Analysis of the Errors Caused by Disturbed Multimode Fibers in the Interferometer with Fiber-Coupled Delivery
Abstract
1. Introduction
2. Principle
2.1. Errors Caused by Disturbed MMFs
2.2. Simulations
3. Experiments
3.1. Experimental Principle
3.2. Results and Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Knarren, B.A.; Cosijns, S.J.; Haitjema, H.; Schellekens, P.H. Fiber characterization for application in heterodyne laser interferometry with nanometer uncertainty, part I: Polarization state measurements. Opt. Eng. 2005, 44, 025002. [Google Scholar] [CrossRef]
- Knarren, B.A.; Cosijns, S.J.; Haitjema, H.; Schellekens, P.H. Fiber characterization for application in heterodyne laser interferometry, part II: Modeling and analysis. Opt. Eng. 2005, 44, 025003. [Google Scholar] [CrossRef]
- Ellis, J.D.; Meskers, A.J.; Spronck, J.W.; Schmidt, R.H.M. Fiber-coupled displacement interferometry without periodic nonlinearity. Opt. Lett. 2011, 36, 3584–3586. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Meskers, A.J.; Spronck, J.W.; Schmidt, R.H.M. Validation of separated source frequency delivery for a fiber-coupled heterodyne displacement interferometer. Opt. Lett. 2014, 39, 4603–4606. [Google Scholar] [CrossRef][Green Version]
- Yang, F.; Zhang, M.; Ye, W.; Wang, L. Three-degrees-of-freedom laser interferometer based on differential wavefront sensing with wide angular measurement range. Appl. Opt. 2019, 58, 723–728. [Google Scholar] [CrossRef]
- Ye, W.; Zhang, M.; Zhu, Y.; Wang, L.; Hu, J.; Li, X.; Hu, C. Translational displacement computational algorithm of the grating interferometer without geometric error for the wafer stage in a photolithography scanner. Opt. Express 2018, 26, 34734–34752. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, M.; Zhu, Y.; Ye, W.; Wang, L.; Xia, Y. Two Degree-of-Freedom Fiber-Coupled Heterodyne Grating Interferometer with Milli-Radian Operating Range of Rotation. Sensors 2019, 19, 3219. [Google Scholar] [CrossRef]
- Agrawal, G.P.; Mumtaz, S.; Essiambre, R.-J. Nonlinear performance of SDM systems designed with multimode or multicore fibers. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 17–21 March 2013. [Google Scholar]
- Mumtaz, S.; Essiambre, R.-J.; Agrawal, G.P. Reduction of nonlinear penalties due to linear coupling in multicore optical fibers. IEEE Photonics Technol. Lett. 2012, 24, 1574–1576. [Google Scholar] [CrossRef]
- San Fabián, N.; Socorro-Leránoz, A.B.; Del Villar, I.; Díaz, S.; Matías, I.R. Multimode-coreless-multimode fiber-based sensors: Theoretical and experimental study. J. Lightwave Technol. 2019, 37, 3844–3850. [Google Scholar] [CrossRef]
- Zhang, S.; Deng, S.; Wang, Z.; Yang, W.; Sun, C.; Chen, X.; Ma, Y.; Li, Y.; Geng, T.; Sun, W. Optimization and experiment of a miniature multimode fiber induced-LPG refractometer. OSA Contin. 2019, 2, 2190–2198. [Google Scholar] [CrossRef]
- Fermann, M.E. Single-mode excitation of multimode fibers with ultrashort pulses. Opt. Lett. 1998, 23, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Gloge, D.; Marcatili, E.A.J. Multimode theory of graded-core fibers. Bell Syst. Tech. J. 1973, 52, 1563–1578. [Google Scholar] [CrossRef]
- Koplow, J.P.; Kliner, D.A.; Goldberg, L. Single-mode operation of a coiled multimode fiber amplifier. Opt. Lett. 2000, 25, 442–444. [Google Scholar] [CrossRef] [PubMed]
- Poletti, F.; Horak, P. Description of ultrashort pulse propagation in multimode optical fibers. IOSA B 2008, 25, 1645–1654. [Google Scholar] [CrossRef]
- Hansen, T.P.; Broeng, J.; Libori, S.E.; Knudsen, E.; Bjarklev, A.; Jensen, J.R.; Simonsen, H. Highly birefringent index-guiding photonic crystal fibers. IEEE Photonics Technol. Lett. 2001, 13, 588–590. [Google Scholar] [CrossRef]
