Untangling the “Renicola somateria” (Digenea, Renicolidae) Muddle: Actual Number of Species and Their Distribution and Transmission in the Holarctic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Collection and Treatment
2.2. DNA Extraction, Amplification, and Sequencing
2.3. Alignments and Phylogenetic Analyses
3. Results
3.1. Description
3.2. Molecular Results (Figure 9, Figure 10, Figure 11 and Figure 12 and Tables S1–S4 (Supplementary Materials))
3.3. Remarks
3.3.1. Adults
3.3.2. Cercaria
4. Discussion
4.1. Taxonomy
4.2. Distribution and Phylogeography
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galaktionov, K.V.; Solovyeva, A.I.; Blakeslee, A.M.H.; Skírnisson, K. Overview of renicolid digeneans (Digenea, Renicolidae) from marine gulls of northern Holarctic with remarks on their species statuses, phylogeny and phylogeography. Parasitology 2023, 150, 55–77. [Google Scholar] [CrossRef] [PubMed]
- Sudarikov, V.E.; Stenko, R.P. Trematodes of the family Renicolidae. In Helminths of Farming and Hunting Animals; Nauka: Moscow, Russia, 1984; pp. 34–89. (In Russian) [Google Scholar]
- McDonald, M.E. Key to Trematodes Reported in Waterfowl; Resource, Publication 142.; U.S. Department of the Interior, Fish and Wildlife Service: Washington, DC, USA, 1981. [Google Scholar]
- Belopolskaja, M.M. Parasites of marine waterfowl. Uch Zap. Leningr. Gos. Univ. Ser. Biol. Nauk. 1952, 141, 127–180. (In Russian) [Google Scholar]
- Skirnisson, K.; Guðmundsdóttir, B.; Andrésdóttir, V.; Galaktionov, K.V. ITS1 nuclear rDNA sequences used to clear the life cycle of the morphologically different larvae and adult renicolid (Renicola, Digenea) parasites found in Iceland. Bull. Scand. Soc. Parasitol. 2003, 12, 50. [Google Scholar]
- Stunkard, H.W. Studies on the Trematode genus Renicola: Observations on the life-history, specificity, and systematic position. Biol. Bull. 1964, 126, 467–489. [Google Scholar] [CrossRef]
- Galaktionov, K.V.; Skirnisson, K. Digeneans from intertidal molluscs of SW Iceland. Syst. Parasitol. 2000, 47, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Blasco-Costa, I.; Poulin, R. Parasite life-cycle studies: A plea to resurrect an old parasitological tradition. J. Helminthol. 2017, 91, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Galaktionov, K.V.; Solovyeva, A.I.; Miroliubov, A. Elucidation of Himasthla leptosoma (Creplin, 1829) Dietz, 1909 (Digenea, Himasthlidae) life cycle with insights into species composition of the north Atlantic Himasthla associated with periwinkles Littorina spp. Parasitol. Res. 2021, 120, 1649–1668. [Google Scholar] [CrossRef]
- Winnepenninckx, B.; Backeljau, T.; De Wachter, R. Extraction of high molecular weight DNA from molluscs. Trends Genet. 1993, 9, 407. [Google Scholar] [CrossRef]
- Chan, A.H.E.; Saralamba, N.; Saralamba, S.; Ruangsittichai, J.; Thaenkham, U. The potential use of mitochondrial ribosomal genes (12S and 16S) in DNA barcoding and phylogenetic analysis of trematodes. BMC Genom. 2022, 23, 1–13. [Google Scholar] [CrossRef]
- Palm, H.W.; Waeschenbach, A.; Olson, P.D.; Littlewood, D.T.J. Molecular phylogeny and evolution of the Trypanorhyncha Diesing, 1863 (Platyhelminthes: Cestoda). Mol. Phylogenet. Evol. 2009, 52, 351–367. [Google Scholar] [CrossRef]
- Olson, P.D.; Cribb, T.H.; Tkach, V.V.; Bray, R.A.; Littlewood, D.T.J. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int. J. Parasitol. 2003, 33, 733–755. [Google Scholar] [CrossRef] [PubMed]
- Bowles, J.; Blair, D.; McManus, D.P. Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol. Biochem. Parasitol. 1992, 54, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Huelsenbeck, J.; Teslenko, M. Draft MrBayes Version 3.2 Manual: Tutorials and Model Summaries; Institute Pasteur: Paris, France, 2018; p. 180. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Rozas, R. DnaSP, DNA sequence polymorphism: An interactive program for estimating population genetics parameters from DNA sequence data. Comput. Appl. Biosci. 1995, 11, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.W.; Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Bychovskaja-Pavlovskaja, I.E. New species of kidney parasites (genus Renicola) from birds. Dokl. Akad. Nauk SSSR 1950, 71, 415–416. (In Russian) [Google Scholar]
- Galaktionov, K.V.; Bustnes, J.O.; Bårdsen, B.-J.; Wilson, J.G.; Nikolaev, K.E.; Sukhotin, A.A.; Skírnisson, K.; Saville, D.H.; Ivanov, M.V.; Regel, K. V Factors influencing the distribution of trematode larvae in blue mussels Mytilus edulis in the North Atlantic and Arctic Oceans. Mar. Biol. 2015, 162, 193–206. [Google Scholar] [CrossRef]
