Development of Real-Time Water-Level Monitoring System for Agriculture
Abstract
1. Introduction
2. Related Works
3. Methods
4. System Architecture
4.1. System Requirements
4.2. Data Collection Layer
4.3. Network Layer
4.4. Storage and Integration Layer
4.5. Data Processing Layer
4.6. Data Access Layer (API—Application Programming Interface)
4.7. User Interface (UI/UX)
4.8. Water-Level Calculation Algorithm and Testing
- Measuring the Distance to the Water Surface: First, the built-in pulseIn() function is used to measure the time it takes for the ultrasonic signal to travel from the sensor to the water surface and back. Based on this time, the distance is calculated using the following formula:distance = (duration × SPEED_OF_SOUND)/2
- Calculating the Water Level: Since the sensor is installed at a specific height above the bottom or baseline (SENSOR_HEIGHT), the current water level is calculated as follows:water level = MAX_DISTANCE − (distance − SENSOR_HEIGHT)
- Calculating the Relative Water Level (as a Percentage): For easier visualization and monitoring, the water level is also expressed as a percentage of the maximum allowable value:water percentage = (water level/MAX_DISTANCE) × 100.0
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tursunova, A.; Medeu, A.; Alimkulov, S.; Saparova, A.; Baspakova, G. Water resources of Kazakhstan in conditions of uncertainty. J. Water Land Dev. 2022, 54, 138–149. [Google Scholar] [CrossRef]
- Prniyazova, A.; Turaeva, S.; Turgunov, D.; Jarihani, B. Sustainable Transboundary Water Governance in Central Asia: Challenges, Conflicts, and Regional Cooperation. Sustainability 2025, 17, 4968. [Google Scholar] [CrossRef]
- Yespolov, T.; Tireuov, K.; Kerimova, U. Water Resources in Agriculture of the Republic of Kazakhstan: A View of Scientists on Rational Use, Prospects and Management. Probl. AgriMarket 2022, 182, 155–163. [Google Scholar] [CrossRef]
- Imanbayeva, Z.; Abuselidze, G.; Bukharbayeva, A.; Jrauova, K.; Oralbayeva, A.; Kushenova, M. State Regulation of the Digital Transformation of Agribusiness in the Context of the Climate Crisis Intensification. Economies 2024, 12, 270. [Google Scholar] [CrossRef]
- Kusmambetov, K.D.; Suleimenova, S.Z. Water Resources as the Material Basis for Further Strategic Development of the Republic of Kazakhstan. J. Environ. Manag. Tour. 2022, 13, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Naseem, A.; Humphries, U.W.; Hlaing, P.T.; Dechpichai, P.; Wangwongchai, A. Applications of Machine Learning and Deep Learning in Agriculture: A Comprehensive Review. Green Technol. Sustain. 2025, 3, 100199. [Google Scholar] [CrossRef]
- Benos, L.; Makaritis, N.; Kolorizos, V. From Precision Agriculture to Agriculture 4.0: Integrating ICT in Farming. In Information and Communication Technologies for Agriculture—Theme III: Decision; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2022; Volume 184, pp. 79–93. [Google Scholar] [CrossRef]
- Walter, A.; Finger, R.; Huber, R.; Buchmann, N. Smart Farming Is Key to Developing Sustainable Agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, 6148–6150. [Google Scholar] [CrossRef]
- Diaz-Delgado, D.; Rodriguez, C.; Bernuy-Alva, A.; Navarro, C.; Inga-Alva, A. Optimization of Vegetable Production in Hydroculture Environments Using Artificial Intelligence: A Literature Review. Sustainability 2025, 17, 3103. [Google Scholar] [CrossRef]
