Comparative Analysis of Cryptic Fig Wasp Species Reveals Sexually Divergent Gene Transcriptional Regulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Identification
2.2. RNA Extraction
2.3. Library Construction and Sequencing
2.4. Data Processing and Analysis
2.5. Identification of Alternative Splicing Events and Differentially Expressed Genes
2.6. Integrative Analysis of Alternative Splicing and Gene Expression
2.7. RT-PCR Validation
3. Results
3.1. Distribution of Cryptic Species and Transcriptome Sequencing Data Statistics
3.2. Identification of AS Events
3.3. Functional Enrichment Analysis of DASs
3.4. Identification and Functional Analysis of DEGs
3.5. Integrative Analysis of AS and Gene Expression
3.6. Verification of DASs and DEGs
4. Discussion
4.1. Functional Divergence of Sex-Specific DASs
4.2. Functional Divergence of Sex-Specific DEGs
4.3. Minimal Overlap Reveals Complementary Regulation Between AS and Gene Expression
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bickford, D.; Lohman, D.J.; Sodhi, N.S.; Ng, P.K.; Meier, R.; Winker, K.; Ingram, K.K.; Das, I. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 2007, 22, 148–155. [Google Scholar] [CrossRef]
- Fennessy, J.; Bidon, T.; Reuss, F.; Kumar, V.; Elkan, P.; Nilsson, M.A.; Vamberger, M.; Fritz, U.; Janke, A. Multi-locus Analyses Reveal Four Giraffe Species Instead of One. Curr. Biol. 2016, 26, 2543–2549. [Google Scholar] [CrossRef]
- Li, C.; Jiang, S.; Schneider, K.; Jin, J.; Lin, H.; Wang, J.; Elmer, K.R.; Zhao, J. Cryptic species in White Cloud Mountain minnow, Tanichthys albonubes: Taxonomic and conservation implications. Mol. Phylogenet Evol. 2020, 153, 106950. [Google Scholar] [CrossRef]
- Saitoh, T.; Sugita, N.; Someya, S.; Iwami, Y.; Kobayashi, S.; Kamigaichi, H.; Higuchi, A.; Asai, S.; Yamamoto, Y.; Nishiumi, I. DNA barcoding reveals 24 distinct lineages as cryptic bird species candidates in and around the Japanese Archipelago. Mol. Ecol. Resour. 2015, 15, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Stuart, B.L.; Inger, R.F.; Voris, H.K. High level of cryptic species diversity revealed by sympatric lineages of Southeast Asian forest frogs. Biol. Lett. 2006, 2, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Naumenko, A.N.; Karagodin, D.A.; Yurchenko, A.A.; Moskaev, A.V.; Martin, O.I.; Baricheva, E.M.; Sharakhov, I.V.; Gordeev, M.I.; Sharakhova, M.V. Chromosome and Genome Divergence between the Cryptic Eurasian Malaria Vector-Species Anopheles messeae and Anopheles daciae. Genes 2020, 11, 165. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, M.; Carew, M.E.; Hoffmann, A.A. Molecular, morphological and behavioural data reveal the presence of a cryptic species in the widely studied Drosophila serrata species complex. J. Evol. Biol. 2004, 17, 430–442. [Google Scholar] [CrossRef] [PubMed]
- de León, G.P.; Nadler, S.A. What we don’t recognize can hurt us: A plea for awareness about cryptic species. J. Parasitol. 2010, 96, 453–464. [Google Scholar] [CrossRef]
- Derycke, S.; Remerie, T.; Backeljau, T.; Vierstraete, A.; Vanfleteren, J.; Vincx, M.; Moens, T. Phylogeography of the Rhabditis (Pellioditis) marina species complex: Evidence for long-distance dispersal, and for range expansions and restricted gene flow in the northeast Atlantic. Mol. Ecol. 2008, 17, 3306–3322. [Google Scholar] [CrossRef]
- Lee, M.R.; Canales-Aguirre, C.B.; Nuñez, D.; Pérez, K.; Hernández, C.E.; Brante, A. The identification of sympatric cryptic free-living nematode species in the Antarctic intertidal. PLoS ONE 2017, 12, e0186140. [Google Scholar] [CrossRef]
- Li, X.; Wiens, J.J. Estimating Global Biodiversity: The Role of Cryptic Insect Species. Syst. Biol. 2023, 72, 391–403. [Google Scholar] [CrossRef]