- Gubanov, N.M.; Ryzhikov, K.M. To trematode fauna of the anserine birds of Verhojan’a. Sci. Rep. Yakutia Branch USSR Acad. Sci. 1958, 1, 109–114. (In Russian) [Google Scholar]
- Wright, C.A. Trematodes of the genus Renicola from birds in British zoos, with descriptions of two new species. Proc. Zool. Soc. Lond. 1954, 124, 51–61. [Google Scholar] [CrossRef]
- Khalifa, R.; El-Naffar, M.K. Renicola ardeolae sp. n. (Renicolidae) a kidney trematode from the buff-backed heron (Ardeola ibis ibis) in the Assiut governorate Egypt. Acta Parasitol. Pol. 1975, 23, 355–360. [Google Scholar]
- McIntosh, A.; Farr, M.M. Renicola brantae n.sp. from the kidney of the Canada goose Branta canadensis. J. Parasilol. 1952, 38, 35–36. [Google Scholar]
- Wright, C.A. Two kidney-flukes from sudanese birds, with a description of a new species. J. Helminthol. 1957, 31, 229–238. [Google Scholar] [CrossRef]
- Kulachkova, V.G. New species of renal trematodes Renicola mollissima sp. nov from Common Eider. Trans. Leningr. Soc. Nat. 1957, 73, 198–203. (In Russian) [Google Scholar]
- Ryzhikov, K.M.; Timofeeva, T.N.; Dudorova, E.N. To cognition of trematodes from the Chukotka eider ducks. Proc. Helminthol. Lab. USSR Acad. Sci. 1966, 17, 157–168. (In Russian) [Google Scholar]
- Reimer, L.W. Neue Cerearien der Ostsee mit einer Diskussion ihrer möglichen Zuordnung und einem Bestimmungsschlüssel. Parasitol. Schriftenr. 1971, 21, 125–149. [Google Scholar]
- Leung Donald, K.M.; Keeney, D.B.; Kohler, A.V.; Peoples, R.C.; Poulin, R. Trematode parasites of Otago Harbour (New Zealand) soft-sediment intertidal ecosystems: Life cycles, ecological roles and DNA barcodes. New Zeal. J. Mar. Freshw. Res. 2009, 43, 857–865. [Google Scholar] [CrossRef]
- Hechinger, Y.R.; Miura, O. Two ‘new’ renicolid trematodes (Trematoda: Digenea: Renicolidae) from the California horn snail, Cerithidea californica (Haldeman, 1840) (Gastropoda: Potamidida). Zootaxa 2014, 3784, 559–574. [Google Scholar] [CrossRef]
- O’Dwyer, K.; Blasco-Costa, I.; Poulin, R.; Faltýnková, A. Four marine digenean parasites of Austrolittorina spp. (Gastropoda: Littorinidae) in New Zealand: Morphological and molecular data. Syst. Parasitol. 2014, 89, 133–152. [Google Scholar] [CrossRef]
- O’Dwyer, K.; Faltýnková, A.; Georgieva, S.; Kostadinova, A. An integrative taxonomic investigation of the diversity of digenean parasites infecting the intertidal snail Austrolittorina unifasciata Gray, 1826 (Gastropoda: Littorinidae) in Australia. Parasitol. Res. 2015, 114, 2381–2397. [Google Scholar] [CrossRef]
- Huston, D.C.; Cutmore, S.C.; Cribb, T.H. Molecular systematics of the digenean community parasitising the cerithiid gastropod Clypeomorus batillariaeformis Habe & Kusage on the Great Barrier Reef. Parasitol. Int. 2018, 67, 722–735. [Google Scholar] [CrossRef]
- Flores, K.; López, Z.; Levicoy, D.; Muñoz-Ramírez, C.P.; González-Wevar, C.; Oliva, M.E.; Cárdenas, L. Identification assisted by molecular markers of larval parasites in two limpet species (Patellogastropoda: Nacella) inhabiting Antarctic and Magellan coastal systems. Polar Biol. 2019, 42, 1175–1182. [Google Scholar] [CrossRef]
- Køie, M. On the endoparasites of Buccinum undatum L. with special reference to the trematodes. Ophelia 1969, 6, 251–279. [Google Scholar] [CrossRef]
- Marasaev, S.F. New renicolid cercaria from the mollusc Neptunea borealis (Prosobranchia, Buccinidae). Parazitologiya 1988, 22, 254–258. (In Russian) [Google Scholar]
- Alda, P.; Martorelli, S.R. Larval trematodes infecting the South-American intertidal mud snail Heleobia australis (Rissooidea: Cochliopidae). Acta Parasitol. 2014, 59, 50–67. [Google Scholar] [CrossRef] [PubMed]
- Etchegoin, J.A.; Martorelli, S.R. Nuevas cercarias en Heleobia conexa (Mollusca: Hydrobiidae) de la albufera. Mar Chiquita. Neotrop. 1998, 44, 41–50. [Google Scholar]
- Pois, N.V.; Tsimbaljuk, A.K.; Ardasheva, N.B. Three new species of marine cercariae from the intertidal zone. Parazitologiya 1974, 53, 413–419. (In Russian) [Google Scholar]
- Rybakov, A.V. Fauna and Ecology of Trematodes of the Mass Species of Molluscs of the Western Part of the Sea of Japan. Ph.D. Thesis, Vladivostok, Leningrad, Russia, 1983. Available online: https://www.dissercat.com/content/fauna-i-ekologiya-trematod-massovykh-vidov-mollyuskov-severo-zapadnoi-chasti-yaponskogo-mory (accessed on 10 June 2024). (In Russian).