- Komala, C.R.; Varalatchoumy, M.; Kulkarni, M.; Setty, S.; Kousar, H.; Boopathi, S. IoT-Driven Automation Systems for Hydroponic Agriculture. In Integrating Artificial Intelligence into the Energy Sector; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 357–378. [Google Scholar]
- Swain, K.P.; Mohapatra, S.K.; Sahoo, S.K. Enhancing Predictive Modeling across Industries with Automated Machine Learning: Applications in Insurance and Agriculture. Discov. Sustain. 2025, 6, 167. [Google Scholar] [CrossRef]
- Parra-López, C.; Ben Abdallah, S.; Garcia-Garcia, G.; Hassoun, A.; Trollman, H.; Jagtap, S.; Gupta, S.; Aït-Kaddour, A.; Makmuang, S.; Carmona-Torres, C. Digital Technologies for Water Use and Management in Agriculture: Recent Applications and Future Outlook. Agric. Water Manag. 2025, 309, 109347. [Google Scholar] [CrossRef]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision Support Systems for Agriculture 4.0: Survey and Challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Oğuztürk, G.E. AI-Driven Irrigation Systems for Sustainable Water Management: A Systematic Review and Meta-Analytical Insights. Smart Agric. Technol. 2025, 11, 100982. [Google Scholar] [CrossRef]
- Radmehr, A.; Bozorg-Haddad, O.; Loáiciga, H.A. Integrated Strategic Planning and Multi-Criteria Decision-Making Framework with Its Application to Agricultural Water Management. Sci. Rep. 2022, 12, 8406. [Google Scholar] [CrossRef]
- Alam, M.N.; Shufian, A.; Masum, M.A.A.; Noman, A.A. Efficient Smart Water Management System Using IoT Technology. In Proceedings of the 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI), Rajshahi, Bangladesh, 8–9 July 2021; pp. 1–6. [Google Scholar]
- Hien Than, N.; Dinh Ly, C.; Van Tat, P. The Performance of Classification and Forecasting Dong Nai River Water Quality for Sustainable Water Resources Management Using Neural Network Techniques. J. Hydrol. 2021, 596, 126099. [Google Scholar] [CrossRef]
- Gupta, A.D.; Pandey, P.; Feijóo, A.; Yaseen, Z.M.; Bokde, N.D. Smart Water Technology for Efficient Water Resource Management: A Review. Energies 2020, 13, 6268. [Google Scholar] [CrossRef]
- Hashemy Shahdany, S.M.; Taghvaeian, S.; Maestre, J.M.; Firoozfar, A.R. Developing a Centralized Automatic Control System to Increase Flexibility of Water Delivery within Predictable and Unpredictable Irrigation Water Demands. Comput. Electron. Agric. 2019, 163, 104862. [Google Scholar] [CrossRef]
- Hsia, S.C.; Wang, S.-H.; Hsu, S.-W. Smart Water-Meter Wireless Transmission System for Smart Cities. IEEE Consum. Electron. Mag. 2021, 10, 83–88. [Google Scholar] [CrossRef]
- Abiri, R.; Rizan, N.; Balasundram, S.K.; Shahbazi, A.B.; Abdul-Hamid, H. Application of Digital Technologies for Ensuring Agricultural Productivity. Heliyon 2023, 9, e22601. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Zambrano, P.V.; Tierra Pérez, L.P.; Ureta Valdez, R.E.; Flores Orozco, Á.P. Technological Innovations for Agricultural Production from an Environmental Perspective: A Review. Sustainability 2023, 15, 16100. [Google Scholar] [CrossRef]
- Addorisio, R.; Spadoni, R.; Maesano, G. Adoption of Innovative Technologies for Sustainable Agriculture: A Scoping Review of the System Domain. Sustainability 2025, 17, 4224. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Alvi, A. Web of Things and Trends in Agriculture: A Systematic Literature Review. arXiv 2023, arXiv:2306.09079. [Google Scholar] [CrossRef]
