Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,293)

Search Parameters:
Keywords = thin film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1613 KB  
Article
Dual-Functional Polyurethane Sponge-Based Pressure Sensors Incorporating BZT/BTO, Polypyrrole, and Carbon Nanotubes with Energy Generation Capability
by Nurhan Onar Camlibel and Baljinder K. Kandola
Polymers 2026, 18(2), 241; https://doi.org/10.3390/polym18020241 - 16 Jan 2026
Abstract
Flexible and wearable pressure sensors are essential for monitoring of human motion and are distinguished by their increased sensitivity and outstanding mechanical robustness. In this study, we systematically engineered a flexible and wearable pressure sensor with a multilayer conductive architecture, arranging a sponge [...] Read more.
Flexible and wearable pressure sensors are essential for monitoring of human motion and are distinguished by their increased sensitivity and outstanding mechanical robustness. In this study, we systematically engineered a flexible and wearable pressure sensor with a multilayer conductive architecture, arranging a sponge substrate coated in a consecutive manner with a barium zirconium titanate thin film, followed by polypyrrole, multiwalled carbon nanotubes, and eventually polydimethylsiloxane. The foundation of additional conductive pathways is enabled via the utilization of a porous framework and the hierarchical arrangement, causing the achievement of an excellent sensitivity of 9.71 kPa–1 (0–9 kPa), a rapid 40 ms response time, and a fast 60 ms recovery period, combined with a particularly low detection limit (125 Pa) and an extended pressure range from 0 to 225 kPa. Furthermore, the integration of a rough and porous barium zirconium titanate/barium titanate thin film is expected to deliver a voltage output (1.25 V) through piezoelectric working mechanisms. This study possesses the potential to provide an innovative architecture design for advancing the development of future electronic devices for health and sports monitoring. Full article
(This article belongs to the Special Issue Advanced Polymers in Sensor Applications)
12 pages, 1660 KB  
Article
Long-Term Stable Biosensing Using Multiscale Biostructure-Preserving Metal Thin Films
by Kenshin Takemura, Taisei Motomura and Yuko Takagi
Biosensors 2026, 16(1), 63; https://doi.org/10.3390/bios16010063 - 16 Jan 2026
Abstract
Microparticle detection technology uses materials that can specifically recognize complex biostructures, such as antibodies and aptamers, as trapping agents. The development of antibody production technology and simplification of sensing signal output methods have facilitated commercialization of disposable biosensors, making rapid diagnosis possible. Although [...] Read more.
Microparticle detection technology uses materials that can specifically recognize complex biostructures, such as antibodies and aptamers, as trapping agents. The development of antibody production technology and simplification of sensing signal output methods have facilitated commercialization of disposable biosensors, making rapid diagnosis possible. Although this contributed to the early resolution of pandemics, traditional biosensors face issues with sensitivity, durability, and rapid response times. We aimed to fabricate microspaces using metallic materials to further enhance durability of mold fabrication technologies, such as molecular imprinting. Low-damage metal deposition was performed on target protozoa and Norovirus-like particles (NoV-LPs) to produce thin metallic films that adhere to the material. The procedure for fitting the object into the bio structured space formed on the thin metal film took less than a minute, and sensitivity was 10 fg/mL for NoV-LPs. Furthermore, because it was a metal film, no decrease in reactivity was observed even when the same substrate was stored at room temperature and reused repeatedly after fabrication. These findings underscore the potential of integrating stable metallic structures with bio-recognition elements to significantly enhance robustness and reliability of environmental monitoring. This contributes to public health strategies aimed at early detection and containment of infectious diseases. Full article
(This article belongs to the Special Issue Advanced Electrochemical Biosensors and Their Applications)
Show Figures

