Validity of the Polar H7 Heart Rate Sensor for Heart Rate Variability Analysis during Exercise in Different Age, Body Composition and Fitness Level Groups
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedure
2.3. Data Recording
2.4. Data Analysis and Processing
2.5. Heart Rate Variability
2.5.1. Temporal Domain
2.5.2. Frequency Domain
2.6. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malik, M.; Camm, A.J.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Spallone, V.; Ziegler, D.; Freeman, R.; Bernardi, L.; Frontoni, S.; Pop-Busui, R.; Stevens, M.; Kempler, P.; Hilsted, J.; Tesfaye, S.; et al. Cardiovascular autonomic neuropathy in diabetes: Clinical impact, assessment, diagnosis, and management. Diabetes Metab. Res. Rev. 2011, 27, 639–653. [Google Scholar] [CrossRef]
- Kleiger, R.E.; Miller, J.P.; Bigger, J.T.; Moss, A.J. Decreased Heart Rate Variability and Its Association with Increased Mortality After Acute Myocardial Infarction. Am. J. Cardiol. 1987, 59, 258–282. [Google Scholar] [CrossRef]
- Bilchick, K.C.; Fetics, B.; Djoukeng, R.; Gross Fisher, S.; Fletcher, R.D.; Singh, S.N.; Nevo, E.; Berger, R.D. Prognostic value of heart rate variability in chronic congestive heart failure (Veterans Affairs’ Survival Trial of Antiarrhythmic Therapy in Congestive Heart Failure). Am. J. Cardiol. 2002, 90, 24–28. [Google Scholar] [CrossRef]
- Kemp, A.H.; Koenig, J.; Thayer, J.F. From psychological moments to mortality: A multidisciplinary synthesis on heart rate variability spanning the continuum of time. Neurosci. Biobehav. Rev. 2017, 83, 547–567. [Google Scholar] [CrossRef]
- Laborde, S.; Mosley, E.; Mertgen, A. Vagal Tank theory: The three Rs of cardiac vagal control functioning—Resting, reactivity, and recovery. Front. Neurosci. 2018, 12, 458. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.; Hanakam, F.; Wiewelhove, T.; Döweling, A.; Kellmann, M.; Meyer, T.; Pfeiffer, M.; Ferrauti, A. Heart rate monitoring in team sports-A conceptual framework for contextualizing heart rate measures for training and recovery prescription. Front. Physiol. 2018, 9, 639. [Google Scholar] [CrossRef] [PubMed]
- Abhishekh, H.A.; Nisarga, P.; Kisan, R.; Meghana, A.; Chandran, S.; Raju, T.; Sathyaprabha, T.N. Influence of age and gender on autonomic regulation of heart. J. Clin. Monit. Comput. 2013, 27, 259–264. [Google Scholar] [CrossRef]
- Dobbs, W.C.; Fedewa, M.V.; MacDonald, H.V.; Holmes, C.J.; Cicone, Z.S.; Plews, D.J.; Esco, M.R. The Accuracy of Acquiring Heart Rate Variability from Portable Devices: A Systematic Review and Meta-Analysis. Sport. Med. 2019, 49, 417–435. [Google Scholar] [CrossRef]
