Abstract
To achieve a substantial enhancement in thermodynamic efficiency, Generation IV nuclear reactors are designed to operate at significantly elevated temperatures compared to conventional reactors. Moreover, they typically employ a fast neutron spectrum, characterized by higher neutron energy and flux. This combination results in a considerably more intense radiation environment within the core relative to traditional thermal neutron reactors. Therefore, the measurement of neutron flux in the core of Generation IV nuclear reactors faces the challenge of a high-temperature and high-radiation environment. Conventional neutron flux monitoring equipment—including fission chambers, gas ionization chambers, scintillator detectors, and silicon or germanium semiconductor detectors—faces considerable challenges in Generation IV reactor conditions. Under high temperatures and intense radiation, these sensors often experience severe performance degradation, significant signal distortion, or complete obliteration of the output signal by noise. This inherent limitation renders them unsuitable for the aforementioned applications. Consequently, significant global research efforts are focused on developing neutron detectors capable of withstanding high-temperature and high-irradiation environments. The objective is to enable accurate neutron flux measurements both inside and outside the reactor core, which are essential for obtaining key operational parameters. In summary, the four different types of neutron detectors have different performance characteristics and are suitable for different operating environments. This review focuses on 4H-SiC, diamond detectors, high-temperature fission chambers, and self-powered neutron detectors. It surveys recent research progress in high-temperature neutron flux monitoring, analyzing key technological aspects such as their high-temperature and radiation resistance, compact size, and high sensitivity. The article also examines their application areas, current development status, and offers perspectives on future research directions.