- Schriemer, H.P.; Cada, M. Modal birefringence and power density distribution in strained buried-core square waveguides. IEEE J. Quantum Electron. 2004, 40, 1131–1139. [Google Scholar] [CrossRef]
- Stone, J. Stress-optic effects, birefringence, and reduction of birefringence by annealing in fiber Fabry-Perot interferometers. J. Lightwave Technol. 1988, 6, 1245–1248. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Chen, H.; Chiang, C.-W.; Chang, Y.-W.J.O.e. Dual displacement resolution encoder by integrating single holographic grating sensor and heterodyne interferometry. Opt. Express 2017, 25, 30189–30202. [Google Scholar] [CrossRef]
- Jiang, M.L.; Li, F.P.; Wang, X.D. Mini-nano-displacement measurement with double diffraction grating. Adv. Mater. Res. 2011, 230–232, 1159–1163. [Google Scholar] [CrossRef]
- Lee, C.; Lee, S.-K. Multi-degree-of-freedom motion error measurement in an ultraprecision machine using laser encoder. J. Mech. Sci. Technol. 2013, 27, 141–152. [Google Scholar] [CrossRef]
- Lin, C.; Yan, S.; Ding, D.; Wang, G. Two-dimensional diagonal-based heterodyne grating interferometer with enhanced signal-to-noise ratio and optical subdivision. Opt. Eng. 2018, 57, 064102. [Google Scholar] [CrossRef]
- Lu, Z.; Wei, P.; Wang, C.; Jing, J.; Tan, J.; Zhao, X. Two-degree-of-freedom displacement measurement system based on double diffraction gratings. Meas. Sci. Technol. 2016, 27, 074012. [Google Scholar] [CrossRef]
- Wang, X.; Dong, X.; Guo, J.; Xie, T. Two-dimensional displacement sensing using a cross diffraction grating scheme. J. Opt. A Pure Appl. Opt. 2003, 6, 106. [Google Scholar] [CrossRef]
- Castenmiller, T.; van de Mast, F.; de Kort, T.; van de Vin, C.; de Wit, M.; Stegen, R.; van Cleef, S. Towards ultimate optical lithography with NXT: 1950i dual stage immersion platform. In Proceedings of the Optical Microlithography XXIII, San Jose, CA, USA, 12 March 2010. [Google Scholar]
- Ellis, J.D. Field Guide to Displacement Measuring Interferometry; SPIE Press: Bellingham, UK, 2014; pp. 9–12. [Google Scholar]
Parameters | Value | Description |
---|---|---|
λ | 633 nm | Free space wavelength |
n1 | 1.3982 | Refractive index of the cladding |
n2 | 1.4584 | Refractive index of the core |
d1 | 425 μm | Outer diameter of the cladding |
d1 | 400 μm | Diameter of the core |
L | 1 mm | Length of MMF |
E | 78 GPa | Young’s modulus |
ρ | 2203 kg/m3 | Density |
μ | 0.17 | Poisson’s ratio |
B1 | 0.65 × 10−12 m2/N | First stress optical coefficient |
B2 | 4.2 × 10−12 m2/N | Second stress optical coefficient |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Zhang, M.; Zhu, Y.; Ye, W.; Yang, F.; Wang, L. Analysis of the Errors Caused by Disturbed Multimode Fibers in the Interferometer with Fiber-Coupled Delivery. Sensors 2020, 20, 1513. https://doi.org/10.3390/s20051513
Xia Y, Zhang M, Zhu Y, Ye W, Yang F, Wang L. Analysis of the Errors Caused by Disturbed Multimode Fibers in the Interferometer with Fiber-Coupled Delivery. Sensors. 2020; 20(5):1513. https://doi.org/10.3390/s20051513
Chicago/Turabian StyleXia, Yizhou, Ming Zhang, Yu Zhu, Weinan Ye, Fuzhong Yang, and Leijie Wang. 2020. "Analysis of the Errors Caused by Disturbed Multimode Fibers in the Interferometer with Fiber-Coupled Delivery" Sensors 20, no. 5: 1513. https://doi.org/10.3390/s20051513
APA StyleXia, Y., Zhang, M., Zhu, Y., Ye, W., Yang, F., & Wang, L. (2020). Analysis of the Errors Caused by Disturbed Multimode Fibers in the Interferometer with Fiber-Coupled Delivery. Sensors, 20(5), 1513. https://doi.org/10.3390/s20051513