- Cable, R.M. Marine cercariae of Puerto Rico. In Scientific survey of Porto Rico and the Virgin Islands; New York Academy of Sciences: New York, NY, USA, 1956; pp. 491–577. [Google Scholar]
- Holliman, R.B. Larval trematodes from the Apalachee Bay area, Florida, with a checklist of known marine cercariae arranged in a key to their super-families. Tulane Stud. Zool. 1961, 9, 1–74. [Google Scholar]
- Veen, J.; Yurlov, A.K.; Delany, S.N.; Mihantiev, A.I.; Selivanova, M.A.; Boere, G.C. An Atlas of Movements of Southwest Siberian Waterbirds; Wetlands International: Wageningen, The Netherlands, 2005. [Google Scholar]
- Johnsgard, P.A. Ducks, Geese, and Swans of the World, Revised Edition [Complete Work]; University of Nebraska-Lincoln: Lincoln, NE, USA, 2010. [Google Scholar]
- Golikov, A.N.; Kusakin, O.G. Shell-bearing gastropods of the intertidal zone of the seas of the USSR; Nauka: Leningrad, Russia, 1978. (In Russian) [Google Scholar]
- Werding, B. Morphologie, Entwicklung und Ökologie digener Trematoden-Larven der Strandschnecke Littorina Littorea. Mar. Biol. 1969, 3, 306–333. [Google Scholar] [CrossRef]
- Krechmar, A.V.; Kondratyev, A.V. Waterfowl Birds of North-East Asia; NESC FEB RAS: Magadan, Russia, 2006. (In Russian) [Google Scholar]
- Takekawa, J.Y.; Newman, S.H.; Xiao, X.; Prosser, D.J.; Spragens, K.A.; Palm, E.C.; Yan, B.; Li, T.; Lei, F.; Zhao, D.; et al. Migration of waterfowl in the East Asian flyway and spatial relationship to HPAI H5N1 outbreaks. Avian Dis. 2010, 54, 466–476. [Google Scholar] [CrossRef]
- Waltho, C.; Coulson, J. The Common Eider.; Bloomsbury Publ.: London, UK; New Delhi, India, 2015. [Google Scholar]
- Matos, A.M.R.N.d.; Lavorente, F.L.P.; Lorenzetti, E.; Meira Filho, M.R.C.; da Nóbrega, D.F.; Chryssafidis, A.L.; de Oliveira, A.G.; Domit, C.; Bracarense, A.P.F.R.L. Molecular identification and histological aspects of Renicola sloanei (Digenea: Renicolidae) in Puffinus puffinus (Procellariiformes): A first record. Rev. Bras. Parasitol. Vet. 2019, 28, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ponce De León, G.; Hernández-Mena, D.I. Testing the higher-level phylogenetic classification of Digenea (Platyhelminthes, Trematoda) based on nuclear rDNA sequences before entering the age of the ‘next-generation’ Tree of Life. J. Helminthol. 2019, 93, 260–276. [Google Scholar] [CrossRef]
- Salem, M.A.; Mahdy, O.A.; Shaalan, M.; Ramadan, R.M. The phylogenetic position and analysis of Renicola and Apharyngostrigea species isolated from cattle egret (Bubulcus ibis). Sci. Rep. 2023, 13, 16195. [Google Scholar] [CrossRef]
- Patitucci, K.F.; Kudlai, O.; Tkach, V. V Nephromonorcha varitestis n. sp. (Digenea: Renicolidae) from the American White Pelican, Pelecanus erythrorhynchos in North Dakota, U.S.A. Comp. Parasitol. 2015, 82, 254–261. [Google Scholar] [CrossRef]
- Heneberg, P.; Sitko, J.; Bizos, J.; Horne, E.C. Central European parasitic flatworms of the family Renicolidae Dollfus, 1939 (Trematoda: Plagiorchiida): Molecular and comparative morphological analysis rejects the synonymization of Renicola pinguis complex suggested by Odening. Parasitology 2016, 143, 1592–1601. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.A. Studies on the life-history and ecology of the trematode genus Renicola Cohn, 1904. Proc. Zool. Soc. Lond. 1956, 126, 1–50. [Google Scholar] [CrossRef]
- Odening, K. Neue Trematoden aus Vietnamesischen Vogeln des Berliner Tierparks (Mit einer Revision der Familie Renicolidae). Bijdr. Dierkd. 1962, 32, 49–63. [Google Scholar] [CrossRef]
