroenterol. Hepatol. 2024, 9, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Stumvoll, M.; Goldstein, B.J.; van Haeften, T.W. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet 2005, 365, 1333–1346. [Google Scholar] [CrossRef]
- Bima, A.I.H.; Elsamanoudy, A.Z.; Albaqami, W.F.; Khan, Z.; Parambath, S.V.; Al-Rayes, N.; Kaipa, P.R.; Elango, R.; Banaganapalli, B.; Shaik, N.A. Integrative system biology and mathematical modeling of genetic networks identifies shared biomarkers for obesity and diabetes. Math. Biosci. Eng. 2022, 19, 2310–2329. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Dai, F.F.; Gaisano, G.; Giglou, K.; Han, J.; Zhang, M.; Kittanakom, S.; Wong, V.; Wei, L.; Showalter, A.D.; et al. The identification of novel proteins that interact with the GLP-1 receptor and restrain its activity. Mol. Endocrinol. 2013, 27, 1550–1563. [Google Scholar] [CrossRef]
- Dong, W.; Bai, J.; Yuan, Q.; Zhang, Y.; Zhang, Y.; Zhang, Z.; Yang, M.; Li, H.; Zhao, Z.; Jiang, H. Mazdutide, a dual agonist targeting. GLP-1R and GCGR, mitigates diabetes-associated cognitive dysfunction: Mechanistic insights from multi-omics analysis. eBioMedicine 2025, 117, 105791. [Google Scholar] [CrossRef]
- Fernandez-Real, J.M.; Menendez, J.A.; Moreno-Navarrete, J.M.; Blüher, M.; Vazquez-Martin, A.; Vázquez, M.J.; Ortega, F.; Diéguez, C.; Frühbeck, G.; Ricart, W.; et al. Extracellular fatty acid synthase: A possible surrogate biomarker of insulin resistance. Diabetes 2010, 59, 1506–1511. [Google Scholar] [CrossRef]
- Scherer, P.E.; Hill, J.A. Obesity, Diabetes, and Cardiovascular Diseases: A Compendium. Circ. Res. 2016, 118, 1703–1705. [Google Scholar] [CrossRef]
- Babu, G.R.; Murthy, G.V.S.; Ana, Y.; Patel, P.; Deepa, R.; Neelon, S.E.B.; Kinra, S.; Reddy, K.S. Association of obesity with hypertension and type 2 diabetes mellitus in India: A meta-analysis of observational studies. Diabetes 2018, 9, 40–52. [Google Scholar] [CrossRef]
- Ghosh, P.; Fontanella, R.A.; Scisciola, L.; Pesapane, A.; Taktaz, F.; Franzese, M.; Puocci, A.; Ceriello, A.; Prattichizzo, F.; Rizzo, M.R.; et al. Targeting redox imbalance in neurodegeneration: Characterizing the role of GLP-1 receptor agonists. Theranostics 2023, 13, 4872–4884. [Google Scholar] [CrossRef]
- Kopp, K.O.; Glotfelty, E.J.; Li, Y.; Greig, N.H. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacol. Res. 2022, 186, 106550. [Google Scholar] [CrossRef]
- Butler, M.G.; McGuire, A.; Manzardo, A.M. Clinically relevant known and candidate genes for obesity and their overlap with human infertility and reproduction. J. Assist. Reprod. Genet. 2015, 32, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Wang, K.; Marshall, J.D.; Naggert, J.K.; Rethmeyer, J.A.; Gunewardena, S.S.; Manzardo, A.M. Coding and noncoding expression patterns associated with rare obesity-related disorders: Prader-Willi and Alström syndromes. Adv. Genom. Genet. 2015, 5, 53–75. [Google Scholar] [CrossRef] [PubMed]
- Al-Goblan, A.S.; Al-Alfi, M.A.; Khan, M.Z. Mechanism linking diabetes mellitus and obesity. Diabetes Metab. Syndr. Obes. 2014, 7, 587–591. [Google Scholar] [CrossRef] [PubMed]


| Protein Symbol | Description |
|---|---|
| GIP | Gastric inhibitory polypeptide is a stimulator of insulin secretion and a poor inhibitor of gastric acid secretion. |
| GCG | Glucagon is involved in glucose metabolism and homeostasis, with regulation of blood glucose by increasing gluconeogenesis and decreasing glycolysis, and plays an important role in appetite control. Glucagon is a counterregulatory hormone of insulin and raises plasma glucose levels in response to insulin-induced hypoglycemia. |
| GNAS | Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas or G protein function as transducers in the signaling pathways controlled by G protein-coupled receptors. Signaling involves the activation of adenylyl cyclase, which increases the levels of the signaling molecule cAMP and plays a role in several obesity-related genetic disorders with hormone disturbances. |
| VIP | Vasoactive intestinal peptide causes vasodilation, lowers blood pressure, stimulates myocardial contractility, increases glycogenolysis, and relaxes smooth muscle of the trachea, stomach, and gallbladder. |
