Electrochemistry/Photoelectrochemistry-Based Immunosensing and Aptasensing of Carcinoembryonic Antigen
Abstract
:1. Introduction
2. Electrochemistry-Based CEA Detection
2.1. Electrochemical Immunosensors
2.2. Electrochemical Aptasensors
3. Photoelectrochemistry-Based CEA Detection
3.1. Photoelectrochemical Immunosensing
3.2. Photoelectrochemical Aptasensing
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sadighbayan, D.; Sadighbayan, K.; Khosroushahi, A.Y.; Hasanzadeh, M. Recent advances on the DNA-based electrochemical biosensing of cancer biomarkers: Analytical approach. Trends Anal. Chem. 2019, 119, 115609. [Google Scholar] [CrossRef]
- Drzazgowska, J.; Schmid, B.; Sussmuth, R.D.; Altintas, Z. Self-assembled monolayer epitope bridges for molecular imprinting and cancer biomarker sensing. Anal. Chem. 2020, 92, 8021–8025. [Google Scholar] [CrossRef]
- Cathcart, N.; Chen, J.I.L. Sensing biomarkers with plasmonics. Anal. Chem. 2020, 92, 7373–7381. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tan, L.; Jie, G.F. Ultrasensitive electrochemiluminescence biosensor for the detection of carcinoembryonic antigen based on multiple amplification and a DNA walker. Sens. Actuators B Chem. 2021, 333, 129586. [Google Scholar] [CrossRef]
- Wei, Q.X.; Wang, C.; Li, P.; Wu, S.S.E.; Yang, N.J.; Wang, X.; Wang, Y.Y.; Li, C.Y. ZnS/C/MoS2 nanocomposite derived from metal-organic framework for high-performance photo-electrochemical immunosensing of carcinoembryonic antigen. Small 2019, 15, 1902086. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, B.H.; Wang, Y.; Zhao, F.Q.; Zeng, B.Z. Electrochemiluminescence immunosensor for the detection of carcinoembryonic antigen based on oxygen vacancy-rich Co3O4 nanorods and luminol. ACS Appl. Nano Mater. 2021, 4, 7264–7271. [Google Scholar] [CrossRef]
- Shamsuddin, S.H.; Gibson, T.D.; Tomlinson, D.C.; McPherson, M.J.; Jayne, D.G.; Millner, P.A. Reagentless affimer- and antibody-based impedimetric biosensors for CEA-detection using a novel non-conducting polymer. Biosens. Bioelectron. 2021, 178, 113013. [Google Scholar] [CrossRef]
- Zhou, N.; Xu, X.F.; Li, X.; Yao, W.A.; He, X.H.; Dong, Y.L.; Liu, D.; Hu, X.S.; Lin, Y.W.; Xie, Z.Z.; et al. A sandwich-type photoelectrochemical aptasensor using Au/BiVO4 and CdS quantum dots for carcinoembryonic antigen assay. Analyst 2021, 146, 5904–5912. [Google Scholar] [CrossRef]
- Nakhjavani, S.A.; Afsharan, H.; Khalilzadeh, B.; Ghahremani, M.H.; Carrara, S.; Omidi, Y. Gold and silver bio/nano-hybrids-based electrochemical immunosensor for ultrasensitive detection of carcinoembryonic antigen. Biosens. Bioelectron. 2019, 141, 111439. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, G.B.; Liang, W.B.; Yao, L.Y.; Huang, W.; Zhang, Y.J.; Zhang, J.L.; Wang, J.M.; Yuan, R.; Xiao, D.R. An AIEgen-based 2D ultrathin metal-organic layer as an electrochemiluminescence platform for ultrasensitive biosensing of carcinoembryonic antigen. Nanoscale 2020, 12, 5932–5941. [Google Scholar] [CrossRef]
- Ba, Y.Y.; Zhang, J.Y.; Sun, Y.Z.; Liu, Y.J.; Yang, H.X.; Kong, J.M. Novel fluorescent biosensor for carcinoembryonic antigen determination via atom transfer radical polymerization with a macroinitiator. New J. Chem. 2021, 45, 3112–3119. [Google Scholar] [CrossRef]
- Li, J.; Cao, Y.; Hinman, S.S.; McKeating, K.S.; Guan, Y.W.; Hu, X.Y.; Cheng, Q.; Yang, Z.J. Efficient label-free chemiluminescent immunosensor based on dual functional cupric oxide nanorods as peroxidase mimics. Biosens. Bioelectron. 2018, 100, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Medetalibeyoglu, H.; Kotan, G.; Atar, N.; Yola, M.L. A novel sandwich-type SERS immunosensor for selective and sensitive carcinoembryonic antigen (CEA) detection. Anal. Chim. Acta 2020, 1139, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, L.Q.; Shen, Y.J.; Guo, L.; Yin, H.; Fang, X.H.; Yang, Z.J.; Xu, Q.; Li, H.B. Superparamagnetic nanostructures for split-type and competitive-mode photoelectrochemical aptasensing. Anal. Chem. 2020, 92, 8607–8613. [Google Scholar] [CrossRef] [PubMed]
- Akanda, M.R.; Ju, H.X. A tyrosinase-responsive nonenzymatic redox cycling for amplified electrochemical immunosensing of protein. Anal. Chem. 2016, 88, 9856–9861. [Google Scholar] [CrossRef]
- Zang, Y.; Fan, J.; Ju, Y.; Xue, H.G.; Pang, H. Current advances in semiconductor nanomaterial-based photoelectrochemical biosensing. Chem. Eur. J. 2018, 24, 14010–14027. [Google Scholar] [CrossRef]
- Fan, X.X.; Deng, D.M.; Chen, Z.C.; Qi, J.; Li, Y.Y.; Han, B.S.; Huan, K.; Luo, L.Q. A sensitive amperometric immunosensor for the detection of carcinoembryonic antigen using ZnMn2O4@reduced graphene oxide composites as signal amplifier. Sens. Actuators B Chem. 2021, 339, 129852. [Google Scholar] [CrossRef]
- Singh, P.; Katkar, P.K.; Patil, U.M.; Bohara, R.A. A robust electrochemical immunosensor based on core-shell nanostructured silica-coated silver for cancer (carcinoembryonic-antigen-CEA) diagnosis. RSC Adv. 2021, 11, 10130–10143. [Google Scholar] [CrossRef]