Figure 1

21 pages, 4861 KB  
Article
Synthesis and Characterization of ITO Films via Forced Hydrolysis for Surface Functionalization of PET Sheets
by Silvia del Carmen Madrigal-Diaz, Laura Cristel Rodríguez-López, Isaura Victoria Fernández-Orozco, Saúl García-López, Cecilia del Carmen Díaz-Reyes, Claudio Martínez-Pacheco, José Luis Cervantes-López, Ibis Ricárdez-Vargas and Laura Lorena Díaz-Flores
Coatings 2026, 16(1), 120; https://doi.org/10.3390/coatings16010120 - 16 Jan 2026
Abstract
Transparent conductive oxides (TCOs), such as indium tin oxide (ITO), are essential for flexible electronics; however, conventional vacuum-based deposition is costly and thermally aggressive for polymers. This study investigated the surface functionalization of PET substrates with ITO thin film-based forced hydrolysis as a [...] Read more.
Transparent conductive oxides (TCOs), such as indium tin oxide (ITO), are essential for flexible electronics; however, conventional vacuum-based deposition is costly and thermally aggressive for polymers. This study investigated the surface functionalization of PET substrates with ITO thin film-based forced hydrolysis as a low-cost, reproducible alternative. SnO2 nanoparticles were synthesized by forced hydrolysis at 180 °C for 3 h and 6 h, yielding crystalline nanoparticles with a cassiterite phase and an average crystallite size of 20.34 nm. The process showed high reproducibility, enabling consistent structural properties without complex equipment or high-temperature treatments. The SnO2 sample obtained at 3 h was incorporated into commercial In2O3 to form a mixed In–Sn–O oxide, which was subsequently deposited onto PET substrates by spin coating onto UV-activated PET. The resulting 1.1 µm ITO films demonstrated good adhesion (4B according to ASTM D3359), a low resistivity of 1.27 × 10−6 Ω·m, and an average optical transmittance of 80% in the visible range. Although their resistivity is higher than vacuum-processed films, this route provides a superior balance of mechanical robustness, featuring a hardness of (H) of 3.8 GPa and an elastic modulus (E) of 110 GPa. These results highlight forced hydrolysis as a reproducible route for producing ITO/PET thin films. The thickness was strategically optimized to act as a structural buffer, preventing crack propagation during bending. Forced hydrolysis-driven PET sheet functionalization is an effective route for producing durable ITO/PET electrodes that are suitable for flexible sensors and solar cells. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

22 pages, 1324 KB  
Article
Dissolvable Face Mask with Liposomal Licorice Extract and Kojic Acid: An Innovative Approach for Skin Brightening
by Theerada Taesotikul, Supusson Pengnam, Thapakorn Charoenying, Boonnada Pamornpathomkul, Prin Chaksmithanont, Prasopchai Patrojanasophon and Chaiyakarn Pornpitchanarong
Cosmetics 2026, 13(1), 21; https://doi.org/10.3390/cosmetics13010021 - 14 Jan 2026
Abstract
This study developed a biodegradable dissolvable face mask incorporating liposomal kojic acid (KA) and licochalcone A from licorice extract (LE) to enhance skin delivery and performance. Liposomes were prepared by thin-film hydration method. The film matrix, composed of PVA/PVP/PEG400/HA, was optimized using factorial [...] Read more.
This study developed a biodegradable dissolvable face mask incorporating liposomal kojic acid (KA) and licochalcone A from licorice extract (LE) to enhance skin delivery and performance. Liposomes were prepared by thin-film hydration method. The film matrix, composed of PVA/PVP/PEG400/HA, was optimized using factorial design to achieve suitable mechanical strength and rapid dissolution. The optimized mask, containing liposomal KA (1% w/v) and licochalcone A (0.025% w/v), was evaluated for antioxidant activity, ex vivo skin deposition, and short-term efficacy (Approval from the Institutional Review Board of Silpakorn University, Thailand; Ethics Approval No. REC 67.1001-146-7726/COA 68.0320-013 Date of registration: 20 March 2025). The optimized liposomes exhibited a mean particle size of 66–72 nm, entrapment efficiency above 65%, and a zeta potential of −12.5 mV (licochalcone A) and −1.67 mV (KA). Liposomal licochalcone A and KA showed potent antioxidant activity compared to their native forms. The optimized film dissolved within approximately 15 min on moist skin and showed favorable handling properties. Ex vivo studies revealed significantly higher skin deposition of both KA and licochalcone A from the liposomal mask compared with free and liposomal dispersions (p < 0.05). In a 7-day clinical evaluation, the mask significantly improved skin hydration and reduced melanin index (p < 0.05). No irritation or adverse reactions were observed, and user satisfaction was high. This liposomal dissolvable mask offered an effective, well-tolerated, and eco-friendly approach to enhancing skin brightness and hydration, supporting its potential as a sustainable cosmeceutical innovation. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Graphical abstract