- Giles, D.; Draper, N.; Neil, W. Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur. J. Appl. Physiol. 2016, 116, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Caminal, P.; Sola, F.; Gomis, P.; Guasch, E.; Perera, A.; Soriano, N.; Mont, L. Validity of the Polar V800 monitor for measuring heart rate variability in mountain running route conditions. Eur. J. Appl. Physiol. 2018, 118, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur. J. Appl. Physiol. 2019, 119, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Brupbacher, G.; Straus, D.; Porschke, H.; Zander-Schellenberg, T.; Gerber, M.; Von Känel, R.; Schmidt-Trucksäss, A. The acute effects of aerobic exercise on sleep in patients with depression: Study protocol for a randomized controlled trial. Trials 2019, 20, 352. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, A.; Bianco, A.; Paoli, A.; Cerasola, D.; Alagna, S.; Messina, G.; Zangla, D.; Traina, M. Resting sympatho-vagal balance is related to 10 km running performance in master endurance athletes. Eur. J. Transl. Myol. 2018, 28, 7051. [Google Scholar] [CrossRef] [PubMed]
- Peguero, J.G.; Lo Presti, S.; Perez, J.; Issa, O.; Brenes, J.C.; Tolentino, A. Electrocardiographic Criteria for the Diagnosis of Left Ventricular Hypertrophy. J. Am. Coll. Cardiol. 2017, 63, 1694–1703. [Google Scholar] [CrossRef]
- Drezner, J.A.; Fischbach, P.; Froelicher, V.; Marek, J.; Pelliccia, A.; Prutkin, J.M.; Schmied, C.M.; Sharma, S.; Wilson, M.G.; Ackerman, M.J.; et al. Normal electrocardiographic findings: Recognising physiological adaptations in athletes. Br. J. Sports Med. 2013, 47, 125–136. [Google Scholar] [CrossRef]
- Hernando, D.; Garatachea, N.; Almeida, R.; Casajús, J.A.; Bailón, R. Validation of heart rate monitor Polar RS800 for heart rate variability analysis during exercise. J. Strength Cond. Res. 2016, 32, 716–725. [Google Scholar] [CrossRef]
- Wasserman, K.; Hansen, J.E.; Sue, D.Y.; Stringer, W.W.; Sietsema, K.E.; Sun, X.G.; Whipp, B.J. Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011. [Google Scholar]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef]
- Pietrobelli, A.; Rubiano, F.; St-Onge, M.P.; Heymsfield, S.B. New bioimpedance analysis system: Improved phenotyping with whole-body analysis. Eur. J. Clin. Nutr. 2004, 58, 1479–1484. [Google Scholar] [CrossRef]
- Noonan, V.; Dean, E. Submaximal Exercise Testing: Clinical Application and Interpretation. Phys. Ther. 2000, 80, 782–807. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Gore, C.J.; Booth, M.L.; Bauman, A.; Owen, N. Utility of pwc75% as an estimate of aerobic power in epidemiological and population-based studies. Med. Sci. Sports Exerc. 1999, 31, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Batcho, C.S.; Thonnard, J.L.; Nielens, H. PWC 75%/kg, a fitness index not linked to resting heart rate: Testing procedure and reference values. Arch. Phys. Med. Rehabil. 2012, 93, 1196–1200. [Google Scholar] [CrossRef] [PubMed]
- Hillreiner, A.; Baumeister, S.E.; Sedlmeier, A.M.; Finger, J.D.; Schlitt, H.J.; Leitzmann, M.F. Association between cardiorespiratory fitness and colorectal cancer in the UK Biobank. Eur. J. Epidemiol. 2019, 35, 961–973. [Google Scholar] [CrossRef]