- Huang, D.; Wang, L.; Zhan, Y.; Zou, L.N.; Ye, B.X. Photoelectrochemical biosensor for CEA detection based on SnS2-GR with multiple quenching effects of Au@CuS-GR. Biosens. Bioelectron. 2019, 140, 111358. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, Y.Y.; Zhang, H.J.; Deng, H.P.; Xiong, X.X.; Li, C.Y.; Li, W.W. Molecularly imprinted photoelectrochemical sensor for carcinoembryonic antigen based on polymerized ionic liquid hydrogel and hollow gold nanoballs/MoSe2 nanosheets. Anal. Chim. Acta 2019, 1090, 64–71. [Google Scholar] [CrossRef]
- Wang, S.S.; Wang, M.M.; Li, C.P.; Li, H.J.; Ge, C.H.; Zhang, X.D.; Jin, Y.D. A highly sensitive and stable electrochemiluminescence immunosensor for alpha-fetoprotein detection based on luminol-AgNPs@Co/Ni-MOF nanosheet microflowers. Sens. Actuators B Chem. 2020, 311, 127919. [Google Scholar] [CrossRef]
- Wang, C.F.; Sun, X.Y.; Su, M.; Wang, Y.P.; Lv, Y.K. Electrochemical biosensors based on antibody, nucleic acid and enzyme functionalized graphene for the detection of disease-related biomolecules. Analyst 2020, 145, 1550–1562. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.Q.; Wu, H.; Shang, P.X.; Zeng, X.T.; Chi, Y.W. Immobilizing water-soluble graphene quantum dots with gold nanoparticles for a low potential electrochemiluminescence immunosensor. Nanoscale 2015, 7, 16366–16371. [Google Scholar] [CrossRef]
- Lan, Q.C.; Ren, C.L.; Lambert, A.; Zhang, G.S.; Li, J.; Cheng, Q.; Hu, X.Y.; Yang, Z.J. Platinum nanoparticle-decorated graphene oxide@polystyrene nanospheres for label-free electrochemical immunosensing of tumor markers. ACS Sustain. Chem. Eng. 2020, 8, 4392–4399. [Google Scholar] [CrossRef]
- Su, S.; Han, X.Y.; Lu, Z.W.; Liu, W.; Zhu, D.; Chao, J.; Fan, C.H.; Wang, L.H.; Song, S.P.; Weng, L.X.; et al. Facile synthesis of a MoS2−prussian blue nanocube nanohybrid-based electrochemical sensing platform for hydrogen peroxide and carcinoembryonic antigen detection. ACS Appl. Mater. Interfaces 2017, 9, 12773–12781. [Google Scholar] [CrossRef]
- Huang, X.R.; Ni, Z.Y.; Su, H.P.; Shang, Y.Z.; Liu, H.L.; He, Y.F.; Meng, H.; Dong, Y.M. Cellulose nanocrystalline and sodium benzenesulfonate-doped polypyrrole nano-hydrogel/Au composites for ultrasensitive detection of carcinoembryonic antigen. New J. Chem. 2021, 45, 5551–5560. [Google Scholar] [CrossRef]
- Rizwan, M.; Elma, S.; Lim, S.A.; Ahmed, M.U. AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for the label-free detection of carcinoembryonic antigen. Biosens. Bioelectron. 2018, 107, 211–217. [Google Scholar] [CrossRef]
- Yang, T.T.; Gao, Y.S.; Liu, Z.; Xu, J.K.; Lu, L.M.; Yu, Y.F. Three-dimensional gold nanoparticles/prussian blue-poly(3,4-ethylenedioxythiophene) nanocomposite as novel redox matrix for label-free electrochemical immunoassay of carcinoembryonic antigen. Sens. Actuators B Chem. 2017, 239, 76–84. [Google Scholar] [CrossRef]
- Song, D.D.; Zheng, J.; Myung, N.V.; Xu, J.L.; Zhang, M. Sandwich-type electrochemical immunosensor for CEA detection using magnetic hollow Ni/C@SiO2 nanomatrix and boronic acid functionalized CPS@PANI@Au probe. Talanta 2021, 225, 122006. [Google Scholar] [CrossRef]
- Mei, L.S.; Zhao, W.T.; Zhang, L.; Zhang, M.M.; Song, Y.J.; Liang, J.S.; Sun, Y.; Chen, S.Y.; Li, H.L.; Hong, C.L. The application of the inexpensive and synthetically simple electrocatalyst CuFe-MoC@NG in immunosensors. Analyst 2021, 146, 5421–5428. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, G.H.; Li, Y.Y.; Li, X.; Dong, X.; Wei, Q.; Cao, W. A voltammetric immunoassay for the carcinoembryonic antigen using a self-assembled magnetic nanocomposite. Microchim. Acta 2018, 185, 387. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Li, K.Y.; Wang, M.F.; Chen, X.H.; Liu, J.Y.; Tang, H.L. Reagentless and sensitive determination of carcinoembryonic antigen based on a stable prussian blue modified electrode. RSC Adv. 2020, 10, 38316–38322. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Yu, Y.; Shen, J.L.; Qi, W.; Wang, H. Design of organic/inorganic nanocomposites for ultrasensitive electrochemical detection of a cancer biomarker protein. Talanta 2020, 212, 120794. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.G.; Wang, Y.L.; Wu, D.; Ma, H.M.; Zhang, Y.; Fan, D.W.; Pang, X.H.; Du, B.; Wei, Q. Label-free electrochemical immunosensor based on flower-like Ag/MoS2/rGO nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sens. Actuators B Chem. 2018, 255, 125–132. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, R.L.; Zhao, W.; Zhu, Y.; Wei, W.; Liu, X.Y.; Luo, J. Self-assembled polymeric nanoparticles film stabilizing gold nanoparticles as a versatile platform for ultrasensitive detection of carcino-embryonic antigen. Biosens. Bioelectron. 2017, 92, 570–576. [Google Scholar] [CrossRef]
- Wang, X.; Liao, X.C.; Zhang, B.J.; Zhang, L.; Zhang, M.M.; Mei, L.S.; Chen, S.Y.; Sun, C.H.; Qiao, X.W.; Hong, C.L. The electrochemical immunosensor of the “signal on” strategy that activates MMoO4 (M = Co, Ni) peroxidase with Cu2+ to achieve ultrasensitive detection of CEA. Anal. Chim. Acta 2021, 1176, 338757. [Google Scholar] [CrossRef]
