Magnesium Zirconate Titanate Thin Films Used as an NO2 Sensing Layer for Gas Sensor Applications Developed Using a Sol–Gel Method
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, S.; Guo, J.; Sun, J.; Tang, P.; Chen, A.; Luo, R.; Li, D. Enhancement of NO2-sensing performance at room temperature by graphene-modified polythiophene. Ind. Eng. Chem. Res. 2016, 55, 5788–5794. [Google Scholar] [CrossRef]
- Gawali, S.R.; Patil, V.L.; Deonikar, V.G.; Patil, S.S.; Patil, D.R.; Patil, P.S.; Pant, J. Ce doped NiO nanoparticles as selective NO2 gas sensor. J. Phys. Chem. Solids 2018, 114, 28–35. [Google Scholar] [CrossRef]
- Wong, M.L.; Charnay, B.D.; Gao, P.; Yung, Y.L.; Russell, M.J. Nitrogen oxides in early earth’s atmosphere as electron acceptors for life’s emergence. Astrobiology 2017, 17, 975–983. [Google Scholar] [CrossRef]
- Su, P.G.; Yu, J.H. Enhanced NO2 gas-sensing properties of Au-Ag bimetal decorated MWCNTs/WO3 composite sensor under UV-LED irradiation. Sens. Actuators A Phys. 2020, 303, 111718. [Google Scholar] [CrossRef]
- Ou, J.Z.; Ge, W.; Carey, B.; Daeneke, T.; Rotbart, A.; Shan, W.; Wang, Y.; Fu, Z.; Chrimes, A.F.; Wlodarski, W.; et al. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano 2015, 9, 10313–10323. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Low-voltage-driven sensors based on ZnO nanowires for room-temperature detection of NO2 and CO gases. ACS Appl. Mater. Interfaces 2019, 11, 24172–24183. [Google Scholar] [CrossRef]
- Li, Z.; Yan, S.; Sun, M.; Li, H.; Wu, Z.; Wang, J.; Shen, W.; Fu, Y.Q. Significantly enhanced temperature-dependent selectivity for NO2 and H2S detection based on In2O3 nano-cubes prepared by CTAB assisted solvothermal process. J. Alloy. Compd. 2020, 816, 152518. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Z.; Ding, H.; Wei, Y.; Huang, W.; Yang, X.; Li, Z.; Qiu, L.; Wang, X. Flexible, 3D SnS2/reduced graphene oxide heterostructured NO2 sensor. Sens. Actuators B Chem. 2020, 305, 127445. [Google Scholar] [CrossRef]
- Ghosh, S.; Adak, D.; Bhattacharyya, R.; Mukherjeee, N. ZnO/r-Fe2O3 charge transfer interface toward highly selective H2S sensing at a low operating temperature of 30 degrees C. ACS Sens. 2017, 2, 1831–1838. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-L.; Wang, S.-Y.; Chen, Y.-B.; Li, B.-J.; Lin, Y.-H. Investigation of the electrical properties of metal-oxide-metal structures formed from RF magnetron sputtering deposited MgTiO3 films. Curr. Appl. Phys. 2012, 12, 935–939. [Google Scholar] [CrossRef]
- Huang, C.-L.; Tsai, C.-M.; Yang, A.; Hsu, A. Compact 5.8-GHz bandpass filter using stepped-impedance dielectric resonators for ISM band wireless communication. Microw. Opt. Technol. Lett. 2005, 44, 421–423. [Google Scholar] [CrossRef]
- Bernard, J.; Houivet, D.; Fallah, J.E.; Haussonne, J.M. MgTiO3 for Cu base metal multilayer ceramic capacitors. J. Eur. Ceram. Soc. 2004, 24, 1877–1881. [Google Scholar] [CrossRef]
- Lee, D.Y.; Wang, S.Y.; Tseng, T.Y. Ti-induced recovery phenomenon of resistive switching in ZrO2 thin films. J. Electrochem. Soc. 2010, 157, G166–G169. [Google Scholar] [CrossRef]
- Porter, D.L.; Evans, A.G.; Heuer, A.I. Transformation-toughening in partially-stabilized ztrconia (PSZ). Acta Metall. 1979, 27, 1649–1654. [Google Scholar] [CrossRef]
- Spirig, J.V.; Ramamoorthy, R.; Akbar, S.A.; Roubort, J.L.; Singh, D.; Dutta, P.K. High temperature zirconia oxygen senseor with sealed metal/metal oxide internal reference. Sens. Actuators B Chem. 2007, 124, 192–201. [Google Scholar] [CrossRef]