15 pages, 3324 KB  
Article
Tuning Oxygen Reduction Kinetics in LaSrCoO4 with Strained Epitaxial Thin Films and Wrinkled Freestanding Membranes
by Habib Rostaghi Chalaki, Ebenezer Seesi, Mohammad El Loubani and Dongkyu Lee
Ceramics 2026, 9(1), 7; https://doi.org/10.3390/ceramics9010007 - 14 Jan 2026
Viewed by 42
Abstract
Sluggish oxygen reduction reaction (ORR) remains a critical barrier to advancing intermediate-temperature electrochemical energy devices. Here, we demonstrate that strain engineering in two platforms, epitaxial thin films and freestanding membranes, systematically tunes ORR kinetics in Ruddlesden-Popper LaSrCoO4. In epitaxial films, film [...] Read more.
Sluggish oxygen reduction reaction (ORR) remains a critical barrier to advancing intermediate-temperature electrochemical energy devices. Here, we demonstrate that strain engineering in two platforms, epitaxial thin films and freestanding membranes, systematically tunes ORR kinetics in Ruddlesden-Popper LaSrCoO4. In epitaxial films, film thickness is varied to control in-plane tensile strain, whereas in freestanding membranes strain relaxation during the release step using water-soluble sacrificial layers produces flat or wrinkled architectures. Electrochemical impedance spectroscopy analysis reveals more than an order of magnitude increase in the oxygen surface exchange coefficient for tensile-strained films relative to relaxed films, together with a larger oxygen vacancy concentration. Wrinkled freestanding membranes provide a further increase in oxygen surface exchange kinetics and a lower activation energy, which are attributed to increased active surface area and local strain variation. These results identify epitaxial tensile strain and controlled wrinkling as practical design parameters for optimizing ORR activity in Ruddlesden-Popper oxides. Full article
(This article belongs to the Special Issue Nanoceramics and Two-Dimensional Ceramic Materials)
Show Figures

Figure 1

12 pages, 1720 KB  
Article
Field- and Angle-Dependent AC Susceptibility in Multigrain La0.66Sr0.34MnO3 Thin Films on YSZ(001) Substrates
by Gražina Grigaliūnaitė-Vonsevičienė and Artūras Jukna
Materials 2026, 19(2), 331; https://doi.org/10.3390/ma19020331 - 14 Jan 2026
Viewed by 46
Abstract
Experimental and numerical investigations of the alternating current (AC) susceptibility, χH ~ dM/dH, examined multigrain La0.66Sr0.34MnO3 (LSMO) thin films (thickness d = 250 nm) grown by radio-frequency (RF) magnetron sputtering [...] Read more.
Experimental and numerical investigations of the alternating current (AC) susceptibility, χH ~ dM/dH, examined multigrain La0.66Sr0.34MnO3 (LSMO) thin films (thickness d = 250 nm) grown by radio-frequency (RF) magnetron sputtering on lattice-mismatched yttria-stabilized zirconia YSZ(001) substrates. The films exhibit a columnar structure comprising two types of grains, with (001)- and (011)-oriented planes of a pseudocubic lattice aligned parallel to the film surface. Field- and angle-dependent AC susceptibility measurements at 78 K reveal characteristic peak- and tip-like anomalies, attributed to contributions from grains with three distinct directions of easy magnetization axes within the film plane. Numerical modeling based on the transverse susceptibility theory for single-domain ferromagnetic grains, incorporating first- and second-order anisotropy constants, corroborates the experimental findings and elucidates the role of different grain types in magnetization switching and AC susceptibility response. This study provides a quantitative determination of the three in-plane easy magnetization axes in LSMO/YSZ(001) films and clarifies their influence on the magnetization dynamics of multigrain thin films. The demonstrated control over multigrain LSMO/YSZ(001) thin films with distinct in-plane easy magnetization axes and well-characterized AC susceptibility suggests potential applications in magnetic memory, spintronic devices, and precision magnetic sensing. Full article
Show Figures