- Andrianto, E.; Kasai, A. Wolbachia in Black Spiny Whiteflies and Their New Parasitoid Wasp in Japan: Evidence of the Distinct Infection Status on Aleurocanthus camelliae Cryptic Species Complex. Insects 2022, 13, 788. [Google Scholar] [CrossRef]
- Bordenstein, S.R.; O’Hara, F.P.; Werren, J.H. Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 2001, 409, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Hänniger, S.; Dumas, P.; Schöfl, G.; Gebauer-Jung, S.; Vogel, H.; Unbehend, M.; Heckel, D.G.; Groot, A.T. Genetic basis of allochronic differentiation in the fall armyworm. BMC Evol. Biol. 2017, 17, 68. [Google Scholar] [CrossRef] [PubMed]
- Hartke, J.; Sprenger, P.P.; Sahm, J.; Winterberg, H.; Orivel, J.; Baur, H.; Beuerle, T.; Schmitt, T.; Feldmeyer, B.; Menzel, F. Cuticular hydrocarbons as potential mediators of cryptic species divergence in a mutualistic ant association. Ecol. Evol. 2019, 9, 9160–9176. [Google Scholar] [CrossRef] [PubMed]
- Bludau, I.; Aebersold, R. Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat. Rev. Mol. Cell Biol. 2020, 21, 327–340. [Google Scholar] [CrossRef]
- Verta, J.P.; Jacobs, A. The role of alternative splicing in adaptation and evolution. Trends Ecol. Evol. 2022, 37, 299–308. [Google Scholar] [CrossRef]
- Chen, L.; Bush, S.J.; Tovar-Corona, J.M.; Castillo-Morales, A.; Urrutia, A.O. Correcting for differential transcript coverage reveals a strong relationship between alternative splicing and organism complexity. Mol. Biol. Evol. 2014, 31, 1402–1413. [Google Scholar] [CrossRef]
- Graveley, B.R. Alternative splicing: Increasing diversity in the proteomic world. Trends Genet. TIG 2001, 17, 100–107. [Google Scholar] [CrossRef]
- Singh, P.; Börger, C.; More, H.; Sturmbauer, C. The Role of Alternative Splicing and Differential Gene Expression in Cichlid Adaptive Radiation. Genome Biol. Evol. 2017, 9, 2764–2781. [Google Scholar] [CrossRef]
- Singh, P.; Ahi, E.P. The importance of alternative splicing in adaptive evolution. Mol. Ecol. 2022, 31, 1928–1938. [Google Scholar] [CrossRef]
- Luo, M.; Hu, J. Alternative splicing in parallel evolution and the evolutionary potential in sticklebacks. J. Anim. Ecol. 2024, 93, 1392–1405. [Google Scholar] [CrossRef]
- Rodríguez-Ramírez, C.E.; Peichel, C.L. The Role of Alternative Splicing in Marine-Freshwater Divergence in Threespine Stickleback. Genome Biol. Evol. 2025, 17, evaf105. [Google Scholar] [CrossRef] [PubMed]
- Howes, T.R.; Summers, B.R.; Kingsley, D.M. Dorsal spine evolution in Threespine Sticklebacks via a splicing change in MSX2A. BMC Biol. 2017, 15, 115. [Google Scholar] [CrossRef] [PubMed]
- Tovar-Corona, J.M.; Castillo-Morales, A.; Chen, L.; Olds, B.P.; Clark, J.M.; Reynolds, S.E.; Pittendrigh, B.R.; Feil, E.J.; Urrutia, A.O. Alternative Splice in Alternative Lice. Mol. Biol. Evol. 2015, 32, 2749–2759. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.G.; Fernandes, M.; Profeta, C.A.; Barbosa, R.C.; Murdock, C.C.; Martins, G.F.; Mendes, T.O. Temperature-dependent alternative splicing affects gene expression in Aedes aegypti mosquitoes midgut. Insect Mol. Biol. 2025, 13002. [Google Scholar] [CrossRef]
- Ning, S.F.; Huo, L.X.; Lv, L.; Wang, Y.; Zhang, L.S.; Che, W.N.; Dong, H.; Zhou, J.C. The identification and expression pattern of the sex determination genes and their sex-specific variants in the egg parasitoid Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae). Front. Physiol. 2023, 14, 1243753. [Google Scholar] [CrossRef]
- Rogers, T.F.; Palmer, D.H.; Wright, A.E. Sex-Specific Selection Drives the Evolution of Alternative Splicing in Birds. Mol. Biol. Evol. 2021, 38, 519–530. [Google Scholar] [CrossRef]
