Development and Proof of Concept of a Miniaturized MEMS Quantum Tunneling Accelerometer Based on PtC Tips by Focused Ion Beam 3D Nano-Patterning
Abstract
:1. Introduction
1.1. General State-of-the-Art and Motivation
1.2. Previous Work on Tunneling Accelerometers
1.3. Quantum Physical Basics
1.4. Sensor Principle and Operation Phases
2. Design and Simulation
2.1. Tunneling Electrodes and Attractive Forces
2.2. Mechanics
2.3. Electrostatics
3. Fabrication
3.1. Sensor Structure
3.2. Tunneling Electrodes
4. Experimental Procedure
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FIB | Focused Ion Beam |
SEM | Scanning Electron Microscope |
GIS | Gas Injection System |
TEM | Transmission Electron Microscope |
Si | Silicon |
PolySi | Polysilicon |
Pt | Platinum |
C | Carbon |
PtC | Platinum Carbon |
C-H | Carbon-hydrogen |
Ga | Gallium |
DLC | Diamond Like Carbon |
Au | Gold |
BMM | Bulk Micro-Machining |
SMM | Surface Micro-Machining |
SOI | Silicon on Insulator |
MEMS | Microelectromechanical System |
TNEA | Thermal Noise Equivalent Acceleration |
PCB | Printed Circuit Board |
SMU | Source Measurement Unit |
VdW | Van der Waals |
FEM | Finite Element Method |
n/a | not available |
calc. | calculated |
GND | Ground |
FFC/FPC | Flexible Flat Cable/ Flexible Printed Circuit |
References
- Kenny, T. Nanometer-scale force sensing with MEMS devices. IEEE Sens. J. 2001, 1, 148. [Google Scholar] [CrossRef]
- Mustafazade, A.; Pandit, M.; Zhao, C.; Sobreviela, G.; Du, Z.; Steinmann, P.; Zou, X.; Howe, R.T.; Seshia, A.A. A vibrating beam MEMS accelerometer for gravity and seismic measurements. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Pandit, M.; Mustafazade, A.; Zhao, C.; Sobreviela, G.; Zou, X.; Steinmann, P.; Seshia, A. An Ultra-High Resolution Resonant MEMS Accelerometer. In Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Korea, 27–31 January 2019; pp. 664–667. [Google Scholar]
- Krishnan, G.; Kshirsagar, C.U.; Ananthasuresh, G.K.; Bhat, N. Micromachined High-Resolution Accelerometers. J. Ind. Inst. Sci. 2007, 87, 333. [Google Scholar]
- Sandmaier, H. Skalierung Der Physikalischen Gesetze Und Mathematischen Modellierung; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 978-3-662-59672-2. [Google Scholar]
- Accelerometer MEMS Size Evolution. Available online: www.yole.fr (accessed on 15 April 2021).
- MC3672 3-Axis Accelerometer Overview. Available online: https://mcubemems.com/product/mc3672-3-axis-accelerometer (accessed on 15 April 2021).
- Bosch Sensortec BMA355 Datasheet. Available online: https://www.mouser.de/datasheet/2/621/BST_BMA355_FL000-00_032013_onl-540958.pdf (accessed on 15 April 2021).
- Acceleration Sensor BMA456. Available online: https://www.bosch-sensortec.com/products/motion-sensors/accelerometers/bma456/ (accessed on 15 April 2021).
- Utz, A.; Walk, C.; Stanitzki, A.; Mokhtari, M.; Kraft, M.; Kokozinski, R. A High-Precision and High-Bandwidth MEMS-Based Capacitive Accelerometer. IEEE Sens. J. 2018, 18, 6533–6539. [Google Scholar] [CrossRef]
- Park, W.-T.; Partridge, A.; Candler, R.; Ayanoor-Vitikkate, V.; Yama, G.; Lutz, M.; Kenny, T. Encapsulated Submillimeter Piezoresistive Accelerometers. J. Microelectromech. Syst. 2006, 15, 507–514. [Google Scholar] [CrossRef]
- Park, W.-T.; O’Connor, K.N.; Chen, K.-L.; Mallon, J.R.; Maetani, T.; Dalal, P.; Candler, R.N.; Ayanoor-Vitikkate, V.; Roberson, J.B.; Puria, S.; et al. Ultraminiature encapsulated accelerometers as a fully implantable sensor for implantable hearing aids. Biomed. Microdevices 2007, 9, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Engesser, M.; Franke, A.R.; Maute, M.; Meisel, D.C.; Korvink, J.G. Miniaturization limits of piezoresistive MEMS accelerometers. Microsyst. Technol. 2009, 15, 1835–1844. [Google Scholar] [CrossRef]
- Song, S.; Kim, J.W.; Kim, H.C.; Yun, Y.; Kim, J. Miniaturized Accelerometer Made with ZnO Nanowires. In Nanosensors, Biosensors, Info-Tech Sensors and 3D Systems; Varadan, V.K., Ed.; International Society for Optics and Photonics: Bellingham, WA, USA, 2017. [Google Scholar]
- Gesing, A.L.; Alves, F.D.P.; Paul, S.; Cordioli, J.A. On the design of a MEMS piezoelectric accelerometer coupled to the middle ear as an implantable sensor for hearing devices. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- MEMSIC Thermal Accelerometers. Available online: http://www.memsic.com/en/product/list.aspx?lcid=30 (accessed on 15 April 2021).