- Farah, A.A.; Mohamed, M.A.; Musse, O.S.H.; Nor, B.A. The Multifaceted Impact of Climate Change on Agricultural Productivity: A Systematic Literature Review of SCOPUS-Indexed Studies (2015–2024). Discov. Sustain. 2025, 6, 397. [Google Scholar] [CrossRef]
- Fathur Rahman, N.M.; Manjang, S.; Zainuddin, Z. Water Level Monitoring Using Ultrasonic-Pipe in Open Channel. In Proceedings of the 2017 15th International Conference on Quality in Research (QiR): International Symposium on Electrical and Computer Engineering, Bali, Indonesia, 24–27 July 2017; pp. 262–266. [Google Scholar]
- Krishnaveni, M.; Praveen Kumar, S.K.; Arul Muthusamy, E.; Kowshick, J.; Arunya, K.G. Real-Time Monitoring of Water Level and Storage Dynamics of Irrigation Tank Using IoT. H2Open J. 2020, 3, 392–400. [Google Scholar] [CrossRef]
- Zulkifli, C.Z.; Garfan, S.; Talal, M.; Alamoodi, A.H.; Alamleh, A.; Ahmaro, I.Y.Y.; Sulaiman, S.; Ibrahim, A.B.; Zaidan, B.B.; Ismail, A.R.; et al. IoT-Based Water Monitoring Systems: A Systematic Review. Water 2022, 14, 3621. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Papadopoulos, A.; Poulis, G.; Nikiforakis, E.; Dimitriou, E. Assessment of an Ultrasonic Water Stage Monitoring Sensor Operating in an Urban Stream. Sensors 2021, 21, 4689. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoneim, A.A.; Kimaita, H.N.; Al Kalaany, C.M.; Derardja, B.; Dragonetti, G.; Khadra, R. IoT Sensing for Advanced Irrigation Management: A Systematic Review of Trends, Challenges, and Future Prospects. Sensors 2025, 25, 2291. [Google Scholar] [CrossRef] [PubMed]
- Bae, I.; Ji, U. Outlier Detection and Smoothing Process for Water Level Data Measured by Ultrasonic Sensor in Stream Flows. Water 2019, 11, 951. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Konstantinidou, A.; Lazogiannis, K.; Papadopoulos, A.; Dimitriou, E. A New Automatic Monitoring Network of Surface Waters in Greece: Preliminary Data Quality Checks and Visualization. Hydrology 2021, 8, 33. [Google Scholar] [CrossRef]
- Alimenti, F.; Bonafoni, S.; Gallo, E.; Palazzi, V.; Vincenti Gatti, R.; Mezzanotte, P.; Roselli, L.; Zito, D.; Barbetta, S.; Corradini, C.; et al. Noncontact Measurement of River Surface Velocity and Discharge Estimation with a Low-Cost Doppler Radar Sensor. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5195–5207. [Google Scholar] [CrossRef]
- Catsamas, S.; Shi, B.; Wang, M.; Xiao, J.; Kolotelo, P.; McCarthy, D. A Low-Cost Radar-Based IoT Sensor for Noncontact Measurements of Water Surface Velocity and Depth. Sensors 2023, 23, 6314. [Google Scholar] [CrossRef]
- Chen, J.; Hung, W.-H.; Wu, K.-L. Estimation of Water Surface Velocity Using FMCW Radar with On-Chip Antenna. In Proceedings of the 2024 IEEE Asia-Pacific Microwave Conference (APMC), Bali, Indonesia, 17–20 November 2024; pp. 940–942. [Google Scholar]
- Vincenti Gatti, R.; Cicioni, G.; Spigarelli, A.; Orecchini, G.; Saltalippi, C.; Alimenti, F. A Dual-Mode FMCW-Doppler Radar with a Frequency Scanning Antenna for River Imaging Applications. IEEE Access 2024, 12, 86132–86143. [Google Scholar] [CrossRef]
- Pereira, T.S.R.; De Carvalho, T.P.; Mendes, T.A.; Formiga, K.T.M. Evaluation of Water Level in Flowing Channels Using Ultrasonic Sensors. Sustainability 2022, 14, 5512. [Google Scholar] [CrossRef]
- Zhao, T.; Song, C.; Yu, J.; Xing, L.; Xu, F.; Li, W.; Wang, Z. Leveraging Immersive Digital Twins and AI-Driven Decision Support Systems for Sustainable Water Reserves Management: A Conceptual Framework. Sustainability 2025, 17, 3754. [Google Scholar] [CrossRef]