- Jakšić, A.M.; Schlötterer, C. The Interplay of Temperature and Genotype on Patterns of Alternative Splicing in Drosophila melanogaster. Genetics 2016, 204, 315–325. [Google Scholar] [CrossRef]
- Grantham, M.E.; Brisson, J.A. Extensive Differential Splicing Underlies Phenotypically Plastic Aphid Morphs. Mol. Biol. Evol. 2018, 35, 1934–1946. [Google Scholar] [CrossRef]
- Jacobs, A.; Elmer, K.R. Alternative splicing and gene expression play contrasting roles in the parallel phenotypic evolution of a salmonid fish. Mol. Ecol. 2021, 30, 4955–4969. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Q.; Chen, X.; Huo, Y.; Guo, H.; Song, Z.; Cui, F.; Zhang, L.; Fang, R. Roles of the Laodelphax striatellus Down syndrome cell adhesion molecule in Rice stripe virus infection of its insect vector. Insect Mol. Biol. 2016, 25, 413–421. [Google Scholar] [CrossRef]
- Sugimoto, T.N.; Fujii, T.; Kayukawa, T.; Sakamoto, H.; Ishikawa, Y. Expression of a doublesex homologue is altered in sexual mosaics of Ostrinia scapulalis moths infected with Wolbachia. Insect Biochem. Mol. Biol. 2010, 40, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Herran, B.; Sugimoto, T.N.; Watanabe, K.; Imanishi, S.; Tsuchida, T.; Matsuo, T.; Ishikawa, Y.; Kageyama, D. Cell-based analysis reveals that sex-determining gene signals in Ostrinia are pivotally changed by male-killing Wolbachia. PNAS Nexus 2023, 2, pgac293. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, X.; Herre, E.A.; McKey, D.; Machado, C.A.; Yu, W.B.; Cannon, C.H.; Arnold, M.L.; Pereira, R.A.S.; Ming, R.; et al. Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism. Nat. Commun. 2021, 12, 718. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Compton, S.G.; Liu, M.; Chen, X.Y. Fig trees at the northern limit of their range: The distributions of cryptic pollinators indicate multiple glacial refugia. Mol. Ecol. 2012, 21, 1687–1701. [Google Scholar] [CrossRef]
- Zhang, Q.; Tong, X.; Li, Y.Y.; Sun, Q.; Gao, Y.; Zhang, S.H.; Wang, R.; Chen, X.Y. Presence of cryptic species in host insects forms a hierarchical Wolbachia infection pattern. Entomol. Gen. 2022, 42, 571–578. [Google Scholar] [CrossRef]
- Hou, H.-X.; Zhao, D.; Xiao, J.-H.; Huang, D.-W. Transcriptomic Analysis Reveals the Sexually Divergent Host–Wolbachia Interaction Patterns in a Fig Wasp. Microorganisms 2021, 9, 288. [Google Scholar] [CrossRef]
- Xiao, J.H.; Wang, N.X.; Murphy, R.W.; Cook, J.; Jia, L.Y.; Huang, D.W. Wolbachia infection and dramatic intraspecific mitochondrial DNA divergence in a fig wasp. Evolution 2012, 66, 1907–1916. [Google Scholar] [CrossRef]
- Zhou, W.; Rousset, F.; O’Neill, S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc. Biol. Sci. 1998, 265, 509–515. [Google Scholar] [CrossRef]
- O’Neill, S.L.; Giordano, R.; Colbert, A.M.; Karr, T.L.; Robertson, H.M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc. Natl. Acad. Sci. USA 1992, 89, 2699–2702. [Google Scholar] [CrossRef]
- Jeyaprakash, A.; Hoy, M.A. Long PCR improves Wolbachia DNA amplification: Wsp sequences found in 76% of sixty-three arthropod species. Insect Mol. Biol. 2000, 9, 393–405. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Wu, T.D.; Watanabe, C.K. GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 2005, 21, 1859–1875. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Foissac, S.; Sammeth, M. ASTALAVISTA: Dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Res. 2007, 35, W297–W299. [Google Scholar] [CrossRef]
- Tang, A.D.; Soulette, C.M.; van Baren, M.J.; Hart, K.; Hrabeta-Robinson, E.; Wu, C.J.; Brooks, A.N. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat. Commun. 2020, 11, 1438. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Innes, P.A.; Goebl, A.M.; Smith, C.C.R.; Rosenberger, K.; Kane, N.C. Gene expression and alternative splicing contribute to adaptive divergence of ecotypes. Heredity 2024, 132, 120–132. [Google Scholar] [CrossRef]