- Ma, C.Y.; Zhao, C.L.; Li, W.J.; Song, Y.J.; Hong, C.L.; Qiao, X.W. Sandwich-type electrochemical immunosensor constructed using three-dimensional lamellar stacked CoS2@C hollow nanotubes prepared by template-free method to detect carcinoembryonic antigen. Anal. Chim. Acta 2019, 1088, 54–62. [Google Scholar] [CrossRef]
- Gu, X.F.; She, Z.; Ma, T.X.; Tian, S.; Kraatz, H.B. Electrochemical detection of carcinoembryonic antigen. Biosens. Bioelectron. 2018, 102, 610–616. [Google Scholar] [CrossRef]
- Zhao, C.L.; Ma, C.Y.; Li, W.J.; Song, Y.J.; Hong, C.L.; Qi, Y. Differences in performance of immunosensors constructed based on CeO2-simulating auxiliary enzymes. ACS Biomater. Sci. Eng. 2021, 7, 1058–1064. [Google Scholar] [CrossRef]
- Luo, Y.N.; Wang, Y.X.; Yan, H.Y.; Wu, Y.; Zhu, C.Z.; Du, D.; Lin, Y.H. SWCNTs@GQDs composites as nanocarriers for enzyme-free dual-signal amplification electrochemical immunoassay of cancer biomarker. Anal. Chim. Acta 2018, 1042, 44–51. [Google Scholar] [CrossRef]
- Lv, H.; Li, Y.Y.; Zhang, X.B.; Gao, Z.Q.; Zhang, C.Y.; Zhang, S.; Dong, Y.H. Enhanced peroxidase-like properties of Au@Pt DNs/NG/Cu2+ and application of sandwich-type electrochemical immunosensor for highly sensitive detection of CEA. Biosens. Bioelectron. 2018, 112, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.P.; Ye, J.; Yan, M.X.; Zhu, Q.J.; Wang, S.; Huang, J.S.; Yang, X.R. Electrochemiluminescence immunosensor based on Au nanocluster and hybridization chain reaction signal amplification for ultrasensitive detection of cardiac troponin I. ACS Sens. 2019, 4, 2778–2785. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, J.J.; Zhu, C.X.; Zhang, X.H.; Chen, J.H. A new electrochemical immunoassay for prion protein based on hybridization chain reaction with hemin/G-quadruplex DNAzyme. Talanta 2018, 182, 292–298. [Google Scholar] [CrossRef]
- Zhou, F.Y.; Yao, Y.; Luo, J.J.; Zhang, X.; Zhang, Y.; Yin, D.Y.; Gao, F.L.; Wang, P. Proximity hybridization-regulated catalytic DNA hairpin assembly for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles. Anal. Chim. Acta 2017, 969, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.L.; Zhou, F.Y.; Chen, S.J.; Yao, Y.; Wu, J.; Yin, D.Y.; Geng, D.Q.; Wang, P. Proximity hybridization triggered rolling-circle amplification for sensitive electrochemical homogeneous immunoassay. Analyst 2017, 142, 4308–4316. [Google Scholar] [CrossRef] [PubMed]
- Xiong, E.H.; Jiang, L. An ultrasensitive electrochemical immunoassay based on a proximity hybridization-triggered three-layer cascade signal amplification strategy. Analyst 2019, 144, 634–640. [Google Scholar] [CrossRef]
- Pei, F.B.; Wang, P.; Ma, E.H.; Yu, H.X.; Gao, C.X.; Yin, H.H.; Li, Y.Y.; Liu, Q.; Dong, Y.H. A sandwich-type amperometric immunosensor fabricated by Au@Pd NDs/Fe2+-CS/PPy NTs and Au NPs/NH2-GS to detect CEA sensitively via two detection methods. Biosens. Bioelectron. 2018, 122, 231–238. [Google Scholar] [CrossRef]
- Liu, Q.L.; Du, H.Z.; Ren, X.Z.; Bian, W.; Fan, L.; Shuang, S.M.; Dong, C.; Hu, Q.; Choi, M.M.F. Design of ratiometric emission probe with visible light excitation for determination of Ca2+ in living cells. Anal. Chem. 2014, 86, 8025–8030. [Google Scholar] [CrossRef]
- Dai, C.; Yang, C.X.; Yan, X.P. Ratiometric fluorescent detection of phosphate in aqueous solution based on near infrared fluorescent silver nanoclusters/metal-organic shell composite. Anal. Chem. 2015, 87, 11455–11459. [Google Scholar] [CrossRef]
- Jiang, J.J.; Chen, D.; Du, X.Z. Ratiometric electrochemiluminescence sensing platform for sensitive glucose detection based on in situ generation and conversion of coreactants. Sens. Actuators B Chem. 2017, 251, 256–263. [Google Scholar] [CrossRef]
- Lin, X.Y.; Jiang, J.J.; Wang, J.; Xia, J.L.; Wang, R.N.; Diao, G.W. Competitive host-guest recognition initiated by DNAzyme-cleavage cycling for novel ratiometric electrochemical assay of miRNA-21. Sens. Actuators B Chem. 2021, 333, 129556. [Google Scholar] [CrossRef]
- Cui, L.; Lu, M.F.; Li, Y.; Tang, B.; Zhang, C.Y. A reusable ratiometric electrochemical biosensor on the basis of the binding of methylene blue to DNA with alternating AT base sequence for sensitive detection of adenosine. Biosens. Bioelectron. 2018, 102, 87–93. [Google Scholar] [CrossRef]
- Wei, Y.C.; Ma, H.M.; Ren, X.; Ding, C.F.; Wang, H.; Sun, X.; Du, B.; Zhang, Y.; Wei, Q. A dual-signaling electrochemical ratiometric method for sensitive detection of carcinoembryonic antigen based on Au-Cu2S-CuS/graphene and Au-CeO2 supported toluidine blue complex. Sens. Actuators B Chem. 2018, 256, 504–511. [Google Scholar] [CrossRef]
- Yin, X.M.; Liang, L.L.; Zhao, P.N.; Lan, F.F.; Zhang, L.N.; Ge, S.G.; Yu, J.H. Double signal amplification based on palladium nanoclusters and nucleic acid cycles on a μPAD for dual-model detection of microRNAs. J. Mater. Chem. B 2018, 6, 5795–5801. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhu, J.; Weng, G.J.; Li, J.J.; Zhao, J.W. Gold nanoring core-shell satellites with abundant built-in hotspots and great analyte penetration: An immunoassay platform for the SERS/fluorescence-based detection of carcinoembryonic antigen. Chem. Eng. J. 2021, 409, 128173. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Cai, X.L.; Zhu, C.Z.; Yang, H.P.; Du, D. A novel fluorescent and electrochemical dual-responsive immunosensor for sensitive and reliable detection of biomarkers based on cation-exchange reaction. Anal. Chim. Acta 2020, 1096, 61–68. [Google Scholar] [CrossRef]