Figure 1

13 pages, 2867 KB  
Article
Facile Fabrication of Moderate Sensitivity SERS Substrate Using Cu-Plasma Polymer Fluorocarbon Nanocomposite Thin Film
by Sejin Cho, Sung Hyun Kim, Joowon Lee and Sang-Jin Lee
Coatings 2026, 16(1), 108; https://doi.org/10.3390/coatings16010108 - 13 Jan 2026
Viewed by 142
Abstract
Herein, we propose a simple and cost-effective method for fabricating moderate-sensitivity surface-enhanced Raman scattering (SERS) substrates using Cu-plasma polymer fluorocarbon (Cu-PPFC) nanocomposite films fabricated through RF sputtering. The use of a composite target composed of carbon nanotube (CNT), Cu, and polytetrafluoroethylene (PTFE) powders [...] Read more.
Herein, we propose a simple and cost-effective method for fabricating moderate-sensitivity surface-enhanced Raman scattering (SERS) substrates using Cu-plasma polymer fluorocarbon (Cu-PPFC) nanocomposite films fabricated through RF sputtering. The use of a composite target composed of carbon nanotube (CNT), Cu, and polytetrafluoroethylene (PTFE) powders (5:60–80:35–15 wt%) offers the advantage of the simple fabrication of moderate-sensitivity SERS substrates with a single cathode compared to co-sputtering. X-ray photoelectron spectroscopy (XPS) revealed that the film surface was partially composed of metallic Cu with Cu-F bonds and Cu–O bonds, confirming the coexistence of the conducting and plasmon-active domains. UV-VIS spectroscopy revealed a distinct absorption peak at approximately 680 nm, indicating the excitation of localized surface plasmon resonances in the Cu nanoclusters embedded in the plasma polymer fluorocarbon (PPFC) matrix. Atomic force microscopy and grazing incidence small-angle X-ray scattering analyses confirmed that the Cu nanoparticles were uniformly distributed with interparticle distances of 20–35 nm. The Cu-PPFC nanocomposite film with the highest Cu content (80 wt%) exhibited a Raman enhancement factor of 2.18 × 104 for rhodamine 6G, demonstrating its potential as a moderate-sensitivity SERS substrate. Finite-difference time-domain (FDTD) simulations confirmed the strong electromagnetic field localization at the Cu-Cu nanogaps separated by the PPFC matrix, corroborating the experimentally observed SERS enhancement. These results suggest that a Cu-PPFC nanocomposite film, easily fabricated using a composite target, provides an efficient and scalable route for fabricating reproducible, inexpensive, and moderate-sensitivity SERS substrates suitable for practical sensing applications. Full article
(This article belongs to the Special Issue Advanced Optical Film Coating)
Show Figures