- Gibson, D.I. Family Renicolidae Dollfus, 1939. In Keys to Trematoda 3; CABI Publishing: Wallingford, UK, 2008; pp. 591–594. [Google Scholar]
- Lei Ching, H. Lists of larval worms from marine invertebrates of the Pacific Coast of North America. J. Helminthol. Soc. Washingt. 1991, 58, 57–68. [Google Scholar]
- Bishop, C.A.; Threlfall, W. Helminths parasites of common eider duck, Somateria mollissima (L.), in the Newfoundland and Labrador. Proceeding Helminthol. Soc. Wash. 1974, 41, 25–35. [Google Scholar]
- Miyabayashi, Y.; Mundkur, T. Atlas of Key Sites for Anatidae in the East Asian Flyway; Wetlands International and Wetlands International—Asia Pacific: Kuala Lumpur, Malaysia; Tokyo, Japan, 1999. [Google Scholar]
- Isakov, Y.A. Subfamily Anatinae. In Birds of USSR; Soviet Nauka Publ.: Moscow, Russia, 1952; Volume 4, pp. 344–635. (In Russian) [Google Scholar]
- Newton, I. Bird Migration; Collins: London, UK, 2010. [Google Scholar]
- Petersen, M.R.; Bustnes, J.O.; Systad, G.H. Breeding and moulting locations and migration patterns of the Atlantic population of Steller’s eiders Polysticta stelleri as determined from satellite telemetry. J. Avian Biol. 2006, 37, 58–68. [Google Scholar] [CrossRef]
- Alerstam, T.; Bäckman, J.; Gudmundsson, G.A.; Hedenström, A.; Henningsson, S.S.; Karlsson, H.; Rosén, M.; Strandberg, R. A polar system of intercontinental bird migration. Proceedings. Biol. Sci. 2007, 274, 2523–2530. [Google Scholar] [CrossRef]
- Bustnes, J.O.; Mosbech, A.; Sonne, C.; Systad, G.H. Migration patterns, breeding and moulting locations of king eiders wintering in north-eastern Norway. Polar Biol. 2010, 33, 1379–1385. [Google Scholar] [CrossRef]
- Sokolov, V.; Vardeh, S.; Quillfeldt, P. Long-tailed Duck (Clangula hyemalis) ecology: Insights from the Russian literature. Part 1: Asian part of the Russian breeding range. Polar Biol. 2019, 42, 2259–2276. [Google Scholar] [CrossRef]
- Sirenko, B.I. List of Species of Free-Living Invertebrates of Eurasian Arctic Seas and Adjacent Deep Waters; Russian Academy of Sciences, Zoological Institute: St. Petersburg, Russia, 2001. [Google Scholar]
- Sirenko, B.I. Check-List of Species of Free-Living Invertebrates of the Russian Far Eastern Seas; Russian Academy of Sciences, Zoological Institute: St. Petersburg, Russia, 2013. [Google Scholar]
- Avise, J.C. Phylogeography; Harvard University Press: Cambridge, MA, USA, 2000; ISBN 9780674666382. [Google Scholar]
- Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Gonchar, A.; Galaktionov, K.V. Life cycle and biology of Tristriata anatis (Digenea: Notocotylidae): Morphological and molecular approaches. Parasitol. Res. 2017, 116, 45–59. [Google Scholar] [CrossRef]
- Gonchar, A.; Galaktionov, K.V. New data support phylogeographic patterns in a marine parasite Tristriata anatis Digenea: Notocotylidae. J. Helminthol. 2020, 94, e79. [Google Scholar] [CrossRef] [PubMed]
- Dau, C.P.; Flint, P.L.; Petersen, M.R. Distribution of recoveries ofSteller’s eiders banded on the lower alaska peninsula, Alaska. J. F. Ornithol. 2000, 71, 541–548. [Google Scholar] [CrossRef]
- Davis, S.E.; Maftei, M.; Mallory, M.L. Migratory connectivity at high latitudes: Sabine’s gulls (Xema sabini) from a colony in the Canadian high Arctic migrate to different oceans. PLoS ONE 2016, 11, e0166043. [Google Scholar] [CrossRef]
- Clairbaux, M.; Fort, J.; Mathewson, P.; Porter, W.; Strøm, H.; Grémillet, D. Climate change could overturn bird migration: Transarctic flights and high-latitude residency in a sea ice free Arctic. Sci. Rep. 2019, 9, 17767. [Google Scholar] [CrossRef]
