Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (239)

Search Parameters:
Keywords = Wolbachia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1085 KiB  
Article
Comparative Endosymbiont Community Structures of Nonviruliferous and Rice Stripe Virus-Viruliferous Laodelphax striatellus (Hemiptera: Delphacidae) in Korea
by Jiho Jeon, Minhyeok Kwon, Bong Choon Lee and Eui-Joon Kil
Viruses 2025, 17(8), 1074; https://doi.org/10.3390/v17081074 - 1 Aug 2025
Viewed by 319
Abstract
Insects and their bacterial endosymbionts form intricate ecological relationships, yet their role in host–pathogen interactions are not fully elucidated. The small brown planthopper (Laodelphax striatellus), a polyphagous pest of cereal crops, acts as a key vector for rice stripe virus (RSV), [...] Read more.
Insects and their bacterial endosymbionts form intricate ecological relationships, yet their role in host–pathogen interactions are not fully elucidated. The small brown planthopper (Laodelphax striatellus), a polyphagous pest of cereal crops, acts as a key vector for rice stripe virus (RSV), a significant threat to rice production. This study aimed to compare the endosymbiont community structures of nonviruliferous and RSV-viruliferous L. striatellus populations using 16S rRNA gene sequencing with high-throughput sequencing technology. Wolbachia was highly dominant in both groups; however, the prevalence of other endosymbionts, specifically Rickettsia and Burkholderia, differed markedly depending on RSV infection. Comprehensive microbial diversity and composition analyses revealed distinct community structures between nonviruliferous and RSV-viruliferous populations, highlighting potential interactions and implications for vector competence and virus transmission dynamics. These findings contribute to understanding virus-insect-endosymbiont dynamics and could inform strategies to mitigate viral spread by targeting symbiotic bacteria. Full article
(This article belongs to the Special Issue Plant Viruses and Their Vectors: Epidemiology and Control)
Show Figures

Figure 1

14 pages, 1299 KiB  
Article
Host-Dependent Variation in Tetranychus urticae Fitness and Microbiota Composition Across Strawberry Cultivars
by Xu Zhang, Hongjun Yang, Zhiming Yan, Yuanhua Wang, Quanzhi Wang, Shimei Huo, Zhan Chen, Jialong Cheng and Kun Yang
Insects 2025, 16(8), 767; https://doi.org/10.3390/insects16080767 - 25 Jul 2025
Viewed by 500
Abstract
Tetranychus urticae, commonly known as the two-spotted spider mite, is a highly adaptable and polyphagous arthropod in the family Tetranychidae, capable of feeding on over 1200 plant species, including strawberries (Fragaria × ananassa Duch.). The fitness and microbiota of herbivorous arthropods [...] Read more.
Tetranychus urticae, commonly known as the two-spotted spider mite, is a highly adaptable and polyphagous arthropod in the family Tetranychidae, capable of feeding on over 1200 plant species, including strawberries (Fragaria × ananassa Duch.). The fitness and microbiota of herbivorous arthropods can vary significantly across different plant species and cultivars. In this study, we investigated the fecundity, longevity, growth rate, and microbiota composition of T. urticae reared on seven Chinese strawberry cultivars: Hongyan (HY), Yuexiu (YX), Tianshi (TS), Ningyu (NY), Xuetu (XT), Zhangjj (ZJ), and Xuelixiang (XLX). Our findings revealed significant differences among cultivars: mites reared on the XT cultivar exhibited the highest fecundity (166.56 ± 7.82 eggs), while those on XLX had the shortest pre-adult period (7.71 ± 0.13 days). Longevity was significantly extended in mites reared on XLX, XT, and NY cultivars (25.95–26.83 days). Microbiota analysis via 16S rRNA sequencing showed that Proteobacteria dominated (>89.96% abundance) across all mite groups, with Wolbachia as the predominant symbiont (89.58–99.19%). Male mites exhibited higher bacterial diversity (Shannon and Chao1 indices) than females, though Wolbachia abundance did not differ significantly between sexes or cultivars. Functional predictions highlighted roles of microbiota in biosynthesis, detoxification, and energy metabolism. These findings underscore the influence of host plant variety on T. urticae fitness and microbiota composition, suggesting potential strategies for breeding resistant strawberry cultivars and leveraging microbial interactions for pest management. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