- Finger, J.D.; Gößwald, A.; Härtel, S.; Müters, S.; Krug, S.; Hölling, H.; Kuhnert, R.; Bös, K. Measurement of cardiorespiratory fitness in the German Health Interview and Examination Survey for Adults (DEGS1). Bundesgesundheitsblatt Gesundheitsforsch. Gesundheitsschutz 2013, 56, 885–893. [Google Scholar] [CrossRef]
- Martínez, J.P.; Almeida, R.; Olmos, S.; Rocha, A.P.; Laguna, P. A Wavelet-Based ECG Delineator Evaluation on Standard Databases. IEEE Trans. Biomed. Eng. 2004, 51, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Hernando, D.; Bailón, R.; Almeida, R.; Hernández, A. QRS detection optimization in stress test recordings using evolutionary algorithms. In Proceedings of the XLI Int Conf Computing in Cardiology, Cambridge, MA, USA, 7–10 September 2014; Volume 41, pp. 737–740. [Google Scholar]
- Mateo, J.; Laguna, P. Analysis of heart rate variability in the presence of ectopic beats using the heart timing signal. IEEE Trans. Biomed. Eng. 2003, 50, 334–343. [Google Scholar] [CrossRef]
- Bailón, R.; Laouini, G.; Grao, C.; Orini, M.; Laguna, P.; Meste, O. The integral pulse frequency modulation model with time-varying threshold: Application to heart rate variability analysis during exercise stress testing. IEEE Trans. Biomed. Eng. 2011, 58, 642–652. [Google Scholar] [CrossRef]
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014, 1, 19–25. [Google Scholar]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Lin, L.I.-K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Sanson, A.; Letcher, P.; Smart, D.; Prior, M.; Toumbourou, J.W.; Oberklaid, F. Associations between early childhood temperament clusters and later psychosocial adjustment. Merrill. Palmer. Q. 2009, 55, 26–54. [Google Scholar] [CrossRef]
- Gomez-Bruton, A.; Arenaza, L.; Medrano, M.; Mora-Gonzalez, J.; Cadenas-Sanchez, C.; Migueles, J.H.; Muñoz-Hernández, V.; Merchan-Ramirez, E.; Martinez-Avila, W.D.; Maldonado, J.; et al. Associations of dietary energy density with body composition and cardiometabolic risk in children with overweight and obesity: Role of energy density calculations, under-reporting energy intake and physical activity. Br. J. Nutr. 2019, 121, 1057–1068. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 5, 73. [Google Scholar] [CrossRef]
- Kleiger, R.E.; Stein, P.K.; Bigger, J.T. Heart rate variability: Measurement and clinical utility. Ann. Noninvasive Electrocardiol. 2005, 10, 88–101. [Google Scholar] [CrossRef]
- Michael, S.; Graham, K.S.; Oam, G.M.D. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals-a review. Front. Physiol. 2017, 8, 301. [Google Scholar] [CrossRef]
- He, W.; Goodkind, D.; Kowal, P. U.S. Census Bureau, International Population Reports. U.S. Gov. Publ. Off. 2016, P95/16-1. [Google Scholar]
- Harridge, S.D.R.; Lazarus, N.R. Physical activity, aging, and physiological function. Physiology 2017, 32, 152–161. [Google Scholar] [CrossRef]
- Ortega, F.; Cadenas-Sanchez, C.; Lee, D.; Ruiz, J.; Blair, S.; Sui, X. Fitness and Fatness as Health Markers through the Lifespan: An Overview of Current Knowledge. Prog. Prev. Med. 2018, 3, e0013. [Google Scholar] [CrossRef]
