Continuous Biopotential Monitoring via Carbon Nanotubes Paper Composites (CPC) for Sustainable Health Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of CPC Electrodes
2.3. Validation of Biopotentials with an EOG, ECG, and EEG System
2.4. Data Acquisition via Commercial Medical Devices
2.5. Signal-to-Noise Ratio
3. Results
3.1. Overview of CPC System Fabrication
3.2. Evaluation of the CPC Coating Layer via the EOG System
3.3. Characterization of the CPC Electrode System
3.4. Signal-Processing Algorithms for Monitoring ECG and Applications
3.5. EEG Measurement and Sleep Monitoring Application
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, Y.S.; Mahmood, M.; Lee, Y.; Kim, N.K.; Kwon, S.; Herbert, R.; Kim, D.; Cho, H.C.; Yeo, W.H. All-in-one, wireless, stretchable hybrid electronics for smart, connected, and ambulatory physiological monitoring. Adv. Sci. 2019, 6, 1900939. [Google Scholar] [CrossRef]
- Tian, L.; Zimmerman, B.; Akhtar, A.; Yu, K.J.; Moore, M.; Wu, J.; Larsen, R.J.; Lee, J.W.; Li, J.; Liu, Y. Large-area mri-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 2019, 3, 194–205. [Google Scholar] [CrossRef]
- Park, J.; Choi, S.; Janardhan, A.H.; Lee, S.-Y.; Raut, S.; Soares, J.; Shin, K.; Yang, S.; Lee, C.; Kang, K.-W. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl. Med. 2016, 8, 344ra386. [Google Scholar] [CrossRef]
- Norton, J.J.; Lee, D.S.; Lee, J.W.; Lee, W.; Kwon, O.; Won, P.; Jung, S.-Y.; Cheng, H.; Jeong, J.-W.; Akce, A. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proc. Natl. Acad. Sci. USA 2015, 112, 3920–3925. [Google Scholar] [CrossRef]
- Kim, H.; Kim, Y.S.; Mahmood, M.; Kwon, S.; Zavanelli, N.; Kim, H.S.; Rim, Y.S.; Epps, F.; Yeo, W.H. Fully integrated, stretchable, wireless skin-conformal bioelectronics for continuous stress monitoring in daily life. Adv. Sci. 2020, 7, 2000810. [Google Scholar] [CrossRef] [PubMed]
- Prajith, R.; Ganesan, R.; Gobalakrishnan, S. Design of electroencephalogram sensor for long-term bio-signal measurement. Int. J. Latest Trends Eng. Technol. 2013, 2, 198–206. [Google Scholar]
- Wang, L.; Dou, W.; Chen, J.; Lu, K.; Zhang, F.; Abdulaziz, M.; Su, W.; Li, A.; Xu, C.; Sun, Y. A cnt-pdms wearable device for simultaneous measurement of wrist pulse pressure and cardiac electrical activity. Mater. Sci. Eng. C 2020, 117, 111345. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liu, S.; Shu, L.; Tao, X.-M. Low-dimensional carbon based sensors and sensing network for wearable health and environmental monitoring. Carbon 2017, 121, 353–367. [Google Scholar] [CrossRef]
- Sang, Z.; Ke, K.; Manas-Zloczower, I. Design strategy for porous composites aimed at pressure sensor application. Small 2019, 15, 1903487. [Google Scholar] [CrossRef]
- Zhou, C.-G.; Sun, W.-J.; Jia, L.-C.; Xu, L.; Dai, K.; Yan, D.-X.; Li, Z.-M. Highly stretchable and sensitive strain sensor with porous segregated conductive network. ACS Appl. Mater. Interfaces 2019, 11, 37094–37102. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liang, B.; Ye, Z.; Zhang, L.; Xu, S.; Tu, T.; Zhang, Y.; Cai, Y.; Zhang, B.; Fang, L. An integrated and conductive hydrogel-paper patch for simultaneous sensing of chemical–electrophysiological signals. Biosens. Bioelectron. 2022, 198, 113855. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Mativetsky, J.M. Based mechanical sensors enabled by folding and stacking. ACS Appl. Mater. Interfaces 2019, 11, 26339–26345. [Google Scholar] [CrossRef]
- Li, T.Y.; Sakthivelpathi, V.; Qian, Z.J.; Kahng, S.J.; Ahn, S.; Dichiara, A.B.; Manohar, K.; Chung, J.H. Ultrasensitive capacitive sensor composed of nanostructured electrodes for human-machine interface. Adv. Mater. Technol. 2022, 7, 2101704. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Lee, G.Y.; Cerwyn, C.; Yang, J.K.; Fondjo, F.; Kim, J.H.; Taya, M.; Gao, D.Y.; Chung, J.H. Fracture-induced mechanoelectrical sensitivities of paper-based nanocomposites. Adv. Mater. Technol. 2018, 3, 1700266. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, X. Capacitive biopotential measurement for electrophysiological signal acquisition: A review. Ieee Sens. J. 2016, 16, 2832–2853. [Google Scholar] [CrossRef]
