Recent Advances in Genome Editing and Bioinformatics: Addressing Challenges in Genome Editing Implementation and Genome Sequencing
Abstract
:1. Introduction
- Off-target prediction;
- Selection of target genes.
2. Genome Sequencing
2.1. Application of Next-Generation Sequencers
2.1.1. HiFi Reads by PacBio Sequencing
2.1.2. Hi-C
2.2. Transcriptome Analysis
3. Bioinformatics
3.1. Public Database Surveys
3.2. Assembly
3.3. Annotation
3.3.1. Genome Annotation
- -
- IGV (Integrative Genomics Viewer; https://igv.org/ (accessed on 1 April 2025))
- -
- JBrowse (https://jbrowse.org/jb2/ (accessed on 1 April 2025))
3.3.2. Functional Annotation
3.4. Data Interpretation
4. Genome Editing
4.1. What Is Genome Editing
4.2. Genome-Edited Organisms
4.3. Genome Editing Target Design
4.3.1. Large-Scale Genome Analysis Results
4.3.2. Public Transcriptome Data
4.3.3. Bibliographic Data
4.3.4. Pathway Data
5. Conclusions and Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Zong, Y.; Liu, Y.; Xue, C.; Li, B.; Li, X.; Wang, Y.; Li, J.; Liu, G.; Huang, X.; Cao, X.; et al. An Engineered Prime Editor with Enhanced Editing Efficiency in Plants. Nat. Biotechnol. 2022, 40, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- McAuley, G.E.; Yiu, G.; Chang, P.C.; Newby, G.A.; Campo-Fernandez, B.; Fitz-Gibbon, S.T.; Wu, X.; Kang, S.-H.L.; Garibay, A.; Butler, J.; et al. Human T Cell Generation Is Restored in CD3δ Severe Combined Immunodeficiency through Adenine Base Editing. Cell 2023, 186, 1398–1416.e23. [Google Scholar] [CrossRef]
- Urnov, F.D.; Miller, J.C.; Lee, Y.-L.; Beausejour, C.M.; Rock, J.M.; Augustus, S.; Jamieson, A.C.; Porteus, M.H.; Gregory, P.D.; Holmes, M.C. Highly Efficient Endogenous Human Gene Correction Using Designed Zinc-Finger Nucleases. Nature 2005, 435, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Huang, S.; Zhao, X.; Wright, D.A.; Carpenter, S.; Spalding, M.H.; Weeks, D.P.; Yang, B. Modularly Assembled Designer TAL Effector Nucleases for Targeted Gene Knockout and Gene Replacement in Eukaryotes. Nucleic Acids Res. 2011, 39, 6315–6325. [Google Scholar] [CrossRef]
- Platt, R.J.; Chen, S.; Zhou, Y.; Yim, M.J.; Swiech, L.; Kempton, H.R.; Dahlman, J.E.; Parnas, O.; Eisenhaure, T.M.; Jovanovic, M.; et al. CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling. Cell 2014, 159, 440–455. [Google Scholar] [CrossRef] [PubMed]
- Nakade, S.; Tsubota, T.; Sakane, Y.; Kume, S.; Sakamoto, N.; Obara, M.; Daimon, T.; Sezutsu, H.; Yamamoto, T.; Sakuma, T.; et al. Microhomology-Mediated End-Joining-Dependent Integration of Donor DNA in Cells and Animals Using TALENs and CRISPR/Cas9. Nat. Commun. 2014, 5, 5560. [Google Scholar] [CrossRef]
- Suzuki, K.; Tsunekawa, Y.; Hernandez-Benitez, R.; Wu, J.; Zhu, J.; Kim, E.J.; Hatanaka, F.; Yamamoto, M.; Araoka, T.; Li, Z.; et al. In Vivo Genome Editing via CRISPR/Cas9 Mediated Homology-Independent Targeted Integration. Nature 2016, 540, 144–149. [Google Scholar] [CrossRef]
- Nishida, K.; Arazoe, T.; Yachie, N.; Banno, S.; Kakimoto, M.; Tabata, M.; Mochizuki, M.; Miyabe, A.; Araki, M.; Hara, K.Y.; et al. Targeted Nucleotide Editing Using Hybrid Prokaryotic and Vertebrate Adaptive Immune Systems. Science 2016, 353, aaf8729. [Google Scholar] [CrossRef]
- Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. Programmable Editing of a Target Base in Genomic DNA without Double-Stranded DNA Cleavage. Nature 2016, 533, 420–424. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-Replace Genome Editing without Double-Strand Breaks or Donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef]
- Doudna, J.A.; Charpentier, E. The New Frontier of Genome Engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, S.; Pare Toe, L.; Thizy, D.; Vaz, M.; Carter, L. Engagement and Social Acceptance in Genome Editing for Human Benefit: Reflections on Research and Practice in a Global Context. Wellcome Open Res. 2021, 5, 244. [Google Scholar] [CrossRef] [PubMed]
- Werner, T. Next Generation Sequencing in Functional Genomics. Brief. Bioinform. 2010, 11, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Vollger, M.R.; Logsdon, G.A.; Audano, P.A.; Sulovari, A.; Porubsky, D.; Peluso, P.; Wenger, A.M.; Concepcion, G.T.; Kronenberg, Z.N.; Munson, K.M.; et al. Improved Assembly and Variant Detection of a Haploid Human Genome Using Single-Molecule, High-Fidelity Long Reads. Ann. Hum. Genet. 2020, 84, 125–140. [Google Scholar] [CrossRef]
- Korbel, J.O.; Lee, C. Genome Assembly and Haplotyping with Hi-C. Nat. Biotechnol. 2013, 31, 1099–1101. [Google Scholar] [CrossRef]
- Nakamae, K.; Bono, H. Genome Editing and Bioinformatics. Gene Genome Ed. 2022, 3–4, 100018. [Google Scholar] [CrossRef]
- Levene, M.J.; Korlach, J.; Turner, S.W.; Foquet, M.; Craighead, H.G.; Webb, W.W. Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations. Science 2003, 299, 682–686. [Google Scholar] [CrossRef]
- Mount, D.W. Bioinformatics: Sequence and Genome Analysis; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2004; ISBN 978-0-87969-687-0. [Google Scholar]
- Yu, W.; Luo, H.; Yang, J.; Zhang, S.; Jiang, H.; Zhao, X.; Hui, X.; Sun, D.; Li, L.; Wei, X.; et al. Comprehensive Assessment of 11 de Novo HiFi Assemblers on Complex Eukaryotic Genomes and Metagenomes. Genome Res. 2024, 34, 326–340. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-Copy Orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef]
- Cheng, H.; Concepcion, G.T.; Feng, X.; Zhang, H.; Li, H. Haplotype-Resolved de Novo Assembly Using Phased Assembly Graphs with Hifiasm. Nat. Methods 2021, 18, 170–175. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of Long, Error-Prone Reads Using Repeat Graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-Length Transcriptome Assembly from RNA-Seq Data without a Reference Genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Kawai, J.; Shinagawa, A.; Shibata, K.; Yoshino, M.; Itoh, M.; Ishii, Y.; Arakawa, T.; Hara, A.; Fukunishi, Y.; Konno, H.; et al. Functional Annotation of a Full-Length Mouse cDNA Collection. Nature 2001, 409, 685–690. [Google Scholar] [CrossRef]
- Okazaki, Y.; Furuno, M.; Kasukawa, T.; Adachi, J.; Bono, H.; Kondo, S.; Nikaido, I.; Osato, N.; Saito, R.; Suzuki, H.; et al. Analysis of the Mouse Transcriptome Based on Functional Annotation of 60,770 Full-Length cDNAs. Nature 2002, 420, 563–573. [Google Scholar] [CrossRef]
- Maeda, N.; Kasukawa, T.; Oyama, R.; Gough, J.; Frith, M.; Engström, P.G.; Lenhard, B.; Aturaliya, R.N.; Batalov, S.; Beisel, K.W.; et al. Transcript Annotation in FANTOM3: Mouse Gene Catalog Based on Physical cDNAs. PLoS Genet. 2006, 2, e62. [Google Scholar] [CrossRef]