- Polar Research Center Polar H10 Heart Rate Sensor System. White Pap. 2019, 1, 1–6.
Outcome | Young Adults (n = 22) | Middle-Aged Adults (n = 22) | Older Adults (n = 23) |
---|---|---|---|
Age (years) | 25.46 ± 2.85 | 43.17 ± 3.32 | 63.97 ± 2.79 |
Height (m) | 1.75 ± 0.06 | 1.77 ± 0.06 | 1.71 ± 0.05 |
Weight (kg) | 72.01 ± 11.92 | 78.19 ± 10.30 | 76.31 ± 7.76 |
BMI (m/kg2) | 23.43 ± 2.95 | 25.02 ± 2.83 | 26.21 ± 2.84 |
Body fat (%) | 15.25 ± 5.59 | 19.69 ± 5.65 | 23.38 ± 5.17 |
Trunk fat (%) | 16.31 ± 6.32 | 21.29 ± 6.38 | 25.69 ± 6.42 |
PWC80% (W/kg) | 2.00 ± 0.64 | 2.01 ± 0.58 | 1.73 ± 0.65 |
Outcome | CLUSTER A (n = 19) | CLUSTER B (n = 13) | CLUSTER C (n = 18) | CLUSTER D (n = 17) | Main Effect | |
---|---|---|---|---|---|---|
p | Effect Size | |||||
Age (years) | 38.99 ± 13.31 B,D | 24.35 ± 2.20 A,C,D | 52.61 ± 10.20 B | 57.47 ± 12.23 A,B | <0.001 * | 0.586 |
Height (m) | 1.77 ± 0.05 D | 1.72 ± 0.06 | 1.74 ± 0.06 | 1.72 ± 0.07 A | 0.020 | 0.149 |
Weight (kg) | 72.65 ± 9.13 | 69.18 ± 12.27 D | 76.32 ± 7.13 | 82.72 ± 8.78 B | 0.007 | 0.182 |
BMI (m/kg2) | 23.00 ± 2.24 D | 23.23 ± 2.77 D | 25.17 ± 1.40 | 28.04 ± 2.79 A,B | <0.001 * | 0.430 |
Body fat (%) | 14.09 ± 4.11 C,D | 15.45 ± 4.54 D | 20.40 ± 2.36 A,D | 27.67 ± 2.42 A,B,C | <0.001 * | 0.743 |
Trunk fat (%) | 14.76 ± 5.11 C,D | 16.64 ± 5.03 D | 22.19 ± 2.86 A,D | 30.69 ± 2.12 A,B,C | <0.001 * | 0.725 |
PWC80% (W/kg) | 2.73 ± 0.39 B,C,D | 1.61 ± 0.37 A | 1.79 ± 0.28 A,D | 1.35 ± 0.22 A,C | <0.001 * | 0.704 |
PolarH7 | ECG | p | ES | ||
---|---|---|---|---|---|
SREST | PLF (e−4) | 9.78 (3.88 to 24.74) | 9.76 (3.85 to 24.78) | 0.074 | 0.155 |
PHF (e−4) | 5.77 (2.30 to 10.91) | 5.74 (2.22 to 10.84) | 0.067 | 0.159 | |
MHR (bpm) | 62.55 (53.25 to 71.95) | 62.84 (53.36 to 72.00) | <0.001 * | 0.378 | |
SDNN (ms) | 60.27 (40.50 to 75.22) | 60.28 (40.33 to 75.26) | 0.570 | 0.049 | |
RMSSD (ms) | 39.48 (22.48 to 60.04) | 39.26 (22.39 to 60.66) | 0.336 | 0.083 | |
SCY60 | PLF (e−4) | 1.17 (0.62 to 2.01) | 1.17 (0.65 to 2.23) | 0.112 | 0.137 |
PHF (e−4) | 0.51 (0.26 to 1.29) | 0.86 (0.44 to 2.07) | <0.001 * | 0.419 | |
MHR (bpm) | 106.00 (100.45 to 112.91) | 106.66 (100.75 to 113.17) | <0.001 * | 0.433 | |
SDNN (ms) | 15.94 (12.06 to 20.77) | 16.21 (12.85 to 20.32) | 0.010 * | 0.222 | |
RMSSD (ms) | 6.48 (4.34 to 8.51) | 8.38 (5.67 to 10.65) | <0.001 * | 0.482 | |
SCY70 | PLF (e−4) | 0.45 (0.21 to 0.87) | 0.46 (0.22 to 0.88) | 0.851 | 0.016 |
PHF (e−4) | 0.30 (0.15 to 0.55) | 0.41 (0.24 to 0.75) | <0.001 * | 0.377 | |
MHR (bpm) | 124.24 (115.77 to 130.89) | 124.32 (115.76 to 130.92) | <0.001 * | 0.482 | |
SDNN (ms) | 10.22 (8.19 to 12.93) | 10.48 (8.40 to 13.10) | 0.001 * | 0.280 | |
RMSSD (ms) | 3.74 (2.96 to 4.91) | 4.37 (3.64 to 6.68) | <0.001 * | 0.443 | |
SCY80 | PLF (e−4) | 0.13 (0.09 to 0.23) | 0.18 (0.10 to 0.26) | <0.001 * | 0.364 |
PHF (e−4) | 0.23 (0.14 to 0.36) | 0.37 (0.25 to 0.66) | <0.001 * | 0.362 | |