- Fleming, W.J. Physical principles governing nonideal behavior of the zirconia oxygen sensor. J. Electrochem. Soc. 1977, 124, 21–28. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Liu, A.; You, R.; Liu, F.; Li, S.; Zhao, L.; Jin, R.; He, J.; Yang, Z.; et al. High-response mixed-potential type planar YSZ-based NO2 sensor coupled with CoTiO3 sensing electrode. Sens. Actuators B Chem. 2019, 287, 185–190. [Google Scholar] [CrossRef]
- Diao, Q.; Zhang, X.; Li, J.; Yin, Y.; Jiao, M.; Cao, J.; Su, C.; Yang, K. Improved sensing performances of NO2 sensors based on YSZ and porous sensing electrode prepared by MnCr2O4 admixed with phenol-formaldehyderesin microspheres. Ionics 2019, 25, 6043–6050. [Google Scholar] [CrossRef]
- Mohammadia, M.R.; Frayb, D.J. Synthesis and characterisation of nanosized TiO2-ZrO2 binary system prepared by an aqueous sol-gel process: Physical and sensing properties. Sens. Actuators B Chem. 2011, 155, 568–576. [Google Scholar] [CrossRef]
- Miura, N.; Kurosawa, H.; Hasei, M.; Lu, G.; Yamazoe, N. Stabilized zirconia-based sensor using oxide electrode for detection of NOx in high-temperature combustion-exhausts. Solid State Ion. 1996, 86–88, 1069–1073. [Google Scholar] [CrossRef]
- Bang, J.H.; Lee, N.; Mirzaei, A.; Choi, M.S.; Choi, H.; Jeona, H.; Kime, S.S.; Kima, H.W. Exploration of ZrO2-shelled nanowires for chemiresistive detection of NO2 gas. Sens. Actuators B Chem. 2020, 319, 128309. [Google Scholar] [CrossRef]
- Myasoedova, T.N.; Mikhailova, T.S.; Yalovega, G.E.; Plugotarenko, N.K. Resistive low-temperature sensor based on the SiO2ZrO2 film for detection of high concentrations of NO2 gas. Chemosensors 2018, 6, 67. [Google Scholar] [CrossRef]
- Yan, Y.; Ma, Z.; Sun, J.; Bu, M.; Huo, Y.; Wang, Z.; Li, Y.; Hu, N. Surface microstructure-controlled ZrO2 for highly sensitive room-temperature NO2 sensors. Nano Mater. Sci. 2021. [Google Scholar] [CrossRef]
- Huang, X.J.; Xin, Y.A.N.; Wu, H.Y.; Ying, F.A.N.G.; Min, Y.H.; Li, W.S.; Wang, S.Y.; Wu, Z.J. Preparation of Zr-doped CaTiO3 with enhanced charge separation efficiency and photocatalytic activity. Trans. Nonferrous Met. Soc. China 2016, 26, 464–471. [Google Scholar] [CrossRef]
- Hu, C.C.; Chiu, C.A.; Yu, C.H.; Xu, J.X.; Wu, T.Y.; Sze, P.W.; Wu, C.L.; Wang, Y.H. Liquid-phase-deposited high dielectric zirconium oxide for metal-oxide-semiconductor high electron mobility transistors. Vacuum 2015, 118, 142–146. [Google Scholar] [CrossRef]
- Mazlan, N.S.; Ramli, M.M.; Abdullah, M.M.A.B.; Halin, D.C.; Isa, S.M.; Talip, L.F.A.; Danial, N.S.; Murad, S.Z. Interdigitated electrodes as impedance and capacitance biosensors: A review. AIP Conf. Proc. 2017, 1885, 020276. [Google Scholar]
- Mao, L.; Zhu, H.; Chen, L.; Zhou, H.; Yuan, G.; Song, C. Enhancement of corrosion resistance and biocompatibility of Mg-Nd-Zn-Zr alloy achieved with phosphate coating for vascular stent application. J. Mater. Res. Technol. 2020, 9, 6409–6419. [Google Scholar] [CrossRef]
- Bharti, B.; Kumar, S.; Lee, H.N.; Kumar, R. Formation of oxygen vacancies and Ti(3+) state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 2016, 6, 32355. [Google Scholar] [CrossRef]
- Tan, H.; Zhao, Z.; Zhu, W.B.; Coker, E.N.; Li, B.; Zheng, M.; Yu, W.; Fan, H.; Sun, Z. Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO(3). ACS Appl. Mater. Interfaces 2014, 6, 19184–19190. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Wu, Z.; Wang, M.; Luo, J.; Torun, H.; Hu, P.; Yang, C.; Grundmann, M.; Liu, X.; et al. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horiz. 2019, 6, 470–506. [Google Scholar] [CrossRef]