- Huang, Y.; Lack, J.B.; Hoppel, G.T.; Pool, J.E. Parallel and population-specific gene regulatory evolution in cold-adapted fly populations. Genetics 2021, 218, iyab077. [Google Scholar] [CrossRef] [PubMed]
- Mohr, C.; Hartmann, B. Alternative splicing in Drosophila neuronal development. J. Neurogenet. 2014, 28, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Steward, R.A.; de Jong, M.A.; Oostra, V.; Wheat, C.W. Alternative splicing in seasonal plasticity and the potential for adaptation to environmental change. Nat. Commun. 2022, 13, 755. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Zeng, X.; Han, H.; Yang, Y.; Zhang, Y.; He, L. Alternative splicing of a carboxyl/choline esterase gene enhances the fenpropathrin tolerance of Tetranychus cinnabarinus. Insect Sci. 2023, 30, 1255–1266. [Google Scholar] [CrossRef]
- 55 Porter, J.; Sullivan, W. The cellular lives of Wolbachia. Nat. Rev. Microbiol. 2023, 21, 750–766. [Google Scholar] [CrossRef]
- Fallon, A.M. Effects of mimosine on Wolbachia in mosquito cells: Cell cycle suppression reduces bacterial abundance. In Vitro Cell. Dev. Biol. Anim. 2015, 51, 958–963. [Google Scholar] [CrossRef]
- Fallon, A.M. Mitotically inactivated mosquito cells support robust Wolbachia infection and replication. In Vitro Cell. Dev. Biol. Anim. 2022, 58, 780–787. [Google Scholar] [CrossRef]
- Fallon, A.M. From Mosquito Ovaries to Ecdysone; from Ecdysone to Wolbachia: One Woman’s Career in Insect Biology. Insects 2022, 13, 756. [Google Scholar] [CrossRef]
- Guo, Y.; Khan, J.; Zheng, X.Y.; Wu, Y. Wolbachia increase germ cell mitosis to enhance the fecundity of Laodelphax striatellus. Insect Biochem. Mol. Biol. 2020, 127, 103471. [Google Scholar] [CrossRef]
- Fast, E.M.; Toomey, M.E.; Panaram, K.; Desjardins, D.; Kolaczyk, E.D.; Frydman, H.M. Wolbachia enhance Drosophila stem cell proliferation and target the germline stem cell niche. Science 2011, 334, 990–992. [Google Scholar] [CrossRef]
- Imoto, Y.; Yoshida, Y.; Yagisawa, F.; Kuroiwa, H.; Kuroiwa, T. The cell cycle, including the mitotic cycle and organelle division cycles, as revealed by cytological observations. J. Electron Microsc. 2011, 60 (Suppl. S1), S117–S136. [Google Scholar] [CrossRef] [PubMed]
- Mills, M.K.; McCabe, L.G.; Rodrigue, E.M.; Lechtreck, K.F.; Starai, V.J. Wbm0076, a candidate effector protein of the Wolbachia endosymbiont of Brugia malayi, disrupts eukaryotic actin dynamics. PLoS Pathog. 2023, 19, e1010777. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, K.B.; Martin, M.; Lesser, C.F.; Isberg, R.R.; Newton, I.L. Identification and Characterization of a Candidate Wolbachia pipientis Type IV Effector That Interacts with the Actin Cytoskeleton. mBio 2016, 7, e00622-16. [Google Scholar] [CrossRef] [PubMed]
- Nevalainen, L.B.; Layton, E.M.; Newton, I.L.G. Wolbachia Promotes Its Own Uptake by Host Cells. Infect. Immun. 2023, 91, e0055722. [Google Scholar] [CrossRef]
- Newton, I.L.; Savytskyy, O.; Sheehan, K.B. Wolbachia utilize host actin for efficient maternal transmission in Drosophila melanogaster. PLoS Pathog. 2015, 11, e1004798. [Google Scholar] [CrossRef]
- Hinks, A.; Hawke, T.J.; Franchi, M.V.; Power, G.A. The importance of serial sarcomere addition for muscle function and the impact of aging. J. Appl. Physiol. 2023, 135, 375–393. [Google Scholar] [CrossRef]
- Baião, G.C.; Schneider, D.I.; Miller, W.J.; Klasson, L. The effect of Wolbachia on gene expression in Drosophila paulistorum and its implications for symbiont-induced host speciation. BMC Genom. 2019, 20, 465. [Google Scholar] [CrossRef]