MHR (bpm) | 141.01 (130.62 to 148.81) | 141.09 (130.69 to 149.05) | <0.001 * | 0.451 | |
SDNN (ms) | 8.11 (6.20 to 9.92) | 8.10 (6.34 to 10.65) | <0.001 * | 0.378 | |
RMSSD (ms) | 2.90 (2.32 to 3.90) | 3.75 (3.16 to 5.52) | <0.001 * | 0.405 | |
SREC | PLF (e−4) | 4.75 (1.83 to 10.25) | 4.59 (1.88 to 9.97) | 0.881 | 0.015 |
PHF (e−4) | 2.06 (0.65 to 4.71) | 2.12 (0.82 to 4.70) | 0.308 | 0.102 | |
MHR (bpm) | 99.76 (90.76 to 112.15) | 98.39 (90.12 to 111.35) | 0.002 * | 0.268 | |
SDNN (ms) | 33.11 (23.27 to 58.30) | 33.67 (23.04 to 57.40) | 0.094 | 0.147 | |
RMSSD (ms) | 12.87 (7.65 to 23.78) | 12.90 (7.99 to 23.32) | 0.603 | 0.046 |
SREST | SCY60 | SCY70 | SCY80 | SREC | ||
---|---|---|---|---|---|---|
Whole sample (n = 67) | RR (ip) | 0.9929 (1%) | 0.9560 (6%) | 0.9467 (13%) | 0.9319 (16%) | 0.9612 (14%) |
PLF (n) | 0.9885 (1%) | 0.9713 (4%) | 0.9677 (9%) | 0.9106 (19%) | 0.8251 (30%) | |
PHF (n) | 0.9813 (3%) | 0.9494 (13%) | 0.8858 (27%) | 0.6661 (60%) | 0.5262 (75%) | |
CLUSTER A (n = 19) | RR (ip) | 0.9970 (0%) | 0.9844 (0%) | 0.9472 (21%) | 0.9243 (21%) | 0.9778 (6%) |
PLF (n) | 0.9999 (0%) | 0.9990 (0%) | 0.9911 (5%) | 0.9169 (16%) | 0.7440 (47%) | |
PHF (n) | 0.9982 (0%) | 0.9645 (16%) | 0.9316 (11%) | 0.7970 (37%) | 0.4859 (88%) | |
CLUSTER B (n = 13) | RR (ip) | 0.9828 (8%) | 0.8996 (15%) | 0.8690 (23%) | 0.9258 (23%) | 0.9473 (15%) |
PLF (n) | 0.9423 (8%) | 0.8544 (23%) | 0.9757 (8%) | 0.8601 (15%) | 0.8838 (15%) | |
PHF (n) | 0.9284 (8%) | 0.8710 (23%) | 0.9112 (23%) | 0.7455 (62%) | 0.7402 (54%) | |
CLUSTER C (n = 18) | RR (ip) | 0.9943 (0%) | 0.9363 (11%) | 0.9665 (11%) | 0.9035 (22%) | 0.9615 (12%) |
PLF (n) | 0.9990 (0%) | 0.9998 (0%) | 0.9792 (6%) | 0.9164 (28%) | 0.7791 (31%) | |
PHF (n) | 0.9909 (6%) | 0.9670 (6%) | 0.8906 (28%) | 0.5914 (67%) | 0.3843 (88%) | |
CLUSTER D (n = 17) | RR (ip) | 0.9945 (0%) | 0.9884 (0%) | 0.9844 (0%) | 0.9751 (0%) | 0.9541 (24%) |
PLF (n) | 0.9999 (0%) | 0.9996 (0%) | 0.9233 (18%) | 0.9361 (18%) | 0.9045 (24%) | |
PHF (n) | 0.9929 (0%) | 0.9739 (12%) | 0.8100 (47%) | 0.5381 (76%) | 0.5366 (65%) |
CLUSTER A (n = 19) | CLUSTER B (n = 13) | CLUSTER C (n = 18) | CLUSTER D (n = 17) | Main Effect | |||
---|---|---|---|---|---|---|---|
p | Effect Size | ||||||
SREST | PLF | 0.0 (−0.2 to 0.3) | 0.2 (−0.3 to 0.6) | 0.1 (−0.2 to 0.2) | 0.3 (−0.1 to 0.4) | 0.534 | 0.034 |
PHF | −0.5 (−2.3 to 0.2) | −0.2 (−0.7 to 0.4) | −0.5 (−1.4 to 0.4) | 0.5 (−0.3 to 2.0) | 0.049 * | 0.121 | |
SDNN | 0.0 (−0.2 to 0.5) B | −0.1 (−0.8 to 0.0) A,D | 0.0 (−0.2 to 0.2) | 0.1 (0.0 to 0.2) B | 0.021 * | 0.147 | |
RMSSD | −0.2 (−1.0 to 0.3) | −0.1 (−2.3 to 0.4) | −0.1 (−1.3 to 0.4) | 0.2 (−0.2 to 2.3) | 0.150 | 0.081 | |
SCY60 | PLF | 0.8 (−0.7 to 18.7) | 0.0 (−0.8 to 1.3) | 0.4 (−4.0 to 3.0) | 0.8 (−0.5 to 4.4) | 0.444 | 0.041 |
PHF | 25.7 (10.3 to 48.3) | 2.1 (−12.5 to 17.7) | 21.7 (−2.4 to 44.6) | 27.0 (10.9 to 65.6) | 0.164 | 0.077 | |