29 pages, 2926 KiB  
Review
Microbial Symbiosis in Lepidoptera: Analyzing the Gut Microbiota for Sustainable Pest Management
by Abdul Basit, Inzamam Ul Haq, Moazam Hyder, Muhammad Humza, Muhammad Younas, Muhammad Rehan Akhtar, Muhammad Adeel Ghafar, Tong-Xian Liu and Youming Hou
Biology 2025, 14(8), 937; https://doi.org/10.3390/biology14080937 - 25 Jul 2025
Viewed by 416
Abstract
Recent advances in microbiome studies have deepened our understanding of endosymbionts and gut-associated microbiota in host biology. Of those, lepidopteran systems in particular harbor a complex and diverse microbiome with various microbial taxa that are stable and transmitted between larval and adult stages, [...] Read more.
Recent advances in microbiome studies have deepened our understanding of endosymbionts and gut-associated microbiota in host biology. Of those, lepidopteran systems in particular harbor a complex and diverse microbiome with various microbial taxa that are stable and transmitted between larval and adult stages, and others that are transient and context-dependent. We highlight key microorganisms—including Bacillus, Lactobacillus, Escherichia coli, Pseudomonas, Rhizobium, Fusarium, Aspergillus, Saccharomyces, Bifidobacterium, and Wolbachia—that play critical roles in microbial ecology, biotechnology, and microbiome studies. The fitness implications of these microbial communities can be variable; some microbes improve host performance, while others neither positively nor negatively impact host fitness, or their impact is undetectable. This review examines the central position played by the gut microbiota in interactions of insects with plants, highlighting the functions of the microbiota in the manipulation of the behavior of herbivorous pests, modulating plant physiology, and regulating higher trophic levels in natural food webs. It also bridges microbiome ecology and applied pest management, emphasizing S. frugiperda as a model for symbiont-based intervention. As gut microbiota are central to the life history of herbivorous pests, we consider how these interactions can be exploited to drive the development of new, environmentally sound biocontrol strategies. Novel biotechnological strategies, including symbiont-based RNA interference (RNAi) and paratransgenesis, represent promising but still immature technologies with major obstacles to overcome in their practical application. However, microbiota-mediated pest control is an attractive strategy to move towards sustainable agriculture. Significantly, the gut microbiota of S. frugiperda is essential for S. frugiperda to adapt to a wide spectrum of host plants and different ecological niches. Studies have revealed that the microbiome of S. frugiperda has a close positive relationship with the fitness and susceptibility to entomopathogenic fungi; therefore, targeting the S. frugiperda microbiome may have good potential for innovative biocontrol strategies in the future. Full article
(This article belongs to the Special Issue Recent Advances in Wolbachia and Spiroplasma Symbiosis)
Show Figures

Graphical abstract

13 pages, 2193 KiB  
Article
Microbiota Anatomical Niche Partitioning of Simulium vanluni (Diptera: Simuliidae)
by Noor Izwan-Anas, Van Lun Low, Zubaidah Ya’cob, Sazaly AbuBakar and Kim-Kee Tan
Diversity 2025, 17(8), 504; https://doi.org/10.3390/d17080504 - 23 Jul 2025
Viewed by 280
Abstract
Background: Microbial communities of insects have distinct roles for their respective hosts. For the black fly (Diptera: Simuliidae), an important vector and ecological indicator, the representative microbiota from the different body regions are not known. Here, we investigated the microbial composition and diversity [...] Read more.
Background: Microbial communities of insects have distinct roles for their respective hosts. For the black fly (Diptera: Simuliidae), an important vector and ecological indicator, the representative microbiota from the different body regions are not known. Here, we investigated the microbial composition and diversity of the head, thorax, and abdomen of wild-caught Simulium vanluni. Methods: Adult Simulium vanluni were surface-sterilized and dissected into head, thorax, and abdomen. For each body region, 20 individuals were pooled into one sample with six replicates per region. DNA was extracted and sequenced using the 16S rRNA amplification method to assess for possible microbial diversity. Data were analyzed using MicrobiomeAnalyst, where we calculated alpha diversity, beta diversity, and tested compositional differences using PERMANOVA. Results: Across 17 pooled samples, three core genera, Wolbachia (78.33%), Rickettsia (9.74%), and Acinetobacter (9.20%), accounted for more than 97% of the 16S rRNA sequencing reads. Head communities were compositionally distinct compared to the thorax and abdomen (PERMANOVA, p < 0.05). Heads were nearly monodominated by Wolbachia (95–97%), exhibiting significantly lower diversity and evenness compared to other body regions. In contrast, the thoracic and abdominal communities were more even, where thoraces were enriched with Acinetobacter (19.16%) relative to Rickettsia (10.85%), while abdomens harbored higher Rickettsia (10.96%) than Acinetobacter (5.68%). Collectively, the near-monodominance of Wolbachia in heads and inverse abundances of Acinetobacter and Rickettsia in thoraces and abdomens suggest possible anatomical niche partitioning or competition exclusion of microbiota across body regions. Conclusions: Our findings reveal fine-scale anatomical niche partitioning in S. vanluni microbiota, with the heads being almost exclusively colonized by Wolbachia, while the thoracic and abdominal niche regions exhibit distinct enrichment patterns for Acinetobacter and Rickettsia. These spatially distinct microbial distributions suggest potential functional specialization across anatomical regions of S. vanluni. Full article
(This article belongs to the Special Issue Diversity, Biodiversity, Threats and Conservation of Arthropods)
Show Figures