- Ezhov, A.V.; Gavrilo, M.V.; Krasnov, Y.V.; Bråthen, V.S.; Moe, B.; Baranskaya, A.V.; Strøm, H. Transpolar and bi-directional migration strategies of black-legged kittiwakes Rissa tridactyla from a colony in Novaya Zemlya, Barents Sea, Russia. Mar. Ecol. Prog. Ser. 2021, 676, 189–203. [Google Scholar] [CrossRef]
- Able, K.P.; Barron, A.; Dunn, J.L.; Omland, K.E.; Sansone, L. First occurrence of an atlantic common eider (Somateria mollissima dresseri) in the pacific ocean. West. Birds 2014, 45, 90–99. [Google Scholar]
- Galaktionov, K.V.; Blasco-Costa, I.; Olson, P.D. Life cycles, molecular phylogeny and historical biogeography of the pygmaeus microphallids (Digenea: Microphallidae): Widespread parasites of marine and coastal birds in the Holarctic. Parasitology 2012, 139, 1346–1360. [Google Scholar] [CrossRef] [PubMed]
- Galaktionov, K.V.; Gonchar, A.; Postanogova, D.; Miroliubov, A.; Bodrov, S.Y. Parvatrema spp. (Digenea, Gymnophallidae) with parthenogenetic metacercariae: Diversity, distribution and host specificity in the palaearctic. Int. J. Parasitol. 2024, 54, 333–355. [Google Scholar] [CrossRef]
- Criscione, C.D.; Blouin, M.S. Life cycles shape parasite evolution: Comparative population genetics of salmon trematodes. Evolution 2004, 58, 198–202. [Google Scholar] [CrossRef]
- Barrett, L.G.; Thrall, P.H.; Burdon, J.J.; Linde, C.C. Life history determines genetic structure and evolutionary potential of host-parasite interactions. Trends Ecol. Evol. 2008, 23, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Keeney, D.B.; King, T.M.; Rowe, D.L.; Poulin, R. Contrasting mtDNA diversity and population structure in a direct-developing marine gastropod and its trematode parasites. Mol. Ecol. 2009, 18, 4591–4603. [Google Scholar] [CrossRef] [PubMed]
- Blasco-Costa, I.; Waters, J.M.; Poulin, R. Swimming against the current: Genetic structure, host mobility and the drift paradox in trematode parasites. Mol. Ecol. 2012, 21, 207–217. [Google Scholar] [CrossRef]
- Blasco-Costa, I.; Poulin, R. Host traits explain the genetic structure of parasites: A meta-analysis. Parasitology 2013, 140, 1316–1322. [Google Scholar] [CrossRef]
- Feis, M.E.; Thieltges, D.W.; Olsen, J.L.; De Montaudouin, X.; Jensen, K.T.; Bazaïri, H.; Culloty, S.C.; Luttikhuizen, P.C. The most vagile host as the main determinant of population connectivity in marine macroparasites. Mar. Ecol. Prog. Ser. 2015, 520, 85–99. [Google Scholar] [CrossRef]
- Mazé-Guilmo, E.; Blanchet, S.; McCoy, K.D.; Loot, G. Host dispersal as the driver of parasite genetic structure: A paradigm lost? Ecol. Lett. 2016, 19, 336–347. [Google Scholar] [CrossRef]
- Miura, O.; Torchin, M.E.; Kuris, A.M.; Hechinger, R.F.; Chiba, S. Introduced cryptic species of parasites exhibit different invasion pathways. Proc. Natl. Acad. Sci. USA 2006, 103, 19818–19823. [Google Scholar] [CrossRef] [PubMed]
- Thieltges, D.W.; Hof, C.; Borregaard, M.K.; Matthias Dehling, D.; Brändle, M.; Brandl, R.; Poulin, R. Range size patterns in European freshwater trematodes. Ecography 2011, 34, 982–989. [Google Scholar] [CrossRef]
- Prevot, G.; Bartoli, P. Life-cycle of Renicola lari J. Timon-David, 1933 (Trematoda, Renicolidae) (author’s transl). Ann. Parasitol. Hum. Comp. 1978, 53, 561–575. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Host Species | Place | Region | Coordinates | GenBank Accession Numbers | ||
---|---|---|---|---|---|---|---|
28S | cox1 | 12S | |||||
2sqOR | Littorina squalida | Astronomicheskaya Bay | Sea of Okhotsk, Russia | 59°8.613′ N 153°18.760′ E | PP379180 | PP378886 | - |
5OmR | Somateria mollissima | Cape Zubchatyj, Shelihov Bay | Sea of Okhotsk, Russia | 60°49.556′ N 160°10.438′ E | OR735487 | OR742791 | - |