Figure 1

44 pages, 10841 KB  
Article
Study on Dual-Targeted Liposomes Containing Curcumin-Copper Chelate in the Treatment of Triple-Negative Breast Cancer
by Lina Wu, Xueli Guo and Pan Guo
Pharmaceuticals 2026, 19(1), 135; https://doi.org/10.3390/ph19010135 - 13 Jan 2026
Viewed by 76
Abstract
Background: Triple-negative breast cancer (TNBC) remains primarily treated with chemotherapy due to the lack of effective therapeutic targets, but this approach carries significant systemic toxicity and a high risk of drug resistance. Curcumin (Cur), despite its multifaceted antitumor activity, faces limitations in [...] Read more.
Background: Triple-negative breast cancer (TNBC) remains primarily treated with chemotherapy due to the lack of effective therapeutic targets, but this approach carries significant systemic toxicity and a high risk of drug resistance. Curcumin (Cur), despite its multifaceted antitumor activity, faces limitations in clinical application due to poor water solubility and weak targeting properties. This study aims to develop a folate/mitochondria dual-targeted curcumin–copper chelate liposome (Cu-Cur DTLPs) formulation that enables copper accumulation within tumor cells and induces copper-mediated cell death, thereby providing an effective and relatively low-toxicity therapeutic strategy for triple-negative breast cancer. Methods: Curcumin–copper chelates (Cu-Cur) were first synthesized and characterized using mass spectrometry, NMR, and infrared spectroscopy. Subsequently, dual-targeted liposomes (Cu-Cur DTLPs) were prepared via the thin-film dispersion method, with systematic evaluation of particle size, zeta potential, encapsulation efficiency, and in vitro release profiles. In vitro cytotoxicity was assessed against 4T-1 and MDA-MB-231 cells using the MTT assay. In a 4T-1 tumor-bearing BALB/c mouse model, comprehensive evaluation of targeting efficiency, antitumor efficacy, and mechanisms of action was conducted via in vivo imaging, tumor volume monitoring, immunohistochemistry (detecting FDX1 and DLAT proteins), and TUNEL staining. Results: Cu-Cur DTLPs with a uniform particle size of approximately 104.4 nm were successfully synthesized. In vitro and in vivo studies demonstrated that compared to free curcumin and conventional liposomes, Cu-Cur DTLPs significantly enhanced drug accumulation in tumor tissues and exhibited effective tumor growth inhibition. Mechanistic studies confirmed that this formulation specifically accumulates copper ions within tumor cells, upregulates FDX1, promotes DLAT oligomerization, and induces mitochondrial dysfunction, thereby driving copper death. TUNEL staining ruled out apoptosis as the primary mechanism. Safety evaluation revealed no significant toxicity in major organs. Conclusions: The Cu-Cur DTLPs developed in this study effectively induce copper-mediated death in TNBC through a dual-targeted delivery system, significantly enhancing antitumor activity with favorable safety profiles. This establishes a highly promising novel nanotherapeutic strategy for TNBC treatment. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

15 pages, 2703 KB  
Article
Fabrication and Plasmonic Characterization of Metasurfaces Patterned via Tunable Pyramidal Interference Lithography
by Saim Bokhari, Yazan Bdour and Ribal Georges Sabat
Micromachines 2026, 17(1), 104; https://doi.org/10.3390/mi17010104 - 13 Jan 2026
Viewed by 81
Abstract
Large-area metasurfaces were fabricated via a tunable pyramidal interference lithography (PIL) technique, which uses custom-built 2-faced, 3-faced, and 4-faced pyramidal prisms to create metasurfaces with customizable nano- and micro-scale surface feature periodicities. The 2-faced prism produced linear surface relief diffraction gratings, while the [...] Read more.
Large-area metasurfaces were fabricated via a tunable pyramidal interference lithography (PIL) technique, which uses custom-built 2-faced, 3-faced, and 4-faced pyramidal prisms to create metasurfaces with customizable nano- and micro-scale surface feature periodicities. The 2-faced prism produced linear surface relief diffraction gratings, while the 3-faced prism produced metasurfaces with triangular lattices and the 4-faced prism produced metasurfaces with square lattices, all on azobenzene thin films. A double inline prism set-up enabled control over the metasurface feature periodicity, allowing systematic increase in the pattern size. Additional tunability was achieved by placing a prism inline with a lens, allowing precise control over the metasurface feature periodicity. A theoretical model was derived and successfully matched to the experimental results. The resulting metasurfaces were coated with gold and exhibited distinct surface plasmon resonance (SPR) and surface plasmon resonance imaging (SPRi) responses, confirming their functionality. Overall, this work establishes PIL as a cost-effective and highly adaptable metasurface fabrication method for producing customizable periodic metasurfaces for photonic, plasmonic, and sensing applications. Full article
(This article belongs to the Special Issue Metasurface-Based Devices and Systems)
Show Figures