Figure 1

10 pages, 6593 KiB  
Article
First Molecular Evidence of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in Ixodes ricinus and Haemaphysalis concinna (Acari: Ixodida) Ticks from Inland and Coastal Areas of the Balkan Peninsula
by Veronika Blažeková, Michal Stanko, Dana Zubriková, Lucia Vargová, Klaudia Mária Švirlochová and Bronislava Víchová
Pathogens 2025, 14(7), 652; https://doi.org/10.3390/pathogens14070652 - 1 Jul 2025
Viewed by 522
Abstract
Ixodiphagus hookeri (Howard, 1907) (Hymenoptera: Encyrtidae), a hyperparasitic wasp that parasitizes hard ticks, has been documented in various parts of Europe; however, data on its presence in southeastern regions has been lacking. This study provides the first molecular evidence of I. hookeri in [...] Read more.
Ixodiphagus hookeri (Howard, 1907) (Hymenoptera: Encyrtidae), a hyperparasitic wasp that parasitizes hard ticks, has been documented in various parts of Europe; however, data on its presence in southeastern regions has been lacking. This study provides the first molecular evidence of I. hookeri in ticks from the coastal areas of the Balkan Peninsula, specifically Croatia and Bulgaria. A total of 1043 questing ticks were collected between 2011 and 2013 across 15 locations. Molecular screening revealed I. hookeri DNA in Ixodes ricinus (Linnaeus, 1758) (Acari: Ixodidae) nymphs from inland Croatia (overall prevalence: 18.72%) and in Haemaphysalis concinna (Koch, 1844) (Acari: Ixodidae) nymphs and larvae from coastal Bulgaria (prevalence: 17.2%). All I. hookeri-positive samples were co-infected with Wolbachia spp. (Rickettsiales: Anaplasmataceae). This detection marks the southernmost record of I. hookeri in Central Europe, expanding its known range to the Balkan Peninsula and supporting its relevance as a potential natural enemy in integrated tick management strategies. Full article
(This article belongs to the Special Issue Ticks and Tick-Borne Pathogens in the Balkans)
Show Figures