- Evans, O.; Caragata, E.P.; McMeniman, C.J.; Woolfit, M.; Green, D.C.; Williams, C.R.; Franklin, C.E.; O’Neill, S.L.; McGraw, E.A. Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis. J. Exp. Biol. 2009, 212, 1436–1441. [Google Scholar] [CrossRef]
- Pietri, J.E.; DeBruhl, H.; Sullivan, W. The rich somatic life of Wolbachia. MicrobiologyOpen 2016, 5, 923–936. [Google Scholar] [CrossRef]
- Rohkin Shalom, S.; Weiss, B.; Lalzar, M.; Kaltenpoth, M.; Chiel, E. Abundance and Localization of Symbiotic Bacterial Communities in the Fly Parasitoid Spalangia cameroni. Appl. Environ. Microbiol. 2022, 88, e0254921. [Google Scholar] [CrossRef]
- Miyata, M.; Konagaya, T.; Yukuhiro, K.; Nomura, M.; Kageyama, D. Wolbachia-induced meiotic drive and feminization is associated with an independent occurrence of selective mitochondrial sweep in a butterfly. Biol. Lett. 2017, 13, 20170153. [Google Scholar] [CrossRef]
- Duron, O.; Weill, M. Wolbachia infection influences the development of Culex pipiens embryo in incompatible crosses. Heredity 2006, 96, 493–500. [Google Scholar] [CrossRef]
- Hussain, M.; Qi, Z.; Asgari, S. Interaction of the Wolbachia surface protein with a novel pro-viral protein from Aedes aegypti. mBio 2025, 16, e0148624. [Google Scholar] [CrossRef]
- Bi, J.; Wang, Y.F. The effect of the endosymbiont Wolbachia on the behavior of insect hosts. Insect Sci. 2020, 27, 846–858. [Google Scholar] [CrossRef]
- Russell, S.L.; Castillo, J.R.; Sullivan, W.T. Wolbachia endosymbionts manipulate the self-renewal and differentiation of germline stem cells to reinforce fertility of their fruit fly host. PLoS Biol. 2023, 21, e3002335. [Google Scholar] [CrossRef]
- Salisbury, S.J.; Delgado, M.L.; Dalziel, A.C. Alternative splicing: An overlooked mechanism contributing to local adaptation? Mol. Ecol. 2021, 30, 4951–4954. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zheng, Y.; Yu, W.J.; Fang, Y.; Mao, B.; Wang, Y.F. How do Wolbachia modify the Drosophila ovary? New evidences support the “titration-restitution” model for the mechanisms of Wolbachia-induced CI. BMC Genom. 2019, 20, 608. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Lu, Z.; Ma, Y.; Song, X.; Wang, D.; Wu, C.; Ma, X.; Shan, Y.; Ren, X.; Ma, Y. Impact of transinfection of Wolbachia from the planthopper Laodelphax striatellus on reproductive fitness and transcriptome of the whitefly Bemisia tabaci. J. Invertebr. Pathol. 2024, 207, 108230. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.C.; Wang, X.; Deng, C.; Yun, Y.L.; Zhao, Y.; Peng, Y. Transcriptome responses to elevated CO2 level and Wolbachia-infection stress in Hylyphantes graminicola (Araneae: Linyphiidae). Insect Sci. 2020, 27, 908–920. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, H.; Liu, S.; Li, L.; Su, Y.; Gong, B.; Liu, J. Comparative Analysis of Cryptic Fig Wasp Species Reveals Sexually Divergent Gene Transcriptional Regulation. Diversity 2025, 17, 722. https://doi.org/10.3390/d17100722
Hou H, Liu S, Li L, Su Y, Gong B, Liu J. Comparative Analysis of Cryptic Fig Wasp Species Reveals Sexually Divergent Gene Transcriptional Regulation. Diversity. 2025; 17(10):722. https://doi.org/10.3390/d17100722
Chicago/Turabian StyleHou, Hongxia, Shasha Liu, Lin Li, Yalei Su, Binbin Gong, and Jing Liu. 2025. "Comparative Analysis of Cryptic Fig Wasp Species Reveals Sexually Divergent Gene Transcriptional Regulation" Diversity 17, no. 10: 722. https://doi.org/10.3390/d17100722
APA StyleHou, H., Liu, S., Li, L., Su, Y., Gong, B., & Liu, J. (2025). Comparative Analysis of Cryptic Fig Wasp Species Reveals Sexually Divergent Gene Transcriptional Regulation. Diversity, 17(10), 722. https://doi.org/10.3390/d17100722