- Garraud, A.; Giani, A.; Combette, P.; Charlot, B.; Richard, M. A dual axis CMOS micromachined convective thermal accelerometer. Sensors Actuators A Phys. 2011, 170, 44–50. [Google Scholar] [CrossRef]
- Jiang, L.; Cai, Y.; Liu, H.; Zhao, Y. A micromachined monolithic 3 axis accelerometer based on convection heat transfer. In Proceedings of the 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Suzhou, China, 7–10 April 2013; pp. 248–251. [Google Scholar]
- Mukherjee, R.; Basu, J.; Mandal, P.; Guha, P.K. A review of micromachined thermal accelerometers. J. Micromechan. Microeng. 2017, 27, 123002. [Google Scholar] [CrossRef] [Green Version]
- Lee, D. Thermal accelerometer based predictive drop sensor. Sens. Actuators A Phys. 2007, 135, 889–894. [Google Scholar] [CrossRef]
- Dong, B.; Cai, H.; Tsai, J.M.; Kwong, D.L.; Liu, A.Q. An on-chip opto-mechanical accelerometer. In Proceedings of the 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 20–24 January 2013; pp. 641–644. [Google Scholar]
- Lemme, M.C.; Wagner, S.; Lee, K.; Fan, X.; Verbiest, G.J.; Wittmann, S.; Lukas, S.; Dolleman, R.J.; Niklaus, F.; Van Der Zant, H.S.J.; et al. Nanoelectromechanical Sensors Based on Suspended 2D Materials. Research 2020, 2020, 1–25. [Google Scholar] [CrossRef]
- Shi, F.-T.; Fan, S.-C.; Li, C.; Peng, X.-B. Modeling and Analysis of a Novel Ultrasensitive Differential Resonant Graphene Micro-Accelerometer with Wide Measurement Range. Sensors 2018, 18, 2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.; Forsberg, F.; Smith, A.D.; Schröder, S.; Wagner, S.; Rödjegård, H.; Fischer, A.C.; Östling, M.; Lemme, M.C.; Niklaus, F. Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical accelerometers. Nat. Electron. 2019, 2, 394–404. [Google Scholar] [CrossRef] [Green Version]
- Kenny, T.W.; Waltman, S.B.; Reynolds, J.K.; Kaiser, W.J. Micromachined silicon tunnel sensor for motion detection. Appl. Phys. Lett. 1991, 58, 100–102. [Google Scholar] [CrossRef]
- Kenny, T.W.; Kaiser, W.J.; Reynolds, J.K.; Podosek, J.A.; Rockstad, H.K.; Vote, E.C.; Waltman, S.B. Electron Tunnel Sensors. J. Vac. Sci. Technol. A 1992, 10, 2114–2118. [Google Scholar] [CrossRef]
- Binnig, G.; Rohrer, H. Scanning tunneling microscopy—From birth to adolescence. Rev. Mod. Phys. 1987, 59, 615–625. [Google Scholar] [CrossRef] [Green Version]
- Baski, A.; Albrecht, T.R.; Quate, C.F. Tunnelling accelerometer. J. Microsc. 1988, 152, 73–76. [Google Scholar] [CrossRef]
- Waltman, S.; Kaiser, W. An electron tunneling sensor. Sens. Actuators 1989, 19, 201–210. [Google Scholar] [CrossRef]
- Yeh, C.; Najafi, K. A low-voltage tunneling-based silicon microaccelerometer. IEEE Trans. Electron. Devices 1997, 44, 1875–1882. [Google Scholar] [CrossRef]
- Yeh, C.; Najafi, K. A low-voltage bulk-silicon tunneling-based microaccelerometer. In Proceedings of the International Electron Devices Meeting, Washington, DC, USA, 10–13 December 1995; pp. 593–596. [Google Scholar]
- Yeh, C.; Najafi, K. CMOS interface circuitry for a low-voltage micromachined tunneling accelerometer. J. Microelectromech. Syst. 1998, 7, 6–15. [Google Scholar] [CrossRef]
- Rockstad, H.K.; Tang, T.; Reynolds, J.; Kenny, T.; Kaiser, W.; Gabrielson, T.B. A miniature, high-sensitivity, electron tunneling accelerometer. Sens. Actuators A Phys. 1996, 53, 227–231. [Google Scholar] [CrossRef]