- Balwierz, P.J.; Irvine, K.M.; Lassmann, T.; Ravasi, T.; Hasegawa, Y.; de Hoon, M.J.L.; Katayama, S.; Schroder, K.; Carninci, P.; Tomaru, Y.; et al. The Transcriptional Network That Controls Growth Arrest and Differentiation in a Human Myeloid Leukemia Cell Line. Nat. Genet. 2009, 41, 553–562. [Google Scholar] [CrossRef]
- FANTOM Consortium and the RIKEN PMI and CLST (DGT); Forrest, A.R.R.; Kawaji, H.; Rehli, M.; Baillie, J.K.; de Hoon, M.J.L.; Haberle, V.; Lassmann, T.; Kulakovskiy, I.V.; Lizio, M.; et al. A Promoter-Level Mammalian Expression Atlas. Nature 2014, 507, 462–470. [Google Scholar] [CrossRef]
- Ramilowski, J.A.; Yip, C.W.; Agrawal, S.; Chang, J.-C.; Ciani, Y.; Kulakovskiy, I.V.; Mendez, M.; Ooi, J.L.C.; Ouyang, J.F.; Parkinson, N.; et al. Functional Annotation of Human Long Noncoding RNAs via Molecular Phenotyping. Genome Res. 2020, 30, 1060–1072. [Google Scholar] [CrossRef]
- Gabriel, L.; Brůna, T.; Hoff, K.J.; Ebel, M.; Lomsadze, A.; Borodovsky, M.; Stanke, M. BRAKER3: Fully Automated Genome Annotation Using RNA-Seq and Protein Evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 2024, 34, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Lassmann, T.; Murata, M.; Carninci, P. 5′ End–Centered Expression Profiling Using Cap-Analysis Gene Expression and next-Generation Sequencing. Nat. Protoc. 2012, 7, 542–561. [Google Scholar] [CrossRef] [PubMed]
- Long, W.; He, Q.; Wang, Y.; Wang, Y.; Wang, J.; Yuan, Z.; Wang, M.; Chen, W.; Luo, L.; Luo, L.; et al. Genome Evolution and Diversity of Wild and Cultivated Rice Species. Nat. Commun. 2024, 15, 9994. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Tabunoki, H.; Ono, H.; Ode, H.; Ishikawa, K.; Kawana, N.; Banno, Y.; Shimada, T.; Nakamura, Y.; Yamamoto, K.; Satoh, J.-I.; et al. Identification of Key Uric Acid Synthesis Pathway in a Unique Mutant Silkworm Bombyx Mori Model of Parkinson’s Disease. PLoS ONE 2013, 8, e69130. [Google Scholar] [CrossRef]
- Bono, H.; Sakamoto, T.; Kasukawa, T.; Tabunoki, H. Systematic Functional Annotation Workflow for Insects. Insects 2022, 13, 586. [Google Scholar] [CrossRef]
- Ezaki, R.; Sakuma, T.; Kodama, D.; Sasahara, R.; Shiraogawa, T.; Ichikawa, K.; Matsuzaki, M.; Handa, A.; Yamamoto, T.; Horiuchi, H. Transcription Activator-like Effector Nuclease-Mediated Deletion Safely Eliminates the Major Egg Allergen Ovomucoid in Chickens. Food Chem. Toxicol. 2023, 175, 113703. [Google Scholar] [CrossRef]
- Taki, T.; Morimoto, K.; Mizuno, S.; Kuno, A. KOnezumi-AID: Automation Software for Efficient Multiplex Gene Knockout Using Target-AID. Int. J. Mol. Sci. 2024, 25, 13500. [Google Scholar] [CrossRef]
- Nakamae, K.; Suzuki, T.; Yonezawa, S.; Yamamoto, K.; Kakuzaki, T.; Ono, H.; Naito, Y.; Bono, H. Risk Prediction of RNA Off-Targets of CRISPR Base Editors in Tissue-Specific Transcriptomes Using Language Models. Int. J. Mol. Sci. 2025, 26, 1723. [Google Scholar] [CrossRef]
- Cheng, J.; Novati, G.; Pan, J.; Bycroft, C.; Žemgulytė, A.; Applebaum, T.; Pritzel, A.; Wong, L.H.; Zielinski, M.; Sargeant, T.; et al. Accurate Proteome-Wide Missense Variant Effect Prediction with AlphaMissense. Science 2023, 381, eadg7492. [Google Scholar] [CrossRef]
- Bono, H.; Hirota, K. Meta-Analysis of Hypoxic Transcriptomes from Public Databases. Biomedicines 2020, 8, 10. [Google Scholar] [CrossRef]