Figure 1

23 pages, 6327 KB  
Article
Influence of Cross-Linking Agents on the Structure and Stability of Chitosan and Carboxymethyl Chitosan Thin Films
by Katarzyna Lewandowska
Molecules 2026, 31(2), 272; https://doi.org/10.3390/molecules31020272 - 13 Jan 2026
Viewed by 110
Abstract
Chitosan (CS) and carboxymethyl chitosan (CMCS) are polysaccharides valued for their biocompatibility, reactivity, and film-forming capabilities. This study compares the surface characteristics and stability of CS and CMCS thin films crosslinked with citric acid (CTA), polyethylene glycol diglycidyl ether (PEGDE), and glutaraldehyde (G). [...] Read more.
Chitosan (CS) and carboxymethyl chitosan (CMCS) are polysaccharides valued for their biocompatibility, reactivity, and film-forming capabilities. This study compares the surface characteristics and stability of CS and CMCS thin films crosslinked with citric acid (CTA), polyethylene glycol diglycidyl ether (PEGDE), and glutaraldehyde (G). Flow behavior was assessed using steady-shear measurements, while film structure, morphology, and physical properties were analyzed by infrared spectroscopy, SEM, AFM, mechanical testing, and swelling experiments. Crosslinking generated new chemical bonds in both CS and CMCS films; however, interactions in CMCS did not result in stable cross-links and were comparatively weaker. These structural modifications influenced swelling behavior and enhanced stability, particularly in CS-based systems. Before neutralization, CS/PEGDE films exhibited the lowest swelling (67% ± 19) relative to unmodified CS (118% ± 25) and crosslinked samples such as CS/G2 (185% ± 30), CS/G1 (475% ± 88), and CS/CTA (520% ± 90). After neutralization, CS/G1 and CS/CTA maintained the highest swelling capacity. In contrast, CMCS films crosslinked with CTA and G1 dissolved rapidly in aqueous media due to high water uptake, while PEGDE- and G2-modified CMCS films demonstrated stability comparable to CS. Overall, the results highlight the superior stability and tunable surface properties of CS-based films, underscoring their potential for biomedical and packaging applications. Full article
(This article belongs to the Special Issue Applications of Natural Polymers in Biomedicine)
Show Figures

Figure 1

14 pages, 1487 KB  
Article
Sexual Hormones Determination in Biofluids by In-Vial Polycaprolactone Thin-Film Microextraction Coupled with HPLC-MS/MS
by Francesca Merlo, Silvia Anselmi, Andrea Speltini, Clàudia Fontàs, Enriqueta Anticó and Antonella Profumo
Molecules 2026, 31(2), 255; https://doi.org/10.3390/molecules31020255 - 12 Jan 2026
Viewed by 121
Abstract
The in-vial microextraction technique is emerging as an alternative sample treatment, as it integrates sorbent preparation, adsorption, and desorption of analytes in a single device before instrumental analysis. In this work, the applicability of polycaprolactone polymeric film, recently used for the in-vial microextraction [...] Read more.
The in-vial microextraction technique is emerging as an alternative sample treatment, as it integrates sorbent preparation, adsorption, and desorption of analytes in a single device before instrumental analysis. In this work, the applicability of polycaprolactone polymeric film, recently used for the in-vial microextraction of sex hormones from environmental waters, is studied in a low-capacity format for unconjugated sex hormones determination in biological samples by HPLC-MS/MS. Its performance was evaluated in urine and serum, achieving extraction in a short time (10 and 30 min, in turn) and satisfactory elution with ethanol, with recovery in the range of 65–111% in urine, 55–122% in bovine serum albumin (BSA) solution, and 66–121% in fetal bovine serum (FBS). In the case of protein matrices, a dilution to 20 g L−1 protein content and washing step (3 × 1 mL ultrapure water) afore the elution are required to achieve clean extract, as verified by a Bradford assay. Matrix-matched calibration was used for quantification, obtaining correlation coefficients greater than 0.9929; limits of detection and quantification were in the range of 0.01–0.65 and 0.03–1.96 ng mL−1 in urine, 0.02–0.8 and 0.05–2.5 ng mL−1 in BSA, and 0.02–1.0 and 0.06–3.0 g mL−1 in FBS, respectively. The in-vial polycaprolactone film proved to be reusable for several cycles (up to ten), and the greenness assessment revealed a good adhesion to green sample preparation principles. All these achievements further strengthen its feasibility for efficient extraction/clean-up of trace sex hormones in complex biological samples. Full article
Show Figures