- Guo, C.P.; Su, F.F.; Song, Y.P.; Hu, B.; Wang, M.H.; He, L.H.; Peng, D.L.; Zhang, Z.H. Aptamer-templated silver nanoclusters embedded in zirconium metal-organic framework for bifunctional electrochemical and SPR aptasensors toward carcinoembryonic antigen. ACS Appl. Mater. Interfaces 2017, 9, 41188–41199. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Duan, F.H.; Tian, J.Y.; He, J.Y.; Yang, L.Y.; Zhao, H.; Zhang, S.; Liu, C.S.; He, L.H.; Chen, M.; et al. Aptamer-embedded zirconium-based metal-organic framework composites prepared by de novo bio-inspired approach with enhanced biosensing for detecting trace analytes. ACS Sens. 2017, 2, 982–989. [Google Scholar] [CrossRef]
- Chakraborty, B.; Das, A.; Mandal, N.; Samanta, N.; Das, N.; Chaudhuri, C.R. Label free, electric field mediated ultrasensitive electrochemical point-of-care device for CEA detection. Sci. Rep. 2021, 11, 2962. [Google Scholar] [CrossRef]
- Huang, J.Y.; Zhao, L.; Lei, W.; Wen, W.; Wang, Y.J.; Bao, T.; Xiong, H.Y.; Zhang, X.H.; Wang, S.F. A high-sensitivity electrochemical aptasensor of carcinoembryonic antigen based on graphene quantum dots-ionic liquid-nafion nanomatrix and DNAzyme-assisted signal amplification strategy. Biosens. Bioelectron. 2018, 99, 28–33. [Google Scholar] [CrossRef]
- Cui, M.; Wang, Y.; Wang, H.P.; Wu, Y.M.; Luo, X.L. A label-free electrochemical DNA biosensor for breast cancer marker BRCA1 based on self-assembled antifouling peptide monolayer. Sens. Actuators B Chem. 2017, 244, 742–749. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Han, R.; Liu, N.Z.; Gao, F.X.; Luo, X.L. Electrochemical biosensors for the detection of carcinoembryonic antigen with low fouling and high sensitivity based on copolymerized polydopamine and zwitterionic polymer. Sens. Actuators B Chem. 2020, 319, 128253. [Google Scholar] [CrossRef]
- Jiang, J.J.; Lin, X.Y.; Ding, D.; Diao, G.W. Enzyme-free homogeneous electrochemical biosensor for DNA assay using toehold-triggered strand displacement reaction coupled with host-guest recognition of Fe3O4@SiO2@β-CD nanocomposites. Biosens. Bioelectron. 2018, 114, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Fan, J.; Zhang, H.; Xu, Q.; Jiang, J.J.; Xue, H.G. Dual-functional β-CD@CdS nanorod/WS2 nanosheet heterostructures coupled with strand displacement reaction-mediated photocurrent quenching for an ultrasensitive MicroRNA-21 assay. Electrochim. Acta 2020, 334, 135581. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, J.S.; Li, B.X.; Liu, J.; Xu, J.J.; Chen, H.Y. Dual-mode SERS and electrochemical detection of miRNA based on popcorn-like gold nanofilms and toehold-mediated strand displacement amplification reaction. Anal. Chem. 2021, 93, 6120–6127. [Google Scholar] [CrossRef]
- Jiang, J.J.; Lin, X.Y.; Diao, G.W. Smart combination of cyclodextrin polymer host-guest recognition and Mg2+-assistant cyclic cleavage reaction for sensitive electrochemical assay of nucleic acids. ACS Appl. Mater. Interfaces 2017, 9, 36688–36694. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, J.S.; Jin, H.L.; Wei, M.; Ren, W.J.; Zhang, Y.R.; Wu, L.G.; He, B.S. Electrochemical biosensor for sensitive detection of Hg2+ based on clustered peonylike copper-based metal-organic frameworks and DNAzyme-driven DNA Walker dual amplification signal strategy. Sens. Actuators B Chem. 2021, 329, 129215. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Huo, B.Y.; Sun, X.; Ning, B.A.; Peng, Y.; Bai, J.L.; Gao, Z.X. Rapid detection of staphylococcal enterotoxin B in milk samples based on fluorescence hybridization chain reaction amplification. RSC Adv. 2018, 8, 16024–16031. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.L.; Wu, J.; Zhang, R.; Wu, Q.; Ju, H.X. Electrochemical biosensing of DENV nucleic acid amplified with triplet nanostructure-mediated dendritic hybridization chain reaction. Sens. Actuators B Chem. 2021, 345, 130436. [Google Scholar] [CrossRef]
- Huang, X.C.; Bian, X.B.; Chen, L.F.; Guo, L.H.; Qiu, B.; Lin, Z.Y. Highly sensitive homogeneous electrochemiluminescence biosensor for alkaline phosphatase detection based on click chemistry-triggered branched hybridization chain reaction. Anal. Chem. 2021, 93, 10351–10357. [Google Scholar] [CrossRef]
- Shi, X.M.; Fan, G.C.; Shen, Q.M.; Zhu, J.J. Photoelectrochemical DNA biosensor based on dual-signal amplification strategy integrating inorganic-organic nanocomposites sensitization with λ-exonuclease-assisted target recycling. ACS Appl. Mater. Interfaces 2016, 8, 35091–35098. [Google Scholar] [CrossRef]
- Wang, J.; Yu, J.; Zhou, X.Y.; Miao, P. Exonuclease and nicking endonuclease-assisted amplified electrochemical detection of coralyne. ChemElectroChem 2017, 4, 1828–1831. [Google Scholar] [CrossRef]