- Kubena, R.L. A new high-performance surface-micromachined tunneling accelerometer fabricated using nanolithography. J. Vac. Sci. Technol. B 1996, 14, 4029. [Google Scholar] [CrossRef]
- Kubena, R.; Atkinson, G.; Robinson, W.; Stratton, F. A new miniaturized surface micromachined tunneling accelerometer. IEEE Electron. Device Lett. 1996, 17, 306–308. [Google Scholar] [CrossRef]
- Patra, S.K.; Bhattacharyya, T.K. Design and fabrication of micromachined tunneling accelerometers with micro-g resolution and their comparison. In Proceedings of the 2009 2nd International Workshop on Electron Devices and Semiconductor Technology, Mumbai, India, 1–2 June 2009; pp. 1–4. [Google Scholar]
- Patra, S.; Bhattacharyya, T.K. High sensitive surface micromachined out of plane tunneling accelerometers with low-g resolution. In Proceedings of the 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, 14–17 July 2009; pp. 1577–1581. [Google Scholar]
- Patra, S.; Bhattacharyya, T.K. Highly sensitive tunneling accelerometer for low actuation voltage operation. In Proceedings of the 2010 IEEE Sensors, Waikoloa, HI, USA, 1–4 November 2010; pp. 1192–1197. [Google Scholar] [CrossRef]
- Burgner, C.; Yie, Z.; Kataria, N.; Oropeza, L.; Ström, K.Å.; Brewer, F.; Turner, K. Digital control of tunneling accelerometer. In Proceedings of the 2009 IEEE Sensors, Christchurch, New Zealand, 25–28 October 2009; pp. 1824–1827. [Google Scholar] [CrossRef]
- Project GraTA Graphene Tunneling Accelerometer. Available online: https://cordis.europa.eu/project/id/727542 (accessed on 17 May 2021).
- Zavracky, P.M.; McClelland, B.; Warner, K.; Wang, J.; Hartley, F.; Dolgin, B. Design and process considerations for a tunneling tip accelerometer. J. Micromechan. Microeng. 1996, 6, 352–358. [Google Scholar] [CrossRef]
- Liu, C.-H.; Kenny, T. A high-precision, wide-bandwidth micromachined tunneling accelerometer. J. Microelectromech. Syst. 2001, 10, 425–433. [Google Scholar] [CrossRef]
- Liu, C.-H.; Barzilai, A.; Reynolds, J.; Partridge, A.; Kenny, T.; Grade, J.; Rockstad, H. Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution. J. Microelectromech. Syst. 1998, 7, 235–244. [Google Scholar] [CrossRef]
- Hartwell, P.; Bertsch, F.; Miller, S.; Turner, K.; Macdonald, N. Single mask lateral tunneling accelerometer. In Proceedings of the Proceedings MEMS 98, Eleventh Annual International Workshop on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176), Heidelberg, Germany, 25–29 January 1998; pp. 340–344. [Google Scholar]
- Strobelt, T. High Resolution Accelerometer with Tunneling Transducer. Ph.D. Thesis, University of Stuttgart, Villingen-Schwenningen, Germany, 2000. [Google Scholar] [CrossRef]
- Dong, H.; Jia, Y.; Hao, Y.; Shen, S. A novel out-of-plane MEMS tunneling accelerometer. Sens. Actuators A Phys. 2005, 120, 360–364. [Google Scholar] [CrossRef]
- Miao, M.; Hu, Q.; Hao, Y.; Dong, H.; Zhang, H. A Bulk Micromachined Si-on-Glass Tunneling Accelerometer. In Proceedings of the First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B, Sanya, China, 10–13 January 2007. [Google Scholar]
- Simmons, J.G. Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. J. Appl. Phys. 1963, 34, 1793–1803. [Google Scholar] [CrossRef] [Green Version]
- Binnig, G.; Rohrer, H. Scanning tunneling microscopy. Surf. Sci. 1983, 126, 236–244. [Google Scholar] [CrossRef]