Figure 1

16 pages, 1881 KB  
Article
Sustainable Lavender Extract-Mediated Synthesis of Silver Nanoparticles and Their Use in Fabricating Antibacterial Polymer Nanocomposites
by Lívia Mačák, Oksana Velgosová, Erika Múdra, Marek Vojtko and Silvia Ondrašovičová
Nanomaterials 2026, 16(2), 98; https://doi.org/10.3390/nano16020098 - 12 Jan 2026
Viewed by 156
Abstract
This study focuses on the development of antibacterial polymer nanocomposites based on biologically synthesized silver nanoparticles (AgNPs) and polyvinyl alcohol (PVA) as the polymer matrix. Silver nanoparticles were produced using an aqueous extract from dried Lavandula angustifolia (lavender) leaves, which proved to be [...] Read more.
This study focuses on the development of antibacterial polymer nanocomposites based on biologically synthesized silver nanoparticles (AgNPs) and polyvinyl alcohol (PVA) as the polymer matrix. Silver nanoparticles were produced using an aqueous extract from dried Lavandula angustifolia (lavender) leaves, which proved to be highly effective in reducing silver ions and stabilizing the resulting nanoparticles. The synthesized AgNPs were characterized by FTIR, UV-Vis, TEM, SEM, and DLS analyses. The nanoparticles were predominantly spherical, with more than 70% having diameters below 20 nm. Subsequently, AgNPs were incorporated into the PVA matrix via an ex situ approach to fabricate nanocomposite fibers and thin films. SEM analysis confirmed successful incorporation and uniform distribution of AgNPs within the polymer structures. The nanocomposites exhibited pronounced antibacterial activity against both Gram-positive (Staphylococcus aureus, Staphylococcus haemolyticus, Streptococcus uberis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, with nanofibers demonstrating superior performance compared to thin films. These findings highlight the potential of lavender-extract-mediated AgNPs as sustainable functional fillers for the fabrication of eco-friendly antibacterial materials applicable in biomedical and food packaging fields. Full article
(This article belongs to the Special Issue Fabrication and Application of Polymer-Based Nanomaterials)
Show Figures

Graphical abstract

24 pages, 10804 KB  
Article
A Multiscale CFD Model of Evaporating Hydrogen Menisci: Incorporating Subgrid Thin-Film Dynamics and In Situ Accommodation Coefficients
by Ayaaz Yasin, Saaras Pakanati and Kishan Bellur
Fuels 2026, 7(1), 3; https://doi.org/10.3390/fuels7010003 - 12 Jan 2026
Viewed by 241
Abstract
Due to its high energy density, liquid Hydrogen is an essential fuel for both terrestrial energy systems and space propulsion. However, uncontrolled evaporation poses a challenge for cryogenic storage and transport technologies. Accurate modeling of evaporation remains difficult due to the multiscale menisci [...] Read more.
Due to its high energy density, liquid Hydrogen is an essential fuel for both terrestrial energy systems and space propulsion. However, uncontrolled evaporation poses a challenge for cryogenic storage and transport technologies. Accurate modeling of evaporation remains difficult due to the multiscale menisci formed by the wetting liquid phase. Thin liquid films form near the walls of containers, ranging from millimeters to nanometers in thickness. Heat conduction through the solid walls enables high evaporation rates in this region. Discrepancies in the reported values of the accommodation coefficients (necessary inputs to models) further complicate evaporation calculations. In this study, we present a novel multiscale model for CFD simulations of evaporating Hydrogen menisci. Film profiles below 10 μm are computed by a subgrid model using a lubrication-type thin film equation. The microscale model is combined with a macroscale model above 10 μm. Evaporation rates are computed using a kinetic phase change model combined with in situ calculations of the accommodation coefficient using transition state theory. The submodels are implemented in Ansys FluentTM using User-Defined Functions (UDFs), and a method to establish two-way coupling is detailed. The modeling results are in good agreement with cryo-neutron experiments and show improvement over prior models. The model, including UDFs, is made available through a public repository. Full article
Show Figures