- Zhao, J.C.; Shu, D.; Ma, Z.F. Target-inspired Zn2+-dependent DNAzyme for ultrasensitive impedimetric aptasensor based on polyacrylic acid nanogel as amplifier. Biosens. Bioelectron. 2019, 127, 161–166. [Google Scholar] [CrossRef]
- Bao, T.; Fu, R.B.; Wen, W.; Zhang, X.H.; Wang, S.F. Target-driven cascade-amplified release of loads from DNA-gated metal-organic frameworks for electrochemical detection of cancer biomarker. ACS Appl. Mater. Interfaces 2020, 12, 2087–2094. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.J.; Chen, B.A.; Jia, R.C.; Sun, H.H.; Huang, J.; Cheng, H.; Wang, H.Z.; He, X.X.; Wang, K.M. In situ hand-in-hand DNA tile assembly: A pH-driven and aptamer-targeted DNA nanostructure for TK1 mRNA visualization and synergetic killing of cancer cells. Anal. Chem. 2021, 93, 10511–10518. [Google Scholar] [CrossRef]
- Wang, Z.G.; Xue, Q.W.; Tian, W.Z.; Wang, L.; Jiang, W. Quantitative detection of single DNA molecules on DNA tetrahedron decorated substrates. Chem. Commun. 2012, 48, 9661–9663. [Google Scholar] [CrossRef]
- Liu, Z.; Lei, S.; Zou, L.N.; Li, G.P.; Xu, L.L.; Ye, B.X. A label-free and double recognition-amplification novel strategy for sensitive and accurate carcinoembryonic antigen assay. Biosens. Bioelectron. 2019, 131, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, L.; Mao, D.; Luo, D.; Cao, F.S.; Chen, Q.H.; Chen, J.S. Construction of electrochemical aptasensor of carcinoembryonic antigen based on toehold-aided DNA recycling signal amplification. Bioelectrochemistry 2020, 133, 107492. [Google Scholar] [CrossRef]
- Li, X.Y.; Weng, C.Y.; Wang, J.; Yang, W.; Lu, Q.Y.; Yan, X.Q.; Sakran, M.A.; Hong, J.L.; Zhu, W.Y.; Zhou, X.M. A label-free electrochemical magnetic aptasensor based on exonuclease III–assisted signal amplification for determination of carcinoembryonic antigen. Microchim. Acta 2020, 187, 492. [Google Scholar] [CrossRef]
- Shekari, Z.; Zare, H.R.; Falahati, A. Electrochemical sandwich aptasensor for the carcinoembryonic antigen using graphene quantum dots, gold nanoparticles and nitrogen doped graphene modified electrode and exploiting the peroxidase-mimicking activity of a G-quadruplex DNAzyme. Microchim. Acta 2019, 186, 530. [Google Scholar] [CrossRef]
- Zhou, X.X.; Guo, S.J.; Gao, J.X.; Zhao, J.M.; Xue, S.Y.; Xu, W.J. Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases. Biosens. Bioelectron. 2017, 98, 83–90. [Google Scholar] [CrossRef]
- Zhou, X.X.; Xue, S.Y.; Jing, P.; Xu, W.J. A sensitive impedimetric platform biosensing protein: Insoluble precipitates based on the biocatalysis of manganese(III) meso-tetrakis (4-N-methylpyridiniumyl)-porphyrinin in HCR-assisted dsDNA. Biosens. Bioelectron. 2016, 86, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Li, X.Y.; Gao, X.; Ge, L.; Sun, X.Z.; Li, F. A universal paper-based electrochemical sensor for zero-background assay of diverse biomarkers. ACS Appl. Mater. Interfaces 2019, 11, 15381–15388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Pei, M.; Cheng, Y.Y.; Zhang, Z.; Niu, C.; Liu, X.Q.; Liu, J.X.; Guo, F.; Huang, H.G.; Lin, X.J. A novel electrochemical aptamer biosensor based on tetrahedral DNA nanostructures and catalytic hairpin assembly for CEA detection. J. Electroanal. Chem. 2021, 898, 115635. [Google Scholar] [CrossRef]
- Gao, F.X.; Song, J.Y.; Xu, Z.Y.; Xu, L.; Guo, Y.R.; Miao, L.; Luo, X.L. All-polymer free-standing electrodes for flexible electrochemical sensors. Sens. Actuators B Chem. 2021, 334, 129675. [Google Scholar] [CrossRef]
- Song, J.Y.; Teng, H.; Xu, Z.Y.; Liu, N.Z.; Xu, L.; Liu, L.; Gao, F.X.; Luo, X.L. Free-standing electrochemical biosensor for carcinoembryonic antigen detection based on highly stable and flexible conducting polypyrrole nanocomposite. Microchim. Acta 2021, 188, 217. [Google Scholar] [CrossRef]
- Verdian, A.; Fooladi, E.; Rouhbakhsh, Z. Recent progress in the development of recognition bioelements for polychlorinated biphenyls detection: Antibodies and aptamers. Talanta 2019, 202, 123–135. [Google Scholar] [CrossRef]
- Zhang, B.; Jia, Y.J.; Wang, J.; Hu, X.; Zhao, Z.H.; Cheng, Y. Cysteine-assisted photoelectrochemical immunoassay for the carcinoembryonic antigen by using an ITO electrode modified with C3N4-BiOCl semiconductor and CuO nanoparticles as antibody labels. Microchim. Acta 2019, 186, 633. [Google Scholar] [CrossRef]
- Wu, T.T.; Zhang, Y.R.; Wei, D.; Wang, X.D.; Yan, T.; Du, B.; Wei, Q. Label-free photoelectrochemical immunosensor for carcinoembryonic antigen detection based on g-C3N4 nanosheets hybridized with Zn0.1Cd0.9S nanocrystals. Sens. Actuators B Chem. 2018, 256, 812–819. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, Y.J.; Wang, Z.G.; Wang, Y.Y.; Ye, X.X.; Wong, W.L.; Li, C.Y.; Sun, D. Gold/WS2 nanocomposites fabricated by in-situ ultrasonication and assembling for photoelectrochemical immunosensing of carcinoembryonic antigen. Microchim. Acta 2018, 185, 570. [Google Scholar] [CrossRef]