| GNB1 | Guanine nucleotide-binding proteins (G proteins) serve as modulators or transducers in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity. |
| POMC | Proopiomelanocortin stimulates the adrenal glands to release cortisol and generates melanocyte-stimulating hormone beta that increases skin pigmentation by increasing melanin production in melanocytes. POMC is an important obesity-related hormone polypeptide impacting satiety in the hypothalamus. |
| DPP4 | Dipeptidyl peptidase 4 membrane form is a cell surface glycoprotein receptor involved in the costimulatory signal essential for T-cell-receptor-mediated T-cell activation. |
| ADCYAP1 | Pituitary adenylate cyclase-activating polypeptide 27 binds to its receptor, which causes the activation of G proteins and stimulates adenylate cyclase in pituitary cells. It promotes neuron projection development through the RAPGEF2/Rap1/B-Raf/ERK pathway. In chromaffin cells, it induces an increase in intracellular calcium concentrations and neuroendocrine secretion. It induces insulin secretion in pancreatic beta cells. |
| NPPA | Natriuretic peptide precursor A is a hormone significant in cardiovascular homeostasis through the regulation of natriuresis, diuresis, and vasodilation. |
| GLP2R | Glucagon-like peptide 2 receptor and activity mediated by G protein and adenylyl cyclase. |
| Biological Process (Gene Ontology) | A CIN | B Strength | C Signal | D FDR |
|---|---|---|---|---|
| Adenylate cyclase-activating G protein-coupled receptor signaling pathway | 7 of 145 | 1.94 | 3.57 | 3.56 × 10−9 |
| Adenylate cyclase-modulating G protein-coupled receptor signaling pathway | 8 of 232 | 1.79 | 3.39 | 1.08 × 10−9 |
| Regulation of hormone levels | 7 of 525 | 1.38 | 1.64 | 1.18 × 10−5 |
| G protein-coupled receptor signaling pathway | 10 of 1174 | 1.18 | 1.6 | 3.21 × 10−8 |
| Activation of adenylate cyclase activity | 3 of 31 | 2.24 | 1.53 | 0.0013 |
| Molecular Function | CIN | Strength | Signal | FDR |
| Glucagon receptor activity | 2 of 3 | 3.08 | 1.66 | 0.00100 |
| KEGG Pathway | CIN | Strength | Signal | FDR |
| cAMP signaling pathway | 8 of 207 | 1.84 | 4.04 | 9.48 × 10−12 |
| Insulin secretion | 5 of 82 | 2.04 | 3.27 | 7.56 × 10−8 |
| Neuroactive ligand-receptor interaction | 7 of 329 | 1.58 | 2.58 | 2.06 × 10−8 |
| Reactome Pathway | CIN | Strength | Signal | FDR |
| Glucagon-type ligand receptors | 8 of 33 | 2.64 | 8.05 | 6.35 × 10−17 |
| G alpha(s) signaling events | 9 of 157 | 2.01 | 5.39 | 1.06 × 10−14 |
| GPCR ligand bonding | 9 of 459 | 1.55 | 2.91 | 6.69 × 10−11 |
| Glucagon-like peptide-1 (GLP1) regulates insulin secretion | 4 of 42 | 2.23 | 2.85 | 2.15 × 10−6 |
| Disease-gene Association | CIN | Strength | Signal | FDR |
| Hypoglycemia | 4 of 22 | 2.51 | 2.88 | 3.58 × 10−6 |
| Hyperglycemia | 3 of 14 | 2.58 | 2.0 | 0.00020 |
| Type 2 diabetes mellitus | 3 of 25 | 2.33 | 1.7 | 0.00064 |
| Carbohydrate metabolic disorder | 4 of 268 | 1.43 | 1.0 | 0.0050 |
| Disease of metabolism | 6 of 1076 | 1.0 | 0.73 | 0.0050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francis, L.; Butler, M.G. Integrated Genetic and Protein Mechanisms Underlying Glucagon-like Peptide-1 Receptor Agonists in Treating Diabetes Mellitus and Weight Loss. Curr. Issues Mol. Biol. 2025, 47, 1007. https://doi.org/10.3390/cimb47121007
Francis L, Butler MG. Integrated Genetic and Protein Mechanisms Underlying Glucagon-like Peptide-1 Receptor Agonists in Treating Diabetes Mellitus and Weight Loss. Current Issues in Molecular Biology. 2025; 47(12):1007. https://doi.org/10.3390/cimb47121007
Chicago/Turabian StyleFrancis, Lucas, and Merlin G. Butler. 2025. "Integrated Genetic and Protein Mechanisms Underlying Glucagon-like Peptide-1 Receptor Agonists in Treating Diabetes Mellitus and Weight Loss" Current Issues in Molecular Biology 47, no. 12: 1007. https://doi.org/10.3390/cimb47121007
APA StyleFrancis, L., & Butler, M. G. (2025). Integrated Genetic and Protein Mechanisms Underlying Glucagon-like Peptide-1 Receptor Agonists in Treating Diabetes Mellitus and Weight Loss. Current Issues in Molecular Biology, 47(12), 1007. https://doi.org/10.3390/cimb47121007