Figure 1

22 pages, 3253 KiB  
Article
Infections of Aedes Mosquito Cells by Wolbachia Strains wAu and wMelpop Modulate Host Cellular Transcriptomes Differently and Suppress Dengue Viral Replication
by Amber R. Mickelson, Julia Felton, Olivia Cheschi, Emily Spacone, Kaitlyn Connors, Jacob Thornsberry and Tadahisa Teramoto
Viruses 2025, 17(7), 922; https://doi.org/10.3390/v17070922 - 28 Jun 2025
Viewed by 1826
Abstract
Dengue virus serotypes 1-4 (DENV1-4) have spread through tropical and subtropical countries, causing endemic and epidemic diseases. Recently, a novel field approach using the Wolbachia symbiont was proposed to suppress DENV transmission via the mosquito vectors Aedes aegypti and Aedes albopictus. Previously, [...] Read more.
Dengue virus serotypes 1-4 (DENV1-4) have spread through tropical and subtropical countries, causing endemic and epidemic diseases. Recently, a novel field approach using the Wolbachia symbiont was proposed to suppress DENV transmission via the mosquito vectors Aedes aegypti and Aedes albopictus. Previously, we showed that a Wolbachia strain, wMelPop, suppresses DENV2 replication in the C6/36 albopictus cell line, with the mutant DENV2 appearing and replacing the wild type DENV2. In this study, we expanded the analysis to include replications of all DENV serotypes 1-4, effects of wAu Wolbachia in C6/36 cells, and wMelPop-influences on the Aag2 aegypti cell line. It was revealed that both wAu and wMelPop reduce all DENV infectious titers without dominant appearances of the mutant viruses, despite varied effects on the viral copy numbers. The host transcriptomic profiles by RNA-seq were also variously altered by wAu and wMelPop (ranging from 10 to 30%, Log2FC > 2 or <−2, p < 0.05). Those transcripts were not further altered by DENV infection. In contrast, abundant transcriptomic alterations by DENV infection in naïve C6/36 and Aag2 cells were blocked by either wAu or wMelPop. These results indicate that Wolbachia prevents host cellular transcriptomic alterations which are induced by DENV infection, affecting the cellular homeostasis necessary for DENV replication. Full article
(This article belongs to the Special Issue The Impact of Wolbachia on Virus Infection)
Show Figures

Figure 1

33 pages, 8654 KiB  
Article
The Symbiotic Bacterial Profile of Laboratory-Reared and Field-Caught Aedes albopictus Mosquitoes from Greece
by Elias Asimakis, Ioannis Galiatsatos, Georgia Apostolopoulou, Eleni C. Savvidou, Georgios Balatsos, Vasileios Karras, Vasiliki Evangelou, Eva Dionyssopoulou, Antonios Augustinos, Nikos T. Papadopoulos, Antonios Michaelakis, Panagiota Stathopoulou and George Tsiamis
Microorganisms 2025, 13(7), 1486; https://doi.org/10.3390/microorganisms13071486 - 26 Jun 2025
Viewed by 576
Abstract
The Asian tiger mosquito Aedes albopictus is a highly invasive species capable of transmitting human pathogens. For population management, the sterile insect technique (SIT) is considered an effective and sustainable alternative to conventional methods, such as insecticides and reducing or eliminating breeding sites. [...] Read more.
The Asian tiger mosquito Aedes albopictus is a highly invasive species capable of transmitting human pathogens. For population management, the sterile insect technique (SIT) is considered an effective and sustainable alternative to conventional methods, such as insecticides and reducing or eliminating breeding sites. The use of symbiotic bacteria to improve the application of SIT or design combined SIT/incompatible insect technique (IIT) approaches is currently considered. In this context, exploring the microbiota of local mosquito populations is crucial for identifying interesting components. This study employed 16S rRNA sequencing and microbiological methods to characterize the diversity of laboratory and wild Ae. albopictus in Greece. Differences were recorded between wild and lab-reared mosquitoes, with laboratory samples exhibiting higher diversity. Laboratory treatment, sex, and developmental stage also resulted in variations between communities. Populations reared in the same facility developed mostly similar bacterial profiles. Two geographically distant wild populations displayed similar bacterial profiles, characterized by seasonal changes in the relative abundance of Pantoea and Zymobacter. Wolbachia was dominant in most groups (63.7% relative abundance), especially in field-caught mosquitoes. It was identified with two strains, wAlbA (21.5%) and wAlbB (42.2%). Other frequent taxa included Elizabethkingia, Asaia, and Serratia. Blood feeding favored an increase in Serratia abundance. Various Enterobacter, Klebsiella, Aeromonas, and Acinetobacter strains were isolated from larval and adult mosquito extracts and could be further characterized as diet supplements. These findings suggest that the microbiota of local populations is highly variable due to multiple factors. However, they retain core elements shared across populations that may exhibit valuable nutritional or functional roles and could be exploited to improve SIT processes. Full article
(This article belongs to the Special Issue Microbiota: From the Environment to Humans, 2nd Edition)
Show Figures