- Liu, X.P.; Chen, J.S.; Mao, C.J.; Jin, B.K. A label-free photoelectrochemical immunosensor for carcinoembryonic antigen detection based on a g-C3N4/CdSe nanocomposite. Analyst 2021, 146, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.Z.; Wang, R.Y.; Xing, B.; Zhang, T.; Khan, M.S.; Wu, D.; Wei, Q. Label-free photoelectrochemical immunoassay for CEA detection based on CdS sensitized WO3@BiOI heterostructure nanocomposite. Biosens. Bioelectron. 2018, 99, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.H.; Wang, H.; Zhao, F.Q.; Zeng, B.Z. LED visible-light driven label-free photoelectrochemical immunosensor based on WO3/Au/CdS photocatalyst for the sensitive detection of carcinoembryonic antigen. Electrochim. Acta 2019, 297, 372–380. [Google Scholar] [CrossRef]
- Guan, X.X.; Deng, X.X.; Song, J.; Wang, X.Y.; Wu, S. Polydopamine with tailorable photoelectrochemical activities for the highly sensitive immunoassay of tumor markers. Anal. Chem. 2021, 93, 6763–6769. [Google Scholar] [CrossRef]
- Gong, Y.T.; Wu, X.M.; Dong, Y.M.; Liu, Q.Y.; Li, Z.J.; Wang, G.L. Cathodic photoelectrochemical immunoassay based on glucose-oxidase mediated biocatalysis to inhibit the exciton trapping of cupric ions for PbS quantum dots. Sens. Actuators B Chem. 2018, 266, 408–415. [Google Scholar] [CrossRef]
- Zeng, R.J.; Tang, D.P. Magnetic bead-based photoelectrochemical immunoassay for sensitive detection of carcinoembryonic antigen using hollow cadmium sulfide. Talanta 2020, 129, 121215. [Google Scholar] [CrossRef]
- Gong, Y.T.; Yuan, F.; Dong, Y.M.; Li, Z.J.; Wang, G.L. Switched photoelectrochemistry of carbon dots for split-type immunoassay. Anal. Chim. Acta 2018, 1014, 19–26. [Google Scholar] [CrossRef]
- Wang, Y.G.; Zhao, G.H.; Zhang, Y.; Du, B.; Wei, Q. Ultrasensitive photoelectrochemical immunosensor based on Cu-doped TiO2 and carbon nitride for detection of carcinoembryonic antigen. Carbon 2019, 146, 276–283. [Google Scholar] [CrossRef]
- Liu, L.X.; Fan, G.C.; Zhang, J.R.; Zhu, J.J. Ultrasensitive cathode photoelectrochemical immunoassay based on TiO2 photoanode-enhanced 3D Cu2O nanowire array photocathode and signal amplification by biocatalytic precipitation. Anal. Chim. Acta 2018, 1027, 33–40. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Y.T.; Lv, J.L.; Xue, T.Y.; Ren, S.W.; Cao, J.T.; Liu, Y.M.; Zhao, W.W. Ru(NH3)63+/Ru(NH3)62+-mediated redox cycling: Toward enhanced triple signal amplification for photoelectrochemical immunoassay. Anal. Chem. 2019, 91, 3768–3772. [Google Scholar] [CrossRef] [Green Version]
- Zang, Y.; Ju, Y.; Jiang, J.J.; Xu, Q.; Chu, M.; Xue, H.G. Cu2+-modulated in situ growth of quantum dots for split-type photoelectrochemical immunoassay of prostate-specific antigen. Analyst 2019, 144, 4661–4666. [Google Scholar] [CrossRef]
- Cao, J.T.; Wang, B.; Dong, Y.X.; Wang, Q.; Ren, S.W.; Liu, Y.M.; Zhao, W.W. Photogenerated hole-induced chemical redox cycling on Bi2S3/Bi2Sn2O7 heterojunction: Toward general amplified split-type photoelectrochemical immunoassay. ACS Sens. 2018, 3, 1087–1092. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Deng, W.F.; Tan, Y.M. CdS quantum-dots-decorated V2O5 nanosheets as chemically etchable active materials for sensitive photoelectrochemical immunoassay of carcinoembryonic antigen. ACS Appl. Mater. Interfaces 2020, 12, 29066–29073. [Google Scholar] [CrossRef]
- Chen, G.J.; Qin, Y.; Jiao, L.; Huang, J.J.; Wu, Y.; Hu, L.Y.; Gu, W.L.; Xu, D.C.; Zhu, C.Z. Nanozyme-activated synergistic amplification for ultrasensitive photoelectrochemical immunoassay. Anal. Chem. 2021, 93, 6881–6888. [Google Scholar] [CrossRef]
- Zang, Y.; Cao, R.; Zhang, C.Y.; Xu, Q.; Yang, Z.J.; Xue, H.G.; Shen, Y.Z. TiO2-sensitized double-shell ZnCdS hollow nanospheres for photoelectrochemical immunoassay of carcinoembryonic antigen coupled with hybridization chain reaction-dependent Cu2+ quenching. Biosens. Bioelectron. 2021, 185, 113251. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Li, Y.; Zhang, X.; Liu, P.; He, M.; Li, C.Y.; Wang, Y.Y. Near-infrared photoactive Yb-MOF functionalized with a large conjugate ionic liquid: Synthesis and application for photoelectrochemical immunosensing of carcinoma embryonic antigen. Nanoscale 2021, 13, 9757–9765. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Meng, H.; Mo, F.J.; Guo, J.; Fu, Y.Z. An electron donor-acceptor organic photoactive composite with Schottky heterojunction induced photoelectrochemical immunoassay. Biosens. Bioelectron. 2021, 191, 113475. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, Q.; Dong, W.X.; Mo, X.X.; Li, H. Photoelectric effect driving PANI/PB multicolor visualized detection of CEA based on Ag2S NPs@ZnO NTs. Anal. Chim. Acta 2020, 1108, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.L.; Cui, K.; Li, L.; Zhang, L.N.; Yu, J.H. Visible-light-driven renewable photoelectrochemical/synchronous visualized sensing platform based on Ni:FeOOH/BiVO4 photoanode and enzymatic cascade amplification for carcinoembryonic antigen detection. Sens. Actuators B Chem. 2020, 304, 127301. [Google Scholar] [CrossRef]