6nOR | Nucella freycinetti | Svetlaya Bay | Sea of Okhotsk, Russia | 59°27.926′ N 150°46.601′ E | OR735486 | OR742792 | - |
11nNR | Nucella lapillus | Salttjern | Barents Sea, Norway | 70°3.954′ N 29°58.333′ E | - | OR742783 | - |
12nNR | Nucella lapillus | Salttjern | Barents Sea, Norway | 70°3.954′ N 29°58.333′ E | - | OR742784 | - |
15nIR | Nucella lapillus | Grótta | Iceland | 64°9.606′ N 22°1.018′ W | - | OR742785 | - |
16nImetR | Nucella lapillus | Grótta | Iceland | 64°9.606′ N 22°1.018′ W | - | OR742786 | - |
20nIR | Nucella lapillus | Grótta | Iceland | 64°9.606′ N 22°1.018′ W | - | OR742787 | - |
22nIR | Nucella lapillus | Grótta | Iceland | 64°9.606′ N 22°1.018′ W | - | OR742788 | - |
24nIR | Nucella lapillus | Grótta | Iceland | 4°9.606′ N 22°1.018′ W | - | OR742789 | - |
38bucWSR | Buccinum undatum | Vechennaya Luda | White Sea, Russia | 69°19.001′ N 33°53.543′ E | - | OR742790 | - |
40mIR | Somateria mollissima | Grótta | Iceland | 64°9.606′ N 22°1.018′ W | - | OR742774 | - |
44mO | Somateria mollissima | Shkiperova Bay | Sea of Okhotsk, Russia | 59°12.267′ N 153°42.566′ E | - | OR742799 | - |
45nBS | Nucella lapillus | Yarnyshnaya Bay | Barents Sea, Russia | 69°5.651′ N 36°3.507′ E | - | OR742800 | OR735478 |
46nBS | Nucella lapillus | Yarnyshnaya Bay | Barents Sea, Russia | 69°5.651′ N 36°3.507′ E | - | - | OR735480 |
47nBS | Nucella lapillus | Yarnyshnaya Bay | Barents Sea, Russia | 69°5.860′ N 36°3.517′ E | - | OR742797 | OR735479 |
48bucBS | Buccinum undatum | Yarnyshnaya Bay | Barents Sea, Russia | 69°6.454′ N 36°3.406′ E | - | OR742796 | OR735481 |
49bucBS | Buccinum undatum | Yarnyshnaya Bay | Barents Sea, Russia | 69°6.454′ N 36°3.406′ E | OR735485 | OR742794 | - |
50bucBS | Buccinum undatum | Yarnyshnaya Bay | Barents Sea, Russia | 69°6.454′ N 36°3.406′ E | - | - | OR735484 |
51bucBS | Buccinum undatum | Yarnyshnaya Bay | Barents Sea, Russia | 69°6.454′ N 36°3.406′ E | - | OR742798 | - |
52nBS | Nucella lapillus | Yarnyshnaya Bay | Barents Sea, Russia | 69°6.181′ N 36°3.704′ E | - | OR742793 | - |
53bucBS | Buccinum undatum | Yarnyshnaya Bay | Barents Sea, Russia | 69°6.151′ N 36°2.536′ E | - | OR742795 | - |
54nBS | Nucella lapillus | Yarnyshnaya Bay | Barents Sea, Russia | 69°6.181′ N 36°3.704′ E | - | OR742775 | - |
58sitO | Littorina sitkana | Veselaya Bay | Sea of Okhotsk, Russia | 59°29.701′ N 150°55.176′ E | OR735482 | ||
61sqO | Littorina squalidae | Vostok Bay | Sea of Japan, Russia | 42°43.474′ N 132°44.075′ E | - | PP378887 | PP379181 |
65nBS | Nucella lapillus | Yarnyshnaya Bay | Barents Sea, Russia | 69°6.181′ N 36°3.704′ E | - | OR742780 | - |
66nJS | Nucella heyseana | Vostok bay | Sea of Japan, Russia | 42°43.474′ N 132°44.075′ E | OR742778 | ||
67nBS | Nucella lapillus | Yarnyshnaya Bay | Barents Sea, Russia | 69°6.181′ N 36°3.704′ E | OR742780 | ||
68nBS | Nucella lapillus | Yarnyshnaya Bay | Barents Sea, Russia | 69°5.925′ N 36°3.552′ E | OR742776 | ||
69nBS | Nucella lapillus | Yarnyshnaya Bay | Barents Sea, Russia | 69°5.925′ N 36°3.552′ E | OR742770 | ||
70nBS | Nucella lapillus | Yarnyshnaya Bay | Barents Sea, Russia | 69°5.925′ N 36°3.552′ E | OR742781 | ||
71nBS | Nucella lapillus | Yarnyshnaya Bay | Barents Sea, Russia | 69°6.454′ N 36°3.406′ E | OR742782 | ||
72nbS | Nucella lapillus | Yarnyshnaya Bay | Barents Sea, Russia | 69°6.454′ N 36°3.406′ E | OR742773 | ||
73nBS | Nucella lapillus | Yarnyshnaya Bay | Barents Sea, Russia | 69°6.454′ N 36°3.406′ E | OR742771 | ||
74nBS | Nucella lapillus | Yarnyshnaya Bay | Barents Sea, Russia | 69°6.454′ N 36°3.406′ E | OR742772 | ||