Figure 1

13 pages, 231 KiB  
Review
Dengue Vaccine Development and Deployment into Routine Immunization
by Annelies Wilder-Smith, Thomas Cherian and Joachim Hombach
Vaccines 2025, 13(5), 483; https://doi.org/10.3390/vaccines13050483 - 29 Apr 2025
Viewed by 2299
Abstract
Dengue has emerged as a significant global health threat. Despite decades of research, only two dengue vaccines—CYD-TDV (Dengvaxia) and TAK-003 (Qdenga)—have been licensed to date, with limited implementation. This paper explores and outlines strategies for integrating dengue vaccines into routine immunization programs, particularly [...] Read more.
Dengue has emerged as a significant global health threat. Despite decades of research, only two dengue vaccines—CYD-TDV (Dengvaxia) and TAK-003 (Qdenga)—have been licensed to date, with limited implementation. This paper explores and outlines strategies for integrating dengue vaccines into routine immunization programs, particularly in high-burden regions. TAK-003, a tetravalent live-attenuated vaccine, has demonstrated 61% efficacy against virologically confirmed dengue and 84% efficacy against hospitalizations in endemic settings. However, concerns remain about vaccine-enhanced disease, particularly among seronegative individuals exposed to DENV3 and DENV4. WHO recommends targeted introduction in high-transmission settings without pre-vaccination screening, while ongoing post-introduction studies will further clarify long-term safety and efficacy. Effective vaccine rollout requires a multi-pronged approach, including school-based immunization, integration with adolescent health services, and strong community engagement. Decision-making for vaccine introduction should be guided by National Immunization Technical Advisory Groups (NITAGs), local epidemiological data, and cost-effectiveness assessments. While future vaccines, including mRNA and virus-like particle candidates, are under development, optimizing the use of currently available vaccines is crucial to reducing dengue’s public health impact. Given the continued rise in cases, immediate action—combining vaccination with vector control—is essential to prevent further morbidity and mortality. Full article
(This article belongs to the Special Issue 50 Years of Immunization—Steps Forward)
17 pages, 4181 KiB  
Article
“Hostbusters”: The Bacterial Endosymbiont Wolbachia of the Parasitoid Wasp Habrobracon hebetor Improves Its Ability to Parasitize Lepidopteran Hosts
by Alsu M. Utkuzova, Ekaterina A. Chertkova, Natalia A. Kryukova, Julia M. Malysh and Yuri S. Tokarev
Insects 2025, 16(5), 464; https://doi.org/10.3390/insects16050464 - 28 Apr 2025
Viewed by 656
Abstract
Habrobracon hebetor is a globally acknowledged larval ectoparasitoid that is widely used to control lepidopteran pests. Wolbachia is a natural endosymbiont that regulates various aspects of the insect host biology. The ability of H. hebetor to paralyze and develop on lepidopteran larvae from [...] Read more.
Habrobracon hebetor is a globally acknowledged larval ectoparasitoid that is widely used to control lepidopteran pests. Wolbachia is a natural endosymbiont that regulates various aspects of the insect host biology. The ability of H. hebetor to paralyze and develop on lepidopteran larvae from five families was tested under laboratory conditions. Two lines of the wasp were used, “W+” containing a naturally occurring Wolbachia from the supergroup B, and “W−”, with the endosymbiont eradicated by antibiotic treatment, followed by propagation of 20 subsequent generations. The proportions of larvae in which host paralysis, as well as parasitoid oviposition, larval, pupal, and adult development were observed, were usually higher in W+ compared to W−. In Loxostege sticticalis, differences in these indices were not statistically significant. In Galleria mellonella, Mamestra brassicae, and Ostrinia nubilalis, some of the parasitism indices were significantly higher in W+ than in W−. In Bombyx mori and Plutella xylostella, H. hebetor could not complete its life cycle, but parasitism levels at the initial steps (from paralysis symptoms to the presence of larvae/pupae of the parasitoid) were 2–5 times lower in W− compared to W+ (p < 0.01). It can be suggested that the presence of Wolbachia is advantageous for H. hebetor, as it increases the success of parasitism in a broad range of lepidopteran hosts. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

