Improving Resolution of Dual-Comb Gas Detection Using Periodic Spectrum Alignment Method
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Udem, T.; Holzwarth, R.; Hänsch, T.W. Optical frequency metrology. Nat. Cell Biol. 2002, 416, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Cundiff, S.T.; Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 2003, 75, 325–342. [Google Scholar] [CrossRef]
- Fortier, T.; Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2019, 2, 1–16. [Google Scholar] [CrossRef]
- Sho, O.; Kana, I.; Hajime, I.; Kazumoto, H.; Atsushi, O.; Hiroyuki, S.; Feng-Lei, H. Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm. Appl. Phys. Express 2015, 8, 082402. [Google Scholar]
- Schliesser, A.; Picqué, N.; Hänsch, T.W. Mid-infrared frequency combs. Nat. Photonics 2012, 6, 440–449. [Google Scholar] [CrossRef]
- Burghoff, D.; Kao, T.-Y.; Han, N.; Chan, C.W.I.; Cai, X.; Yang, Y.; Hayton, D.J.; Gao, J.-R.; Reno, J.L.; Hu, Q. Terahertz laser frequency combs. Nat. Photon 2014, 8, 462–467. [Google Scholar] [CrossRef]
- Cingöz, A.; Yost, D.C.; Allison, T.K.; Ruehl, A.; Fermann, M.E.; Hartl, I.; Ye, J. Direct frequency comb spectroscopy in the extreme ultraviolet. Nat. Cell Biol. 2012, 482, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Picqué, N.; Hänsch, T.W. Frequency comb spectroscopy. Nat. Photon 2019, 13, 146–157. [Google Scholar] [CrossRef]
- Diddams, S.A.; Hollberg, L.; Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nat. Cell Biol. 2007, 445, 627–630. [Google Scholar] [CrossRef]
- Adler, F.; Masłowski, P.; Foltynowicz, A.; Cossel, K.C.; Briles, T.C.; Hartl, I.; Ye, J. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Opt. Express 2010, 18, 21861–21872. [Google Scholar] [CrossRef]
- Coddington, I.; Newbury, N.R.; Swann, W. Dual-comb spectroscopy. Optica 2016, 3, 414–426. [Google Scholar] [CrossRef]
- Keilmann, F.; Gohle, C.; Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 2004, 29, 1542–1544. [Google Scholar] [CrossRef] [PubMed]
- Coddington, I.; Swann, W.C.; Newbury, N.R. Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs. Phys. Rev. Lett. 2008, 100, 013902. [Google Scholar] [CrossRef] [PubMed]
- Ideguchi, T.; Holzner, S.; Bernhardt, B.; Guelachvili, G.; Picqué, N.; Hänsch, T.W. Coherent Raman spectro-imaging with laser frequency combs. Nat. Cell Biol. 2013, 502, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Lomsadze, B.; Cundiff, S.T. Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy. Science 2017, 357, 1389–1391. [Google Scholar] [CrossRef]
- Asahara, A.; Minoshima, K. Development of ultrafast time-resolved dual-comb spectroscopy. APL Photon 2017, 2, 041301. [Google Scholar] [CrossRef]
- Minamikawa, T.; Hsieh, Y.-D.; Shibuya, K.; Hase, E.; Kaneoka, Y.; Okubo, S.; Inaba, H.; Mizutani, Y.; Yamamoto, H.; Iwata, T.; et al. Dual-comb spectroscopic ellipsometry. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Kuse, N.; Ozawa, A.; Kobayashi, Y. Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy. Opt. Express 2013, 21, 11141–11149. [Google Scholar] [CrossRef]
- Martín-Mateos, P.; Khan, F.U.; Bonilla-Manrique, O.E. Direct hyperspectral dual-comb imaging. Optica 2020, 7, 199. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, G. Dual-Comb Ranging. Engeneering 2018, 4, 772–778. [Google Scholar] [CrossRef]