75nBS | Nucella lapillus | Yarnyshnaya Bay | Barents Sea, Russia | 69°5.549′ N 36°3.430′ E | OR742777 | ||
76nBS | Nucella lapillus | Yarnyshnaya Bay | Barents Sea, Russia | 69°5.549′ N 36°3.430′ E | OR742779 |
Gene | Primer ID | Nucleotide Sequence | Reference | Tm °C |
---|---|---|---|---|
28S rRNA D1-D3 fragment | ZX-1 | 5′ -ACCCGCTGAATTTAAGCATAT-3′ | [12] | 55 |
1500R | 5′ -GCTATCCTGAGGGA AACTTCG-3′ | [13] | 55 | |
Cox1 | JB3 | 5′ -TTTTTTGGGCATCCTGAGGTTTAT-3′ | [14] | 53 |
JB4-5 | 5′ -TAAAGAAAGAACATAATGAAAATG-3′ | [14] | 53 | |
12S rRNA | Tre12S-F | 5′ -GTGCCAGCADYYGCGGTTA-3′ | [11] | 55 |
Tre12S-R | 5′ -AGCAGCAYATHGACCTG-3′ | [11] | 55 |
R. somateria from Somateria mollissima, Barents Sea (our measurements1: N = 3) | R. somateria from Clangula hyemalis, White Sea (our measurements2: N = 9) | R. somateria from Somateria mollissima, Sea of Okhotsk (our data, N = 5) | R. mediovitellata from Aythya ferina, lake Chany, Southwest Siberia (our measurements3: N = 11) | R. mediovitellata from Somateria mollissima, Iceland (our data: N = 6) | R. mediovitellata from Somateria mollissim, Sea of Okhotsk (our data: N = 7) | R. brantae from Branta canadensis, North Carolina, USA (after McIntosh and Farrin (1952)) | |
---|---|---|---|---|---|---|---|
Body length | 1087–1472 (1233 ± 120) | 1157–1400 (1287 ± 27) | 1102–1305 (1208 ± 45) | 1112–1900 (1482 ± 65) | 757–1321 (1003 ± 78) | 1174–2422 (1798 ± 160) | 1160–2150 |
Body width | 518–787 (635 ± 80) | 530–615 (582 ± 13) | 705–930 (850 ± 43) | 673–1176 (857 ± 46) | 330–612 (454 ± 46) | 551–1285 (938 ± 89) | 500–1150 |
Oral sucker length | 130–200 (165 ± 20) | 119–181 (149 ± 8) | 210–338 (271 ± 27) | 210–410 (279 ± 21) | 139–190 (167 ± 9) | 238–382 (312 ± 21) | 250–275 |
Oral sucker width | 220–323 (270 ± 30) | 151–248 (204 ± 12) | 278–406 (329 ± 26) | 267–422 (333 ± 26) | 139–190 (167 ± 9) | 144–202 (176 ± 9) | 325–380 |
Pharynx length | 63–85 (77 ± 7) | 45–86 (68 ± 5) | 79–95 (86 ± 3) | 51–85 (73 ± 6) | 47–73 (60 ± 4) | 58–90 (73 ± 4) | – |
Pharynx width | 64–87 (73 ± 7) | 33–77 (56 ± 6) | 51–68 (62 ± 3) | 64–79 (69 ± 2) | 45–73 (60 ± 4) | 54–72 (68 ± 2) | – |
Oesophagus length | – | – | 160–170 (166 ± 3) | – | – | – | – |
Ventral sucker length | – | 60–76 (67 ± 2) | 59–68 (63 ± 1) | 33–44 (38 ± 3) | 56–72 (65 ± 4) | 41–81 (69 ± 6) | – |
Ventral sucker width | – | 54–77 (67 ± 3) | 52–76 (63 ± 4) | 36–41 (38 ± 2) | 37–76 (59 ± 9) | 41–77 (66 ± 5) | – |
Left testes length | 67–97 (82 ± 9) | 54–100 (71 ± 5) | 71–92 (84 ± 5) | 75–164 (125 ± 26) | 46–72 (59 ± 8) | 54–97 (82 ± 10) | – |
Left testes width | 55–75 (62 ± 6) | 42–63 (52 ± 3) | 51–80 (64 ± 7) | 80–131 (105 ± 11) | 41–51 (48 ± 3) | 36–54 (45 ± 9) | – |
Right testes length | 60–67 (64 ± 3) | 46–70 (55 ± 2) | 71–83 (76 ± 3) | 87–175 (134 ± 10) | 41–60 (52 ± 4) | 61–97 (77 ± 11) | – |
Right testes width | 54–55 (55 ± 0.4) | 34–58 (45 ± 3) | 52–75 (62 ± 5) | 64–164 (131 ± 21) | 34–50 (42 ± 3) | 50–58 (54 ± 4) | – |
Seminal vesicle length | 49 | 23–46 (37 ± 2) | 26–57 (46 ± 8) | 36–71 (60 ± 8) | 44–64 (55 ± 4) | 58–65 (61 ± 2) | – |
Seminal vesicle width | 31 | 20–43 (31 ± 3) | 26–58 (46 ± 8) | 34–69 (59 ± 8) | 34–46 (42 ± 3) | 29–54 (40 ± 7) | – |
Ovary length | 132–178 (155 ± 19) | 113–158 (136 ± 6) | 133–185 (167 ± 13) | 126–308 (199 ± 25) | 116–190 (149 ± 15) | 108–245 (172 ± 40) | – |
Ovary width | 87–115 (101 ± 11) | 76–128 (96 ± 7) | 111–134 (122 ± 5) | 86–207 (153 ± 19) | 59–110 (89 ± 9) | 76–162 (121 ± 25) | – |
Egg length (EL) | 27–33 (29 ± 0.4) | 24–37 (30 ± 0.4) | 28–38 (34 ± 0.4) | 24–37 (30 ± 0.5) | 30–38 (33 ± 0.3) | 25–36 (31 ± 0.6) | 25–29 |