- Wang, J.; Long, J.; Liu, Z.H.; Wu, W.Z.; Hu, C.G. Label-free and high-throughput biosensing of multiple tumor markers on a single light-addressable photoelectrochemical sensor. Biosens. Bioelectron. 2017, 91, 53–59. [Google Scholar] [CrossRef]
- Ma, Y.H.; Fan, G.C.; Cui, M.; Gu, S.T.; Liu, Q.Y.; Luo, X.L. Novel cathodic photoelectrochemical immnuosensor with high sensitivity based on 3D AuNPs/ZnO/Cu2O heterojunction nanowires. Electrochim. Acta 2019, 318, 100–107. [Google Scholar] [CrossRef]
- Nie, G.M.; Tang, Y.; Zhang, B.; Wang, Y.; Guo, Q.F. Label-free photoelectrochemical immunosensing platform for detection of carcinoembryonic antigen through photoactive conducting poly(5-formylindole) nanocomposite. Biosens. Bioelectron. 2018, 116, 60–66. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, J.J.; Song, Y.B.; Chen, Y.W.; Lu, F.S.; Gao, W.H. Porous hollow carbon nanobubbles@ZnCdS multi-shelled dodecahedral cages with enhanced visible-light harvesting for ultrasensitive photoelectrochemical biosensors. Biosens. Bioelectron. 2019, 133, 125–132. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, B.H.; Xi, J.J.; Zhao, F.Q.; Zeng, B.Z. Z-scheme I-BiOCl/CdS with abundant oxygen vacancies as highly effective cathodic material for photocathodic immunoassay. Biosens. Bioelectron. 2019, 141, 111443. [Google Scholar] [CrossRef]
- Deng, X.X.; Yang, X.L.; Guan, X.X.; Song, J.; Wu, S. Polydopamine nanospheres with multiple quenching effect on TiO2/CdS:Mn for highly sensitive photoelectrochemical assay of tumor markers. Anal. Bioanal. Chem. 2021, 413, 2045–2054. [Google Scholar] [CrossRef]
- Nair, R.V.; Chandran, P.R.; Mohamed, A.P.; Pillai, S. Sulphur-doped graphene quantum dot based fluorescent turn-on aptasensor for selective and ultrasensitive detection of omethoate. Anal. Chim. Acta 2021, 1181, 338893. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Ren, X.; Wang, H.; Kuang, X.; Fan, D.W.; Wu, D.; Wei, Q. Ultrasensitive controlled release aptasensor using thymine-Hg2+-thymine mismatch as a molecular switch for Hg2+ detection. Anal. Chem. 2020, 92, 14069–14075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.X.; Lyu, H.Y.; Li, N.; Liu, Q.; Zhang, X.X.; Zhang, X.; Wang, X.T.; Liu, Q.Y. Visible light driven photoelectrochemical thrombin aptasensor based on uniform TiO2 nanotube arrays modified with CuOx and perylene-3,4,9,10-tetracarboxylic acid. Electrochim. Acta 2020, 354, 136774. [Google Scholar] [CrossRef]
- He, X.J.; Zhao, X.; Deng, W.F.; Tan, Y.M.; Xie, Q.J. CdSe quantum dots-decorated ZnIn2S4 nanosheets for “signal-on” photoelectrochemical aptasensing of ATP by integrating exciton energy transfer with exciton-plasmon coupling. Sens. Actuators B Chem. 2021, 348, 130686. [Google Scholar] [CrossRef]
- Zhao, W.W.; Xu, J.J.; Chen, H.Y. Photoelectrochemical aptasensing. Trends Anal. Chem. 2016, 82, 307–315. [Google Scholar] [CrossRef]
- Li, L.; Wang, T.; Zhang, Y.; Xu, C.X.; Zhang, L.N.; Cheng, X.; Liu, H.; Chen, X.D.; Yu, J.H. Editable TiO2 nanomaterial-modified paper in situ for highly efficient detection of carcinoembryonic antigen by photoelectrochemical method. ACS Appl. Mater. Interfaces 2018, 10, 14594–14601. [Google Scholar] [CrossRef] [PubMed]
- Mo, F.; Han, M.; Weng, X.; Zhang, Y.Y.; Li, J.; Li, H.B. Magnetic-assisted methylene blue-intercalated amplified dsDNA for polarity-switching-mode photoelectrochemical aptasensing. Anal. Chem. 2021, 93, 1764–1770. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.P.; Shen, L.; Wang, X.; Yang, C.L.; Yu, J.H.; Yan, M.; Song, X.R. Using carbon nanotubes-gold nanocomposites to quench energy from pinnate titanium dioxide nanorods array for signal-on photoelectrochemical aptasensing. Biosens. Bioelectron. 2016, 82, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.S.; Niu, S.Y.; Ge, J.J.; Luan, Q.Y.; Jie, G.F. 3D DNA nanosphere-based photoelectrochemical biosensor combined with multiple enzyme-free amplification for ultrasensitive detection of cancer biomarkers. Biosens. Bioelectron. 2020, 147, 111778. [Google Scholar] [CrossRef]
- Yang, R.Y.; Jiang, G.H.; Liu, J.; Wang, Y.L.; Jian, N.G.; He, L.L.; Liu, L.E.; Qu, L.B.; Wu, Y.J. Plasmonic TiO2@Au NPs//CdS QDs photocurrent-direction switching system for ultrasensitive and selective photoelectrochemical biosensing with cathodic background signal. Anal. Chim. Acta 2021, 1153, 338283. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.B.; Lu, X.Y.; Gu, S.T.; Shi, X.M.; Fan, G.C. Enhanced two-electrode photoelectrochemical biosensing platform amplified by bilirubin oxidase labelling. Sens. Actuators B Chem. 2021, 343, 130060. [Google Scholar] [CrossRef]
- Liu, X.J.; Zhao, Y.C.; Li, F. Nucleic acid-functionalized metal-organic framework for ultrasensitive immobilization-free photoelectrochemical biosensing. Biosens. Bioelectron. 2021, 173, 112832. [Google Scholar] [CrossRef]
- Qiu, Z.L.; Shu, J.; Tang, D.P. Near-infrared-to-ultraviolet light-mediated photoelectrochemical aptasensing platform for cancer biomarker based on core shell NaYF4:Yb,Tm@TiO2 upconversion microrods. Anal. Chem. 2018, 90, 1021–1028. [Google Scholar] [CrossRef]