- Wang, N.; Xing, X.; Liu, J. An Agricultural Big Data-Driven Supply Chain Risk Management and Decision Support System. In Proceedings of the 2025 4th International Conference on Big Data, Information and Computer Network, Guangzhou, China, 10–12 January 2025; pp. 227–232. [Google Scholar]
- Bouziane, S.; Aghoutane, B.; Moumen, A.; Sahlaoui, A.; El Ouali, A. The Use of Big Data in Water Resources Management. In Proceedings of the 2nd International Conference on Big Data, Modelling and Machine Learning, Kenitra, Morocco, 5–6 June 2021; pp. 38–44. [Google Scholar]
- Elhassan, J.; Aniss, M.; Jamal, C. Big Data Analytic Architecture for Water Resources Management: A Systematic Review. In Proceedings of the 4th Edition of International Conference on Geo-IT and Water Resources 2020, Geo-IT and Water Resources 2020, Al-Hoceima, Morocco, 11–12 March 2020; pp. 1–5. [Google Scholar]
- Shaohong, M.X.Q.X.J.S. An IoT-Based System for Water Resources Monitoring and Management. In Proceedings of the 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2015; pp. 365–368. [Google Scholar]
- Bouziane, S.; Aghoutane, B.; Moumen, A.; Sahlaoui, A.; El Ouali, A. Proposal of a Big Data System for an Intelligent Management of Water Resources. E3S Web Conf. 2021, 314, 02002. [Google Scholar] [CrossRef]
- Morgenthal, G.; Eick, J.F.; Rau, S.; Taraben, J. Wireless Sensor Networks Composed of Standard Microcomputers and Smartphones for Applications in Structural Health Monitoring. Sensors 2019, 19, 2070. [Google Scholar] [CrossRef] [PubMed]
- Sadirmekova, Z.; Sambetbayeva, M.; Daiyrbayeva, E.; Yerimbetova, A.; Altynbekova, Z.; Murzakhmetov, A. Constructing the Terminological Core of NLP Ontology. In Proceedings of the 2023 8th International Conference on Computer Science and Engineering (UBMK), Burdur, Turkiye, 13–15 September 2023; pp. 81–85. [Google Scholar] [CrossRef]
Feature/System | IoT-Based System | Big Data and IoT | Smart Metering | Our System |
---|---|---|---|---|
Real-time monitoring | Partial | Yes | Yes | Yes |
Low-cost hardware | No | No | No | Yes |
Solar-powered/autonomous | No | No | No | Partial |
Open-source technologies used | No | Partial | No | Partial |
Easy deployment and calibration | No | No | No | Yes |
Cloud integration and remote access | Yes | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borankulova, G.; Altybayev, G.; Tungatarova, A.; Yeraliyeva, B.; Dulatbayeva, S.; Murzakhmetov, A.; Bekbolatov, S. Development of Real-Time Water-Level Monitoring System for Agriculture. Sensors 2025, 25, 5564. https://doi.org/10.3390/s25175564
Borankulova G, Altybayev G, Tungatarova A, Yeraliyeva B, Dulatbayeva S, Murzakhmetov A, Bekbolatov S. Development of Real-Time Water-Level Monitoring System for Agriculture. Sensors. 2025; 25(17):5564. https://doi.org/10.3390/s25175564
Chicago/Turabian StyleBorankulova, Gaukhar, Gabit Altybayev, Aigul Tungatarova, Bakhyt Yeraliyeva, Saltanat Dulatbayeva, Aslanbek Murzakhmetov, and Samat Bekbolatov. 2025. "Development of Real-Time Water-Level Monitoring System for Agriculture" Sensors 25, no. 17: 5564. https://doi.org/10.3390/s25175564
APA StyleBorankulova, G., Altybayev, G., Tungatarova, A., Yeraliyeva, B., Dulatbayeva, S., Murzakhmetov, A., & Bekbolatov, S. (2025). Development of Real-Time Water-Level Monitoring System for Agriculture. Sensors, 25(17), 5564. https://doi.org/10.3390/s25175564