- Chougule, M.A.; Sen, S.; Patil, V.B. Fabrication of nanostructured ZnO thin film sensor for NO2 monitoring. Ceram. Int. 2012, 38, 2685–2692. [Google Scholar] [CrossRef]
- Navale, Y.H.; Navale, S.T.; Galluzzi, M.; Stadler, F.J.; Debnath, A.K.; Ramgir, N.S.; Gadkari, S.C.; Gupta, S.K.; Aswal, D.K.; Patil, V.B. Rapid synthesis strategy of CuO nanocubes for sensitive and selective detection of NO2. J. Alloy. Compd. 2017, 708, 456–463. [Google Scholar] [CrossRef]
- Patil, V.L.; Vanalakar, S.A.; Shendage, S.S.; Patil, S.P.; Kamble, A.S.; Tarwal, N.L.; Sharma, K.K.; Kim, J.H.; Patil, P.S. Fabrication of nanogranular TiO2 thin films by SILAR technique: Application for NO2 gas sensor. Inorg. Nano-Met. Chem. 2019, 49, 191–197. [Google Scholar] [CrossRef]
- Li, Y.; Song, Z.; Li, Y.; Chen, S.; Li, S.; Li, Y.; Wang, H.; Wang, Z. Hierarchical hollow MoS2 microspheres as materials for conductometric NO2 gas sensors. Sens. Actuators B Chem. 2019, 282, 259–267. [Google Scholar] [CrossRef]
- Jiang, X.; Tai, H.; Ye, Z.; Yuan, Z.; Liu, C.; Su, Y.; Jiang, Y. Novel p-n heterojunction-type rGO/CeO2 bilayer membrane for room-temperature nitrogen dioxide detection. Mater. Lett. 2017, 186, 49–52. [Google Scholar] [CrossRef]
- Jeong, H.-S.; Park, M.-J.; Kwon, S.-H.; Joo, H.-J.; Song, S.-H.; Kwon, H.-I. Low temperature NO2 sensing properties of RF-sputtered SnO-SnO2 heterojunction thin-film with p-type semiconducting behavior. Ceram. Int. 2018, 44, 17283–17289. [Google Scholar] [CrossRef]
- Prades, J.D.; Jiménez-Díaz, R.; Hernandez-Ramirez, F.; Barth, S.; Cirera, A.; Romano-Rodriguez, A.; Mathur, S.; Morante, J.R. Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires. Sens. Actuators B Chem. 2009, 140, 337–341. [Google Scholar] [CrossRef]
Sensing Elements | Method of Preparation | Concentration (ppm) | Operating Temperature (°C) | Sensitivity (%) | Response Time (s) | Recovery Time (s) | Detection Limit (ppm) | Ref. |
---|---|---|---|---|---|---|---|---|
ZnO film | Sol-Gel | 20 | 200 | 11 | 14 | 35 | - | [31] |
Cuo thin fiim | Thermal Evaporation | 100 | 150 | 0.76 | 9 | 1200 | 1 | [32] |
TiO2 thin fiim | SILAR | 100 | 250 | 12.78 | - | - | - | [33] |
2D Graphene/MoS2 | CVD | 5 | 150 | 8 | - | - | 0.5 | [34] |
CeO2/rGO membrane | Spray | 10 | RT | 20.5 | 92 | - | 1 | [35] |
SnO/SnO2 thin film | RF Sputtering | 10 | 60 | 4.35 | 165 | 329 | 1 | [36] |
SnO2 nanowire | CVD | 10 | RT | 1 | 60 | - | 0.1 | [37] |
MZT thin film | Sol-Gel | 2.5 | 150 | 23.0 | 77 | 122 | 0.25 | ThisWork |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.-S.; Lee, K.-J.; Wang, Y.-H. Magnesium Zirconate Titanate Thin Films Used as an NO2 Sensing Layer for Gas Sensor Applications Developed Using a Sol–Gel Method. Sensors 2021, 21, 2825. https://doi.org/10.3390/s21082825
Huang P-S, Lee K-J, Wang Y-H. Magnesium Zirconate Titanate Thin Films Used as an NO2 Sensing Layer for Gas Sensor Applications Developed Using a Sol–Gel Method. Sensors. 2021; 21(8):2825. https://doi.org/10.3390/s21082825
Chicago/Turabian StyleHuang, Pei-Shan, Ke-Jing Lee, and Yeong-Her Wang. 2021. "Magnesium Zirconate Titanate Thin Films Used as an NO2 Sensing Layer for Gas Sensor Applications Developed Using a Sol–Gel Method" Sensors 21, no. 8: 2825. https://doi.org/10.3390/s21082825
APA StyleHuang, P.-S., Lee, K.-J., & Wang, Y.-H. (2021). Magnesium Zirconate Titanate Thin Films Used as an NO2 Sensing Layer for Gas Sensor Applications Developed Using a Sol–Gel Method. Sensors, 21(8), 2825. https://doi.org/10.3390/s21082825