10 pages, 1540 KiB  
Article
Pre-Crop Chemical Control Has No Effects on Corn Leaf Aphid, Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae) Endosymbiotic Bacterial Diversity Along an Industrial Maize Management
by Artúr Botond Csorba, Kálmán Szanyi, Szabolcs Szanyi, Gábor Tarcali, Adalbert Balog and Antal Nagy
Insects 2025, 16(4), 417; https://doi.org/10.3390/insects16040417 - 15 Apr 2025
Viewed by 600
Abstract
During this research, the corn leaf aphids endosymbiotic bacterial diversity was tested in the same crop systems (monoculture industrial maize as grain for livestock) and the same soil type (Chernozem) when pre-crop pesticide management was used. Bacterial symbionts were analyzed using Illumina systems, [...] Read more.
During this research, the corn leaf aphids endosymbiotic bacterial diversity was tested in the same crop systems (monoculture industrial maize as grain for livestock) and the same soil type (Chernozem) when pre-crop pesticide management was used. Bacterial symbionts were analyzed using Illumina systems, and the Silva 16S NR99 V138.2 database was used to assign bacterial taxa on genus and species levels. The presence of the obligate endosymbiont B. aphidicola has been clearly detected in all cases, and in all samples but its abundance varied between samples inside crops, but not between crops and generations. The facultative symbionts S. symbiotica and Wolbachia spp. frequency varied between generations, and increased at generation II; however, differences were not significant. We concluded that the pre-crop pesticide application has no effect on corn leaf aphids bacterial symbionts, so the indirect pesticide application on aphids adaptation is low or nonexistent. Full article
(This article belongs to the Special Issue Biology and Molecular Mechanisms of Plant-Aphid Interactions)
Show Figures

Figure 1

12 pages, 1061 KiB  
Article
Wolbachia Screening in Aedes aegypti and Culex pipiens Mosquitoes from Madeira Island, Portugal
by Rita Fernandes, Tiago Melo, Líbia Zé-Zé, Inês C. Freitas, Manuel Silva, Eva Dias, Nuno C. Santos, Bruna R. Gouveia, Gonçalo Seixas and Hugo Costa Osório
Insects 2025, 16(4), 418; https://doi.org/10.3390/insects16040418 - 15 Apr 2025
Viewed by 1488
Abstract
Mosquito-borne diseases such as dengue and West Nile virus pose serious public health risks. On Madeira Island, the presence of the mosquito species Aedes aegypti (Linnaeus, 1762) and Culex pipiens (Linnaeus, 1758) raises concerns about local transmission. In this study, we tested 100 [...] Read more.
Mosquito-borne diseases such as dengue and West Nile virus pose serious public health risks. On Madeira Island, the presence of the mosquito species Aedes aegypti (Linnaeus, 1762) and Culex pipiens (Linnaeus, 1758) raises concerns about local transmission. In this study, we tested 100 Ae. aegypti and 40 Cx. pipiens mosquitoes collected exclusively in the municipality of Funchal, Madeira Island, to assess the presence and diversity of Wolbachia, a naturally occurring bacterium known to reduce mosquitos’ ability to transmit viruses. Molecular identification confirmed that all Cx. pipiens specimens belonged to the molestus biotype, with three individuals identified as hybrids between molestus and pipiens biotypes. This is the first evidence of such hybrids in Madeira. Wolbachia was not detected in any of the Ae. aegypti samples. In contrast, all Cx. pipiens mosquitoes were positive, showing a 100% prevalence. Genetic characterization placed these infections within the wPip clade, supergroup B, sequence type 9. These findings provide key baseline data to inform future mosquito control strategies on the island. As Ae. aegypti showed no natural Wolbachia infection, introducing Wolbachia-infected mosquitoes may be necessary to implement such biocontrol approaches in Madeira. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Figure 1