- Bhushan, B. Springer Handbook of Nanotechnology; Bhushan, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-02524-2. [Google Scholar]
- Penate-Quesada, L.; Mitra, J.; Dawson, P. Non-linear electronic transport in Pt nanowires deposited by focused ion beam. Nanotechnology 2007, 18, 215203. [Google Scholar] [CrossRef]
- Ballestar, A.; Esquinazi, P. Transport characteristics of focused beam deposited nanostructures. Nanofabrication 2015, 2. [Google Scholar] [CrossRef]
- Fransson, J.; Lin, J.-F.; Rotkina, L.; Bird, J.P.; Bennett, P.A. Signatures of bandlike tunneling in granular nanowires. Phys. Rev. B 2005, 72, 113411. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Pacheco, A.; De Teresa, J.M.; Córdoba, R.; Ibarra, M.R. Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition. Phys. Rev. B 2009, 79, 174204. [Google Scholar] [CrossRef]
- Hamaker, H.C. The London—van der Waals attraction between spherical particles. Physica 1937, 4, 1058–1072. [Google Scholar] [CrossRef]
- Zitzler, L.; Herminghaus, S.; Mugele, F. Capillary forces in tapping mode atomic force microscopy. Phys. Rev. B 2002, 66. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, D.; Hirano, T.; Furuhata, T.; Fujita, H. An integrated lateral tunneling unit. In Proceedings of the IEEE Micro Electro Mechanical Systems; Institute of Electrical and Electronics Engineers (IEEE), Travemunde, Germany, 4–7 February 1992. [Google Scholar]
- Khaliq, A.; Liu, X.; Nohria, R.; Su, Y.; Varahramyan, K. Extraction of Damping Coefficients of Comb Drive by Partitioning. 2005. Available online: https://www.researchgate.net/profile/Yimeng-Su/publication/268266210_Extraction_of_Damping_Coefficients_of_Comb_Drive_by_Partitioning/links/575642df08ae155a87b9d175/Extraction-of-Damping-Coefficients-of-Comb-Drive-by-Partitioning.pdf (accessed on 24 March 2021).
Author | Technology | Year | |||
---|---|---|---|---|---|
Baski et al. [28] | 1600 | 10−2 | 10−4 | Test setup | 1988 |
Waltman et al. [29] | 1800 | 1 | 10−5 | Test setup | 1989 |
Kenny et al. [25,26] | ca. 224 | n/a | 10−8 (1 kHz) | BMM | 1990–1991 |
Yeh et al. [30,31,32] | 0.16 | −20–10 | 0.25 × 10−3 (2 kHz) | BMM | 1995–1998 |
Rockstad et al. [33] | ca. 168 | n/a | 10−8 (100 Hz) | BMM | 1996 |
Zavracky et al. [41] | 100 | 10−2 | n/a | BMM | 1996 |
Kubena et al. [34,35] | 0.0033 | 104 | 8.3 × 10−4 (500 Hz) | SMM | 1996–1999 |
Liu et al. [42,43] | ca. 52 | 10−3 | 20 × 10−9 (1.5 kHz) | BMM | 1998–2001 |
Hartwell et al. [44] | 1.5 | n/a | 20 × 10−6 (100 Hz) | BMM | 1998 |
Strobelt [45] | ca. 36 | 6 · 10−4 | 2.5 × 10−6 | BMM | 2000 |
Burgner et al. [39] | ca. 1 | ±10 | n/a | SOI | 2005–2009 |
Dong et al. [46] | 1.21 | 1 | 5 × 10−4 (1.25–100 Hz) | BMM | 2005 |
Miao et al. [47] | 1.21 | ±10 | 15 × 10−6 | BMM | 2007 |
Patra et al. [36,37] | 0.36–0.96 | 10−5–10−2 (calc.) | 3.61–9.84 × 10−6 (calc.) | SMM | 2009 |
Patra et al. [38] | ca. 0.04 | 0.027–0.343 | 2.97 × 10−6 (calc.) | SMM | 2010 |
This work | 0.0023–0.003 | 20 | 2.4–3.4 × 10−3 (calc.) | SMM | 2021 |
Parameters | Variable | Results |
---|---|---|
Radius of the tip [nm] | 2–130 | |
Radius of the counter tip [nm] | ≈100 | |
Tip distance [Å] | 5–30 | |
Tunneling bias voltage [V] | 0.1, 0.5, 1 | |
Vacuum permittivity [Vm/As] | 8.8541878128 × 10−12 | |
Relative permittivity | 1 | |
Hamaker constant [J] | 10−19 |