Figure 1

20 pages, 4195 KB  
Article
Electro-Physical Model of Amorphous Silicon Junction Field-Effect Transistors for Energy-Efficient Sensor Interfaces in Lab-on-Chip Platforms
by Nicola Lovecchio, Giulia Petrucci, Fabio Cappelli, Martina Baldini, Vincenzo Ferrara, Augusto Nascetti, Giampiero de Cesare and Domenico Caputo
Chips 2026, 5(1), 1; https://doi.org/10.3390/chips5010001 - 12 Jan 2026
Viewed by 77
Abstract
This work presents an advanced electro-physical model for hydrogenated amorphous silicon (a-Si:H) Junction Field Effect Transistors (JFETs) to enable the design of devices with energy-efficient analog interface building blocks for Lab-on-Chip (LoC) systems. The presence of this device can support monolithic integration with [...] Read more.
This work presents an advanced electro-physical model for hydrogenated amorphous silicon (a-Si:H) Junction Field Effect Transistors (JFETs) to enable the design of devices with energy-efficient analog interface building blocks for Lab-on-Chip (LoC) systems. The presence of this device can support monolithic integration with thin-film sensors and circuit-level design through a validated compact formulation. The model accurately describes the behavior of a-Si:H JFETs addressing key physical phenomena, such as the channel thickness dependence on the gate-source voltage when the channel approaches full depletion. A comprehensive framework was developed, integrating experimental data and mathematical refinements to ensure robust predictions of JFET performance across operating regimes, including the transition toward full depletion and the associated current-limiting behavior. The model was validated through a broad set of fabricated devices, demonstrating excellent agreement with experimental data in both the linear and saturation regions. Specifically, the validation was carried out at 25 °C on 15 fabricated JFET configurations (12 nominally identical devices per configuration), using the mean characteristics of 9 devices with standard-deviation error bars. In the investigated bias range, the devices operate in a sub-µA regime (up to several hundred nA), which naturally supports µW-level dissipation for low-power interfaces. This work provides a compact, experimentally validated modeling basis for the design and optimization of a-Si:H JFET-based LoC front-end/readout circuits within technology-constrained and energy-efficient operating conditions. Full article
Show Figures

Graphical abstract

34 pages, 4355 KB  
Review
Thin-Film Sensors for Industry 4.0: Photonic, Functional, and Hybrid Photonic-Functional Approaches to Industrial Monitoring
by Muhammad A. Butt
Coatings 2026, 16(1), 93; https://doi.org/10.3390/coatings16010093 - 12 Jan 2026
Viewed by 148
Abstract
The transition toward Industry 4.0 requires advanced sensing platforms capable of delivering real-time, high-fidelity data under extreme industrial conditions. Thin-film sensors, leveraging both photonic and functional approaches, are emerging as key enablers of this transformation. By exploiting optical phenomena such as Fabry–Pérot interference, [...] Read more.
The transition toward Industry 4.0 requires advanced sensing platforms capable of delivering real-time, high-fidelity data under extreme industrial conditions. Thin-film sensors, leveraging both photonic and functional approaches, are emerging as key enablers of this transformation. By exploiting optical phenomena such as Fabry–Pérot interference, guided-mode resonance, plasmonics, and photonic crystal effects, thin-film photonic devices provide highly sensitive, electromagnetic interference-immune, and remotely interrogated solutions for monitoring temperature, strain, and chemical environments. Complementarily, functional thin films including oxide-based chemiresistors, nanoparticle coatings, and flexible electronic skins extend sensing capabilities to diverse industrial contexts, from hazardous gas detection to structural health monitoring. This review surveys the fundamental optical principles, material platforms, and deposition strategies that underpin thin-film sensors, emphasizing advances in nanostructured oxides, 2D materials, hybrid perovskites, and additive manufacturing methods. Application-focused sections highlight their deployment in temperature and stress monitoring, chemical leakage detection, and industrial safety. Integration into Internet of Things (IoT) networks, cyber-physical systems, and photonic integrated circuits is examined, alongside challenges related to durability, reproducibility, and packaging. Future directions point to AI-driven signal processing, flexible and printable architectures, and autonomous self-calibration. Together, these developments position thin-film sensors as foundational technologies for intelligent, resilient, and adaptive manufacturing in Industry 4.0. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

Back to TopTop