18 pages, 1120 KiB  
Article
Raising Awareness of Canine, Feline and Human Dirofilariosis in Aveiro, Portugal: A One Health Perspective
by Joana Esteves-Guimarães, José Alberto Montoya-Alonso, Jorge Isidoro Matos, Elmano Ramalheira, Elena Carretón, Ivan Rodríguez-Escolar, Alfonso Balmori-de la Puente, Manuel Collado-Cuadrado, Rodrigo Morchón and Ana Patrícia Fontes-Sousa
Animals 2025, 15(7), 952; https://doi.org/10.3390/ani15070952 - 26 Mar 2025
Viewed by 936
Abstract
Climatic and various socio-geographical variables have significantly influenced the global spread of Dirofilaria immitis. The coastal district of Aveiro, Portugal, marked by its unique hydrographic structure, Ria de Aveiro, and a concerning rise in heartworm disease, was the focus of our study. [...] Read more.
Climatic and various socio-geographical variables have significantly influenced the global spread of Dirofilaria immitis. The coastal district of Aveiro, Portugal, marked by its unique hydrographic structure, Ria de Aveiro, and a concerning rise in heartworm disease, was the focus of our study. We aimed to update the prevalence of D. immitis in dogs and the seroprevalence in cats and humans, correlating these data with epidemiological information. A total of 430 dogs were sampled for D. immitis antigens, and 426 cats and 398 humans for D. immitis and Wolbachia sp. antibodies. In addition, we developed and validated an infection risk map for D. immitis with the geolocation of positive samples. Our results indicate a canine prevalence of 4.7%, peaking at 16.7% in Vagos. Feline and human seroprevalences were 8.9% (26.7% in Espinho) and 3.0% (Vagos presented the most alarming results), respectively. Positive samples were found in both high- and low-risk areas highlighting the need for chemoprophylaxis in all municipalities. Risk factors identified included lack of vaccination and internal deworming in cats, while dogs faced risks from inadequate vaccination and outdoor exposure. Our study identifies Aveiro as an endemic area, with a need for control measures to address this public health threat. Full article
(This article belongs to the Topic Zoonotic Vector-Borne Diseases of Companion Animals)
Show Figures

Figure 1

65 pages, 2112 KiB  
Review
Exploiting Wolbachia as a Tool for Mosquito-Borne Disease Control: Pursuing Efficacy, Safety, and Sustainability
by Riccardo Moretti, Jue Tao Lim, Alvaro Gil Araujo Ferreira, Luigi Ponti, Marta Giovanetti, Chow Jo Yi, Pranav Tewari, Maria Cholvi, Jacob Crawford, Andrew Paul Gutierrez, Stephen L. Dobson and Perran A. Ross
Pathogens 2025, 14(3), 285; https://doi.org/10.3390/pathogens14030285 - 14 Mar 2025
Cited by 1 | Viewed by 3206
Abstract
Despite the application of control measures, mosquito-borne diseases continue to pose a serious threat to human health. In this context, exploiting Wolbachia, a common symbiotic bacterium in insects, may offer effective solutions to suppress vectors or reduce their competence in transmitting several [...] Read more.
Despite the application of control measures, mosquito-borne diseases continue to pose a serious threat to human health. In this context, exploiting Wolbachia, a common symbiotic bacterium in insects, may offer effective solutions to suppress vectors or reduce their competence in transmitting several arboviruses. Many Wolbachia strains can induce conditional egg sterility, known as cytoplasmic incompatibility (CI), when infected males mate with females that do not harbor the same Wolbachia infection. Infected males can be mass-reared and then released to compete with wild males, reducing the likelihood of wild females encountering a fertile mate. Furthermore, certain Wolbachia strains can reduce the competence of mosquitoes to transmit several RNA viruses. Through CI, Wolbachia-infected individuals can spread within the population, leading to an increased frequency of mosquitoes with a reduced ability to transmit pathogens. Using artificial methods, Wolbachia can be horizontally transferred between species, allowing the establishment of various laboratory lines of mosquito vector species that, without any additional treatment, can produce sterilizing males or females with reduced vector competence, which can be used subsequently to replace wild populations. This manuscript reviews the current knowledge in this field, describing the different approaches and evaluating their efficacy, safety, and sustainability. Successes, challenges, and future perspectives are discussed in the context of the current spread of several arboviral diseases, the rise of insecticide resistance in mosquito populations, and the impact of climate change. In this context, we explore the necessity of coordinating efforts among all stakeholders to maximize disease control. We discuss how the involvement of diverse expertise—ranging from new biotechnologies to mechanistic modeling of eco-epidemiological interactions between hosts, vectors, Wolbachia, and pathogens—becomes increasingly crucial. This coordination is especially important in light of the added complexity introduced by Wolbachia and the ongoing challenges posed by global change. Full article
(This article belongs to the Special Issue Surveillance and Control Strategies to Fight Mosquito-Borne Diseases)
Show Figures