Egg width (EW) | 23–27 (25 ± 0.3) | 23–30 (26 ± 0.3) | 23–32 (29 ± 0.3) | 12–19 (15 ± 0.3) | 15–19 (17 ± 0.3) | 14–22 (19 ± 0.3) | 13–15 |
EL/EW | 1–1.4 (1.2 ± 0.02) | 1–1.4 (1.2 ± 0.01) | 1.1–1.4 (1.2 ± 0.02) | 1.6–2.6 (2 ± 0.03) | 1.7–2.2 (1.9 ± 0.02) | 1.4–2 (1.7 ± 0.04) | – |
Eggshell sickness | 3.8–5.2 (4.5 ± 0.2) | 3.5–4.8 (4.1 ± 0.2) | 3.6–5.6 (4.4 ± 0.11) | 1.1–2.6 (1.7– 0.07) | 1.5–2.1 (1.8 ± 0.04) | 1.4–3.2 (2.3 ± 0.13) | – |
Renicola somateria from Buccinum undatum, Barents Sea (our data: N = 16) | Renicola sp. Køie, 1969 from Buccinum undatum, Gullmarsfjorden (after Køie (1969)) | Cercaria nordica 1 from Neptunea borealis, Barents Sea (after Marasaev (1988)) | Renicola mediovitellata from Nucella lapillus, Barents Sea (our data: N = 20) | Renicola mediovitellata from Nucella freycinetii, Sea of Okhotsk (our data: N = 9) | Renicola thaidus from Nucella lapillus, Woods Hole (after Stunkard (1964)) | |
---|---|---|---|---|---|---|
Body length (BL) | 312–406 (345 ± 6.4) | 150–340 | 355–380 | 281–312 (300 ± 2.6) | 256–311 (293 ± 6.3) | 250–380 |
Body width | 99–130 (110 ± 3.4) | 45–120 | 100–120 | 78–109 (97 ± 1.9) | 104–128 (113 ± 2.7) | 60–130 |
Tail length (TL) | 192–250 (218 ± 3.6) | 120–310 | 220–265 | 177–203 (190 ± 2) | 122–201 (157 ± 8.7) | 80–130 |
Tail width | 21–26 (25 ± 0.6) | 17–39 | – | 16–26 (22 ± 0.6) | 18–43 (25 ± 2.6) | 29–36 |
Oral sucker length (OSL) | 55–65 (61 ± 0.8) | 40–44 * | 50–55 * | 43–58 (50 ± 0.8) | 50–60 * (54 ± 1.4) | 38–43 * |
Oral sucker width (OSW) | 48–60 (54 ± 1.1) | – | – | 40–50 (45 ± 06) | – | – |
Pharynx length | 18–28 (23 ± 0.9) | – | – | 15–23 (18 ± 0.5) | 15–18 (17 ± 0.6) | 19–21 * |
Pharynx width | 15–25 (20 ± 0.8) | – | – | 15–25 (18 ± 0.5) | 18–20 (18 ± 0.6) | – |
Ventral sucker length (VSL) | 40–68 (56 ± 2.1) | 40–44 * | 60–65 * | 45–53 (50 ± 0.6) | 45–55 * (52 ± 1.2) | 38–43 * |
Ventral sucker width (VSW) | 45–60 (53 ± 1.4) | – | – | 43–53 (48 ± 0.6) | – | – |
Stylet length | 9–11 (10 ± 0.4) | 12 | 11 | 8–10 (9 ± 0.2) | 10–13 (12 ± 0.5) | 8–10 |
Stylet width (of the handle) | 5 | – | – | 3–4 (3 ± 0.2) | 3–5 (4 ± 0.5) | – |
BL/TL | 1.3–1.8 (1.6 ± 0.04) | – | – | 1.5–1.7 (1.6 ± 0.02) | 1.5–2.2 (1.9 ± 0.09) | – |
OSL/WSL | 0.9–1.5 (1.1 ± 0.04) | – | – | 0.9–1.2 (1 ± 0.02) | 0.9–1.2 * (1.1 ± 0.03) | – |
OSW/VSW | 0.8–1.2 (1 ± 0.04) | – | 0.9–1.1 (0.9 ± 0.02) | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galaktionov, K.V.; Solovyeva, A.I.; Miroliubov, A.A.; Romanovich, A.E.; Skírnisson, K. Untangling the “Renicola somateria” (Digenea, Renicolidae) Muddle: Actual Number of Species and Their Distribution and Transmission in the Holarctic. Diversity 2024, 16, 402. https://doi.org/10.3390/d16070402
Galaktionov KV, Solovyeva AI, Miroliubov AA, Romanovich AE, Skírnisson K. Untangling the “Renicola somateria” (Digenea, Renicolidae) Muddle: Actual Number of Species and Their Distribution and Transmission in the Holarctic. Diversity. 2024; 16(7):402. https://doi.org/10.3390/d16070402
Chicago/Turabian StyleGalaktionov, Kirill V., Anna I. Solovyeva, Aleksei A. Miroliubov, Anna E. Romanovich, and Karl Skírnisson. 2024. "Untangling the “Renicola somateria” (Digenea, Renicolidae) Muddle: Actual Number of Species and Their Distribution and Transmission in the Holarctic" Diversity 16, no. 7: 402. https://doi.org/10.3390/d16070402
APA StyleGalaktionov, K. V., Solovyeva, A. I., Miroliubov, A. A., Romanovich, A. E., & Skírnisson, K. (2024). Untangling the “Renicola somateria” (Digenea, Renicolidae) Muddle: Actual Number of Species and Their Distribution and Transmission in the Holarctic. Diversity, 16(7), 402. https://doi.org/10.3390/d16070402