- Qiu, Z.L.; Shu, J.; Liu, J.F.; Tang, D.P. Dual-channel photoelectrochemical ratiometric aptasensor with up-converting nanocrystals using spatial-resolved technique on homemade 3D printed device. Anal. Chem. 2019, 91, 1260–1268. [Google Scholar] [CrossRef]
- Ma, L.Z.; Zhang, D.Q.; Zhao, P.W.; Wang, B.; Luo, X.L. Efficient cathodic aptasensor coupling photoelectrochemical enhancement of PEDOT/Bi2S3/ZnO photoanode with signal amplification of Pt nanocatalysts. Sens. Actuators B Chem. 2021, 345, 130365. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Lv, S.Z.; Zhou, Q.; Tang, D.P. CoOOH nanosheets-coated g-C3N4/CuInS2 nanohybrids for photoelectrochemical biosensor of carcinoembryonic antigen coupling hybridization chain reaction with etching reaction. Sens. Actuators B Chem. 2020, 307, 127631. [Google Scholar] [CrossRef]
- Lv, S.Z.; Zhang, K.Y.; Zhu, L.; Tang, D.P. ZIF-8-assisted NaYF4:Yb,Tm@ZnO converter with exonuclease III-powered DNA walker for near-infrared light responsive biosensor. Anal. Chem. 2020, 92, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.L.; Sun, D.X.; Gu, M.M.; Wu, X.M.; Wang, G.L. Intercalative methylene blue as an efficient signal molecule of tremella-like Bi2WO6: Toward high performance photoelectrochemical biosensing. Sens. Actuators B Chem. 2020, 317, 128210. [Google Scholar] [CrossRef]
- Zhou, Q.; Lin, Y.X.; Lu, M.H.; Tang, D.P. Bismuth ferrite-based photoactive materials for the photoelectrochemical detection of disease biomarkers coupled with multifunctional mesoporous silica nanoparticles. J. Mater. Chem. B 2017, 5, 9600–9607. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.Z.; Luo, M.; Weng, Q.H.; Chen, L.; Chen, J.H.; Li, C.Y.; Zhou, Y.; Wang, L. ZnO flower-rod/g-C3N4-gold nanoparticle-based photoelectrochemical aptasensor for detection of carcinoembryonic antigen. Anal. Bioanal. Chem. 2018, 410, 6529–6538. [Google Scholar] [CrossRef] [PubMed]
Nanomaterial | Detection Technique | Linear Range (pg mL−1) | Detection Limit (pg mL−1) | Reference |
---|---|---|---|---|
MoS2-PBNCs | DPV | 5–10,000 | 0.54 | [25] |
AuNPs/BSNa-CNC-PPy | SWV | 0.001–200,000 | 0.00006 | [26] |
AuNPs/CNOs/SWCNTs/CS | SWV | 0.1–400,000 | 0.1 | [27] |
AuNPs/PB-PEDOT | DPV | 50–40,000 | 10 | [28] |
CPS@PANI@Au | DPV | 6–12,000 | 1.56 | [29] |
CuFe-MoC@NG@PDA | i–t | 0.01–80,000 | 0.003 | [30] |
AuNPs@ZrHCF@Fe3O4 | SWV | 0.5–50,000 | 0.15 | [31] |
Au/PDA/Au-PB/CNT | DPV | 5–50,000 | 3.3 | [32] |
CNTs/rGO/Ag@BSA/PEDOT | LSV | 2–50,000 | 0.1 | [33] |
Ag/MoS2/rGO | i–t | 0.01–100,000 | 0.0016 | [34] |
Au/γ-PGA-DA@CS | EIS | 0.02–20,000 | 0.01 | [35] |
HMSNs-Cu2+@HA | i–t | 0.01–40,000 | 0.0035 | [36] |
Amplification Strategy | Detection Technique | Linear Range (pg mL−1) | Detection Limit (pg mL−1) | Reference |
---|---|---|---|---|
Strand displacement amplification | SWV | 100–50,000 | 20 | [78] |
G-quadruplex/hemin DNAzyme and hybridization chain reaction | DPV | 0.1–50,000 | 0.0182 | [77] |
Exonuclease III-assisted amplification | DPV | 100–200,000 | 0.4 | [79] |
G-quadruplex/hemin DNAzyme | DPV | 0.01–200,000 | 0.0032 | [80] |
Glucose oxidase and G-quadruplex/hemin DNAzyme-initiated cascade amplification | EIS | 0.05–20,000 | 0.023 | [81] |
Hybridization chain reaction | EIS | 0.1–40,000 | 0.03 | [82] |
Mg2+-dependent DNAzyme | DPV | 0.001–1.5 | - | [83] |
Tetrahedral DNA and catalytic hairpin assembly | DPV | 1–30,000 | 0.04567 | [84] |
Nanomaterial | Linear Range (pg mL−1) | Detection Limit (pg mL−1) | Reference |
---|---|---|---|
AuNPs/ZnO/Cu2O NWs | 1.0–100,000 | 0.36 | [111] |
C3N4-BiOCl | 0.1–10,000 | 0.1 | [88] |
AuNP-P5FIn/erGO | 0.5–50,000 | 0.14 | [112] |
TiO2/C@ZnCdS MSDCs/Au | 0.05–500,000 | 0.00228 | [113] |
I-BiOCl/CdS | 10–40,000 | 2.0 | [114] |
Au/WS2 NTs | 1.0–40,000 | 0.5 | [90] |
TiO2/CdS:Mn | 0.1–100,000 | 0.02 | [115] |
Nanomaterial | Linear Range (pg mL−1) | Detection Limit (pg mL−1) | Reference |
---|---|---|---|
PEDOT/Bi2S3/ZnO | 1.0–100,000 | 0.67 | [130] |
g-C3N4/CuInS2 | 20–40,000 | 5.2 | [131] |
ZIS/Fe:TiO2 | 0.05–1000 | 0.018 | [126] |
NaYF4:Yb,Tm@ZnO | 100–300,000 | 32 | [132] |
Tremella-like Bi2WO6 | 0.01–10,000 | 0.0026 | [133] |
BiFeO3 | 5.0–50,000 | 1.5 | [134] |
ZnO/g-C3N4-AuNPs | 10–2500 | 1.9 | [135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Xia, J.; Zang, Y.; Diao, G. Electrochemistry/Photoelectrochemistry-Based Immunosensing and Aptasensing of Carcinoembryonic Antigen. Sensors 2021, 21, 7742. https://doi.org/10.3390/s21227742
Jiang J, Xia J, Zang Y, Diao G. Electrochemistry/Photoelectrochemistry-Based Immunosensing and Aptasensing of Carcinoembryonic Antigen. Sensors. 2021; 21(22):7742. https://doi.org/10.3390/s21227742
Chicago/Turabian StyleJiang, Jingjing, Jili Xia, Yang Zang, and Guowang Diao. 2021. "Electrochemistry/Photoelectrochemistry-Based Immunosensing and Aptasensing of Carcinoembryonic Antigen" Sensors 21, no. 22: 7742. https://doi.org/10.3390/s21227742
APA StyleJiang, J., Xia, J., Zang, Y., & Diao, G. (2021). Electrochemistry/Photoelectrochemistry-Based Immunosensing and Aptasensing of Carcinoembryonic Antigen. Sensors, 21(22), 7742. https://doi.org/10.3390/s21227742