Figure 1

18 pages, 5537 KiB  
Article
Interactions Between Endosymbionts Wolbachia and Rickettsia in the Spider Mite Tetranychus turkestani: Cooperation or Antagonism?
by Sha Wang, Xinlei Wang, Ali Basit, Qiancheng Wei, Kedi Zhao and Yiying Zhao
Microorganisms 2025, 13(3), 642; https://doi.org/10.3390/microorganisms13030642 - 12 Mar 2025
Viewed by 801
Abstract
Maternally inherited endosymbionts are widespread in arthropods, with multiple symbionts commonly co-existing within a single host, potentially competing for or sharing limited host resources and space. Wolbachia and Rickettsia, two maternally-inherited symbionts in arthropods, can co-infect hosts, yet research on their combined [...] Read more.
Maternally inherited endosymbionts are widespread in arthropods, with multiple symbionts commonly co-existing within a single host, potentially competing for or sharing limited host resources and space. Wolbachia and Rickettsia, two maternally-inherited symbionts in arthropods, can co-infect hosts, yet research on their combined impacts on host reproduction and interaction remains scarce. Tetranychus turkestani (Acari: Tetranychidae) is an important agricultural pest mite, characterized by rapid reproduction, a short life cycle, and being difficult to control. Wolbachia and Rickettsia are two major endosymbiotic bacteria present in T. turkestani. This study used diverse parthenogenetic backcross and antibiotic screening to explore the reproductive effects of these two symbionts on T. turkestani. The results show that single Rickettsia infection induced male killing in the amphigenesis of T. turkestani, leading to arrhenotokous embryo death and fewer offspring. Single Wolbachia infection induced strong cytoplasmic incompatibility (CI). During dual infection, CI intensity decreased because Rickettsia’s male-killing effect antagonized the Wolbachia-induced CI. Dual-infected mites had increased oviposition, lower mortality, a higher female-to-male ratio, and more offspring, thus enhancing T. turkestani’s fitness. These findings will be helpful for understanding the nature of host–endosymbiont interactions and the potential for evolutionary conflicts, offering insights into their co-evolutionary relationship. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

15 pages, 5317 KiB  
Article
Metabolomics Provides New Insights into the Mechanisms of Wolbachia-Induced Plant Defense in Cotton Mites
by Xinlei Wang, Sha Wang, Ali Basit, Qianchen Wei, Kedi Zhao, Feng Liu and Yiying Zhao
Microorganisms 2025, 13(3), 608; https://doi.org/10.3390/microorganisms13030608 - 6 Mar 2025
Viewed by 700
Abstract
Endosymbiotic bacteria play a significant role in the co-evolution of insects and plants. However, whether they induce or inhibit host plant defense responses remains unclear. In this study, non-targeted metabolomic sequencing was performed on cotton leaves fed with Wolbachia-infected and uninfected spider [...] Read more.
Endosymbiotic bacteria play a significant role in the co-evolution of insects and plants. However, whether they induce or inhibit host plant defense responses remains unclear. In this study, non-targeted metabolomic sequencing was performed on cotton leaves fed with Wolbachia-infected and uninfected spider mites using parthenogenetic backcrossing and antibiotic treatment methods. A total of 55 differential metabolites were identified, which involved lipids, phenylpropanoids, and polyketides. KEGG pathway enrichment analysis revealed seven significantly enriched metabolic pathways. Among them, flavonoid and flavonol biosynthesis, glycerophospholipid metabolism, and ether lipid metabolism showed extremely significant differences. In Wolbachia-infected cotton leaves, the flavonoid biosynthesis pathway was significantly up-regulated, including quercetin and myricetin, suggesting that the plant produces more secondary metabolites to enhance its defense capability. Glycerophosphocholine (GPC) and sn-glycerol-3-phosphoethanolamine (PE) were significantly down-regulated, suggesting that Wolbachia may impair the integrity and function of plant cell membranes. The downregulation of lysine and the upregulation of L-malic acid indicated that Wolbachia infection may shorten the lifespan of spider mites. At various developmental stages of the spider mites, Wolbachia infection increased the expression of detoxification metabolism-related genes, including gene families such as cytochrome P450, glutathione S-transferase, carboxylesterase, and ABC transporters, thereby enhancing the detoxification capability of the host spider mites. This study provides a theoretical basis for further elucidating the mechanisms by which endosymbiotic bacteria induce plant defense responses and expands the theoretical framework of insect–plant co-evolution. Full article
(This article belongs to the Special Issue Plant-Microbe Interaction State-of-the-Art Research in China)
Show Figures

Figure 1

Back to TopTop