SDNN | 0.1 (−2.5 to 0.9) D | −0.2 (−1.2 to 1.4) | 1.2 (−0.1 to 4.2) | 2.2 (1.1 to 8.5) A | 0.018 * | 0.153 | |
RMSSD | 14.4 (4.6 to 32.4) | 1.8 (−3.2 to 14.6) | 21.7 (4.2 to 29.8) | 15.8 (7.9 to 44.1) | 0.266 | 0.060 | |
SCY70 | PLF | 1.6 (−0.5 to 7.5) | −0.2 (−2.8 to 0.9) | −0.4 (−1.7 to 2.1) | −0.6 (−7.8 to 2.8) | 0.125 | 0.087 |
PHF | 9.2 (−6.2 to 50.8) | −0.9 (−42.6 to 25.6) C,D | 25.3 (17.5 to 57.2) B | 51.8 (14.5 to 71.7) B | 0.007 * | 0.186 | |
SDNN | 0.6 (−0.5 to 2.8) | 0.2 (−1.4 to 1.6) | 1.5 (−1.2 to 7.0) | 2.3 (0.3 to 8.0) | 0.104 | 0.093 | |
RMSSD | 15.4 (−2.0 to 29.5) | 0.6 (−27.9 to 19.3) D | 15.6 (14.2 to 36.5) | 27.1 (14.2 to 56.0) B | 0.010 * | 0.172 | |
SCY80 | PLF | 1.5 (−2.6 to 32.0) | 2.8 (−1.0 to 3.6) | 2.7 (−1.1 to 12.6) | 5.9 (0.3 to 16.1) | 0.596 | 0.029 |
PHF | 31.6 (−27.4 to 87.7) | −9.0 (−113.1 to 56.4) D | 28.0 (8.5 to 45.2) | 44.7 (37.2 to 77.7) B | 0.047 * | 0.121 | |
SDNN | 4.0 (−0.8 to 13.7) | −0.4 (−2.9 to 6.1) | 1.1 (−0.3 to 4.1) | 5.7 (1.6 to 14.3) | 0.050 * | 0.119 | |
RMSSD | 19.2 (−9.9 to 67.0) | 8.4 (−43.0 to 26.1) D | 19.0 (4.7 to 32.7) | 32.9 (22.1 to 58.2) B | 0.028 * | 0.137 | |
SREC | PLF | −0.4 (−33.8 to 0.1) | 0.5 (−0.5 to 6.2) | 0.2 (−17.6 to 3.9) | 0.2 (−4.9 to 12.7) | 0.161 | 0.105 |
PHF | −1.6 (−8.2 to 5.8) | 1.6 (0.1 to 5.9) | −1.2 (−8.3 to 10.1) | 9.3 (−0.2 to 37.2) | 0.053 | 0.157 | |
SDNN | −0.1 (−0.9 to 0.1) | 0.1 (−1.5 to 0.3) | −0.1 (−1.0 to 0.4) | 0.0 (−1.8 to 0.7) | 0.933 | 0.007 | |
RMSSD | −0.9 (−2.3 to 2.0) | 0.1 (−9.8 to 3.0) | 1.5 (−1.4 to 5.5) | 2.2 (−2.9 to 11.5) | 0.226 | 0.068 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Vicente, A.; Hernando, D.; Marín-Puyalto, J.; Vicente-Rodríguez, G.; Garatachea, N.; Pueyo, E.; Bailón, R. Validity of the Polar H7 Heart Rate Sensor for Heart Rate Variability Analysis during Exercise in Different Age, Body Composition and Fitness Level Groups. Sensors 2021, 21, 902. https://doi.org/10.3390/s21030902
Hernández-Vicente A, Hernando D, Marín-Puyalto J, Vicente-Rodríguez G, Garatachea N, Pueyo E, Bailón R. Validity of the Polar H7 Heart Rate Sensor for Heart Rate Variability Analysis during Exercise in Different Age, Body Composition and Fitness Level Groups. Sensors. 2021; 21(3):902. https://doi.org/10.3390/s21030902
Chicago/Turabian StyleHernández-Vicente, Adrián, David Hernando, Jorge Marín-Puyalto, Germán Vicente-Rodríguez, Nuria Garatachea, Esther Pueyo, and Raquel Bailón. 2021. "Validity of the Polar H7 Heart Rate Sensor for Heart Rate Variability Analysis during Exercise in Different Age, Body Composition and Fitness Level Groups" Sensors 21, no. 3: 902. https://doi.org/10.3390/s21030902
APA StyleHernández-Vicente, A., Hernando, D., Marín-Puyalto, J., Vicente-Rodríguez, G., Garatachea, N., Pueyo, E., & Bailón, R. (2021). Validity of the Polar H7 Heart Rate Sensor for Heart Rate Variability Analysis during Exercise in Different Age, Body Composition and Fitness Level Groups. Sensors, 21(3), 902. https://doi.org/10.3390/s21030902