- Zhou, S.; Lin, C.; Yang, Y.; Wu, G. Multi-pulse sampling dual-comb ranging method. Opt. Express 2020, 28, 4058–4066. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, L.C.; Coddington, I.; Swann, W.C.; Rieker, G.B.; Hati, A.; Iwakuni, K.; Newbury, N.R. Operation of an optically coherent frequency comb outside the metrology lab. Opt. Express 2014, 22, 6996–7006. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Song, Y. Ultralow-noise mode-locked fiber lasers and frequency combs: Principles, status, and applications. Adv. Opt. Photon 2016, 8, 465–540. [Google Scholar] [CrossRef]
- Herman, D.I.; Waxman, E.M.; Ycas, G.; Giorgetta, F.R.; Newbury, N.R.; Coddington, I.R. Real-time liquid-phase organic reaction monitoring with mid-infrared attenuated total reflectance dual frequency comb spectroscopy. J. Mol. Spectrosc. 2019, 356, 39–45. [Google Scholar] [CrossRef]
- Coburn, S.; Mullin, C.S.; Wright, R.; Cossel, K.; Baumann, E.; Truong, G.-W.; Giorgetta, F.; Sweeney, C.; Newbury, N.R.; Prasad, K.; et al. Regional trace-gas source attribution using a field-deployed dual frequency comb spectrometer. Optica 2018, 5, 320–327. [Google Scholar] [CrossRef]
- Waxman, E.M.; Cossel, K.C.; Giorgetta, F.; Truong, G.-W.; Swann, W.C.; Coddington, I.; Newbury, N.R. Estimating vehicle carbon dioxide emissions from Boulder, Colorado, using horizontal path-integrated column measurements. Atmos. Chem. Phys. Discuss. 2019, 19, 4177–4192. [Google Scholar] [CrossRef]
- Zhu, F.; Mohamed, T.; Strohaber, J.; Kolomenskii, A.A.; Udem, T.; Schuessler, H. Real-time dual frequency comb spectroscopy in the near infrared. Appl. Phys. Lett. 2013, 102, 121116. [Google Scholar] [CrossRef]
- Rüdiger, P. Timing jitter and phase noiseof mode-locked fiber lasers. Opt. Express 2010, 18, 5041–5054. [Google Scholar]
- Coddington, I.; Swann, W.C.; Newbury, N.R. Coherent dual-comb spectroscopy at high signal-to-noise ratio. Phys. Rev. A 2010, 82, 043817. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, G.; Zhao, B.; Li, C.; Pan, Y.; Liu, Y.; Yasui, T.; Zheng, Z. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser. Opt. Express 2016, 24, 21833–21845. [Google Scholar] [CrossRef]
- Sterczewski, L.; Przewłoka, A.; Kaszub, W.; Sotor, J. Computational Doppler-limited dual-comb spectroscopy with a free-running all-fiber laser. APL Photon 2019, 4, 116102. [Google Scholar] [CrossRef]
- Xu, K.; Zhao, X.; Wang, Z.; Chen, J.; Li, T.; Zheng, Z.; Ren, W. Multipass-assisted dual-comb gas sensor for multi-species de-tection using a free-running fiber laser. Appl. Phys. B 2020, 126, 39. [Google Scholar] [CrossRef]
- Kuse, N.; Ozawa, A.; Kobayashi, Y. Comb-Resolved Dual-Comb Spectroscopy Stabilized by Free-Running Continuous-Wave Lasers. Appl. Phys. Express 2012, 5, 112402. [Google Scholar] [CrossRef]
- Ideguchi, T.; Poisson, A.; Guelachvili, G.; Picqué, N.; Hänsch, T.W. Adaptive real-time dual-comb spectroscopy. Nat. Commun. 2014, 5, 3375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, X.; Wu, X.; Li, Y.; Wei, H. Adaptive cavity-enhanced dual-comb spectroscopy. Photon Res. 2019, 7, 883–889. [Google Scholar] [CrossRef]
- Roy, J.; Deschênes, J.-D.; Potvin, S.; Genest, J. Continuous real-time correction and averaging for frequency comb interferometry. Opt. Express 2012, 20, 21932–21939. [Google Scholar] [CrossRef]