- Kim, D.Y.; Han, C.-H.; Im, C.-H. Development of an electrooculogram-based human-computer interface using involuntary eye movement by spatially rotating sound for communication of locked-in patients. Sci. Rep. 2018, 8, 9505. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Tompkins, W.J. A real-time qrs detection algorithm. IEEE Trans. Biomed. Eng. 1985, 3, 230–236. [Google Scholar] [CrossRef]
- Chen, J.; Chang, Z.; Qiu, Q.; Li, X.; Sapiro, G.; Bronstein, A.; Pietikäinen, M. Realsense = real heart rate: Illumination invariant heart rate estimation from videos. In Proceedings of the 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA), Oulu, Finland, 12–15 December 2016; pp. 1–6. [Google Scholar]
- Al-Harbi, L.M.; Darwish, M.S.; Khowdiary, M.M.; Stibor, I. Controlled preparation of thermally stable fe-poly (dimethylsiloxane) composite by magnetic induction heating. Polymers 2018, 10, 507. [Google Scholar] [CrossRef]
- Ban, S.; Lee, Y.J.; Kim, K.R.; Kim, J.-H.; Yeo, W.-H. Advances in materials, sensors, and integrated systems for monitoring eye movements. Biosensors 2022, 12, 1039. [Google Scholar] [CrossRef]
- Shvedova, A.A.; Kisin, E.R.; Mercer, R.; Murray, A.R.; Johnson, V.J.; Potapovich, A.I.; Tyurina, Y.Y.; Gorelik, O.; Arepalli, S.; Schwegler-Berry, D. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2005, 289, L698–L708. [Google Scholar] [CrossRef]
- Dalla Colletta, A.; Pelin, M.; Sosa, S.; Fusco, L.; Prato, M.; Tubaro, A. Carbon-based nanomaterials and skin: An overview. Carbon 2022, 196, 683–698. [Google Scholar] [CrossRef]
- Ban, S.; Lee, Y.J.; Kwon, S.; Kim, Y.-S.; Chang, J.W.; Kim, J.-H.; Yeo, W.-H. Soft wireless headband bioelectronics and electrooculography for persistent human–machine interfaces. ACS Appl. Electron. Mater. 2023, 5, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Maithani, Y.; Choudhuri, B.; Mehta, B.; Singh, J. Self-adhesive, stretchable, and dry silver nanorods embedded polydimethylsiloxane biopotential electrodes for electrocardiography. Sens. Actuators A Phys. 2021, 332, 113068. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J.; Chicas, R.; Xiuhtecutli, N.; Matthews, J.; Zavanelli, N.; Kwon, S.; Lee, S.H.; Hertzberg, V.S.; Yeo, W.H. Soft wireless bioelectronics designed for real-time, continuous health monitoring of farmworkers. Adv. Healthc. Mater. 2022, 11, 2200170. [Google Scholar] [CrossRef]
- Peng, G.; Ignjatovic, Z.; Bocko, M.F. Preamplifiers for non-contact capacitive biopotential measurements. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 1482–1485. [Google Scholar]
- Ng, C.L.; Reaz, M.B.I. Evolution of a capacitive electromyography contactless biosensor: Design and modelling techniques. Measurement 2019, 145, 460–471. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban, S.; Lee, C.W.; Sakthivelpathi, V.; Chung, J.-H.; Kim, J.-H. Continuous Biopotential Monitoring via Carbon Nanotubes Paper Composites (CPC) for Sustainable Health Analysis. Sensors 2023, 23, 9727. https://doi.org/10.3390/s23249727
Ban S, Lee CW, Sakthivelpathi V, Chung J-H, Kim J-H. Continuous Biopotential Monitoring via Carbon Nanotubes Paper Composites (CPC) for Sustainable Health Analysis. Sensors. 2023; 23(24):9727. https://doi.org/10.3390/s23249727
Chicago/Turabian StyleBan, Seunghyeb, Chang Woo Lee, Vigneshwar Sakthivelpathi, Jae-Hyun Chung, and Jong-Hoon Kim. 2023. "Continuous Biopotential Monitoring via Carbon Nanotubes Paper Composites (CPC) for Sustainable Health Analysis" Sensors 23, no. 24: 9727. https://doi.org/10.3390/s23249727
APA StyleBan, S., Lee, C. W., Sakthivelpathi, V., Chung, J.-H., & Kim, J.-H. (2023). Continuous Biopotential Monitoring via Carbon Nanotubes Paper Composites (CPC) for Sustainable Health Analysis. Sensors, 23(24), 9727. https://doi.org/10.3390/s23249727