Parameter | Variable | Model 1 | Model 2 | |
---|---|---|---|---|
Beam length [μm] | 46/15 | 218 | ||
Beam width [μm] | 10 | 3 | ||
Beam thickness [μm] | 1.5 | 1.5 | ||
Mass length [μm] | 50/42 | 55 | ||
Mass width [μm] | 50/42 | 41 | ||
Mass thickness [μm] | 3.5 | 2 | ||
Mass [kg] | 1.7 × 10−11 | 1.05 × 10−11 | ||
Quality factor [1] | ≈50 | ≈50 | ||
Young’s modulus [GPa] | 158 | 158 | ||
Material density [kg/m3] | 2330 | 2330 | ||
Results | analytical | numerical | numerical | |
Tip force stiffness [N/m] | 1 | 1.18 | 0.50 | |
Acc. force stiffness [N/m] | 1.55 | 2.04 | 1.17 | |
Deflection at 1 g [Å] | 1.1 | 0.82 | 0.9 | |
First natural frequency [kHz] | 48.1 | 70.62 | 59.33 | |
Thermal noise [mg/ √Hz] | 2.4 | 2.91 | 3.4 | |
Lat. stability in x at 1 g [Å] | ≈0 | ≈0 | 0.081 | |
Lat. stability in y at 1 g [Å] | 0.024 | 0.019 | 0.189 |
Parameter | Variable | Model 1 | Model 2 | |
Actuator length [μm] | 50 | 55 | ||
Actuator width [μm] | 50 | 41 | ||
Plate distance [μm] | 2 | 2 | ||
Initial tip distance [nm] | 30–300 | 30–300 | ||
Results | analytical | numerical | numerical | |
Actuator voltage [V] | 4–12.3 | 4.6–13.5 | 4.3–12 |
Process Step | Drawing | SEM Image |
1: The initial state shows the untreated PolySi structure with an applied gold pad (top). The left side is connected to the seismic mass and the right side to the bond pad. | | |
2: In the first processing step, the PolySi structure and the gold pad are structured by a FIB cut with a 260 pA ion current and a width of 1 μm. A small bridge of the PolySi structure remains to keep the spring-mass structure fixed. Next, platinum is deposited by the FIB and the GIS with a precursor. | | |
3: To achieve a very thin tip, the platinum gets patterned by the FIB (9 pA to 46 pA). This leads to a vertical nanowire with a length of about 500 nm and a diameter of about 50–100 nm. | | |
4: With a minimal and sensitive ion current (1.5 pA), the nanowire is further thinned out with a maximum tilt angle of 60° and shaped explicitly into the tip at the separation point. The final step is to release the structure by cutting the still-existing PolySi bridge. | | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haub, M.; Bogner, M.; Guenther, T.; Zimmermann, A.; Sandmaier, H. Development and Proof of Concept of a Miniaturized MEMS Quantum Tunneling Accelerometer Based on PtC Tips by Focused Ion Beam 3D Nano-Patterning. Sensors 2021, 21, 3795. https://doi.org/10.3390/s21113795
Haub M, Bogner M, Guenther T, Zimmermann A, Sandmaier H. Development and Proof of Concept of a Miniaturized MEMS Quantum Tunneling Accelerometer Based on PtC Tips by Focused Ion Beam 3D Nano-Patterning. Sensors. 2021; 21(11):3795. https://doi.org/10.3390/s21113795
Chicago/Turabian StyleHaub, Michael, Martin Bogner, Thomas Guenther, André Zimmermann, and Hermann Sandmaier. 2021. "Development and Proof of Concept of a Miniaturized MEMS Quantum Tunneling Accelerometer Based on PtC Tips by Focused Ion Beam 3D Nano-Patterning" Sensors 21, no. 11: 3795. https://doi.org/10.3390/s21113795
APA StyleHaub, M., Bogner, M., Guenther, T., Zimmermann, A., & Sandmaier, H. (2021). Development and Proof of Concept of a Miniaturized MEMS Quantum Tunneling Accelerometer Based on PtC Tips by Focused Ion Beam 3D Nano-Patterning. Sensors, 21(11), 3795. https://doi.org/10.3390/s21113795