- Hébert, N.B.; Genest, J.; Deschênes, J.-D.; Bergeron, H.; Chen, G.Y.; Khurmi, C.; Lancaster, D.G. Self-corrected chip-based dual-comb spectrometer. Opt. Express 2017, 25, 8168–8179. [Google Scholar] [CrossRef]
- Yu, H.; Ni, K.; Zhou, Q.; Li, X.; Wang, X.; Wu, G. Digital error correction of dual-comb interferometer without external optical referencing information. Opt. Express 2019, 27, 29425–29438. [Google Scholar] [CrossRef]
- Hebert, N.B.; Michaud-Belleau, V.; Deschenes, J.-D.; Genest, J. Self-Correction Limits in Dual-Comb Interferometry. IEEE J. Quantum Electron. 2019, 55, 1–11. [Google Scholar] [CrossRef]
- Sterczewski, L.A.; Westberg, J.; Wysocki, G. Computational coherent averaging for free-running dual-comb spectroscopy. Opt. Express 2019, 27, 23875–23893. [Google Scholar] [CrossRef]
- Schliesser, A.; Brehm, M.; Keilmann, F.; Van Der Weide, D.W. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 2005, 13, 9029–9038. [Google Scholar] [CrossRef] [PubMed]
- Villares, G.; Hugi, A.; Blaser, S.; Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. 2014, 5, 5192. [Google Scholar] [CrossRef] [PubMed]
- Kara, O.; Zhang, Z.; Gardiner, T.; Reid, D. Dual-comb mid-infrared spectroscopy with free-running oscillators and absolute optical calibration from a radio-frequency reference. Opt. Express 2017, 25, 16072. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Ni, K.; Zhou, Q.; Wu, G. Digital correction method for realizing a phase-stable dual-comb interferometer. Opt. Express 2018, 26, 16813–16823. [Google Scholar] [CrossRef]
- Zolot, A.; Giorgetta, F.; Baumann, E.; Swann, W.; Coddington, I.; Newbury, N.R. Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene. J. Quant. Spectrosc. Radiat. Transf. 2013, 118, 26–39. [Google Scholar] [CrossRef]
- Zolot, A.M.; Giorgetta, F.R.; Baumann, E.; Nicholson, J.W.; Swann, W.C.; Coddington, I.; Newbury, N.R. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. Opt. Lett. 2012, 37, 638–640. [Google Scholar] [CrossRef]
- Suh, M.-G.; Yang, Q.-F.; Yang, K.Y.; Yi, X.; Vahala, K. Microresonator soliton dual-comb spectroscopy. Science 2016, 354, 600–603. [Google Scholar] [CrossRef]
- Yu, M.; Okawachi, Y.; Griffith, A.G.; Picqué, N.; Lipson, M.; Gaeta, A.L. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun. 2018, 9, 1–6. [Google Scholar] [CrossRef]







Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Zhou, Q.; Li, X.; Wang, X.; Wang, X.; Ni, K. Improving Resolution of Dual-Comb Gas Detection Using Periodic Spectrum Alignment Method. Sensors 2021, 21, 903. https://doi.org/10.3390/s21030903
Yu H, Zhou Q, Li X, Wang X, Wang X, Ni K. Improving Resolution of Dual-Comb Gas Detection Using Periodic Spectrum Alignment Method. Sensors. 2021; 21(3):903. https://doi.org/10.3390/s21030903
Chicago/Turabian StyleYu, Haoyang, Qian Zhou, Xinghui Li, Xiaohao Wang, Xilin Wang, and Kai Ni. 2021. "Improving Resolution of Dual-Comb Gas Detection Using Periodic Spectrum Alignment Method" Sensors 21, no. 3: 903. https://doi.org/10.3390/s21030903
APA StyleYu, H., Zhou, Q., Li, X., Wang, X., Wang, X., & Ni, K. (2021). Improving Resolution of Dual-Comb Gas Detection Using Periodic Spectrum Alignment Method. Sensors, 21(3), 903. https://doi.org/10.3390/s21030903