- Ono, Y.; Bono, H. Multi-Omic Meta-Analysis of Transcriptomes and the Bibliome Uncovers Novel Hypoxia-Inducible Genes. Biomedicines 2021, 9, 582. [Google Scholar] [CrossRef]
- Ono, Y.; Bono, H. Exploratory Meta-Analysis of Hypoxic Transcriptomes Using a Precise Transcript Reference Sequence Set. Life Sci. Alliance 2023, 6, e202201518. [Google Scholar] [CrossRef]
- Suzuki, T.; Ono, Y.; Bono, H. Comparison of Oxidative and Hypoxic Stress Responsive Genes from Meta-Analysis of Public Transcriptomes. Biomedicines 2021, 9, 1830. [Google Scholar] [CrossRef]
- Bono, H. Meta-Analysis of Oxidative Transcriptomes in Insects. Antioxidants 2021, 10, 345. [Google Scholar] [CrossRef]
- Tamura, K.; Bono, H. Meta-Analysis of RNA Sequencing Data of Arabidopsis and Rice under Hypoxia. Life 2022, 12, 1079. [Google Scholar] [CrossRef]
- Toga, K.; Yokoi, K.; Bono, H. Meta-Analysis of Transcriptomes in Insects Showing Density-Dependent Polyphenism. Insects 2022, 13, 864. [Google Scholar] [CrossRef]
- Toga, K.; Bono, H. Meta-Analysis of Public RNA Sequencing Data Revealed Potential Key Genes Associated with Reproductive Division of Labor in Social Hymenoptera and Termites. Int. J. Mol. Sci. 2023, 24, 8353. [Google Scholar] [CrossRef]
- Yonezawa, S.; Bono, H. Meta-Analysis of Heat-Stressed Transcriptomes Using the Public Gene Expression Database from Human and Mouse Samples. Int. J. Mol. Sci. 2023, 24, 13444. [Google Scholar] [CrossRef]
- Shintani, M.; Tamura, K.; Bono, H. Meta-Analysis of Public RNA Sequencing Data of Abscisic Acid-Related Abiotic Stresses in Arabidopsis Thaliana. Front. Plant Sci. 2024, 15, 1343787. [Google Scholar] [CrossRef]
- Uno, M.; Bono, H. Transcriptional Signatures of Domestication Revealed through Meta-Analysis of Pig, Chicken, Wild Boar, and Red Junglefowl Gene Expression Data. Animals 2024, 14, 1998. [Google Scholar] [CrossRef]
- Nozu, R.; Kadota, M.; Nakamura, M.; Kuraku, S.; Bono, H. Meta-Analysis of Gonadal Transcriptome Provides Novel Insights into Sex Change Mechanism across Protogynous Fishes. Genes Cells 2024, 29, 1052–1068. [Google Scholar] [CrossRef]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef]
- Milacic, M.; Beavers, D.; Conley, P.; Gong, C.; Gillespie, M.; Griss, J.; Haw, R.; Jassal, B.; Matthews, L.; May, B.; et al. The Reactome Pathway Knowledgebase 2024. Nucleic Acids Res. 2024, 52, D672–D678. [Google Scholar] [CrossRef]
- Shin, M.-G.; Pico, A.R. Using Published Pathway Figures in Enrichment Analysis and Machine Learning. BMC Genomics 2023, 24, 713. [Google Scholar] [CrossRef]
- Agrawal, A.; Balcı, H.; Hanspers, K.; Coort, S.L.; Martens, M.; Slenter, D.N.; Ehrhart, F.; Digles, D.; Waagmeester, A.; Wassink, I.; et al. WikiPathways 2024: Next Generation Pathway Database. Nucleic Acids Res. 2024, 52, D679–D689. [Google Scholar] [CrossRef]
- Pico, A.; Ono, H.; Nozu, R.; Oec, N.; Bono, H. BioHackJP 2023 Report R3: Expand the Pathway Analysis Environment to Non-Model Organisms. BioHackrXiv 2023. [Google Scholar] [CrossRef]
- Oec, N.; Hirota, T.; Nozu, R.; Bono, H. Efforts to Analyze Pathways in Non-Model Organisms. BioHackrXiv 2023. [Google Scholar] [CrossRef]
Species Name | Scientific Name | Method | Genome Size (Mb) | Total Base (Gb) | X |
---|---|---|---|---|---|
Insecticide-resistant bed bug | Cimex lectularius | PacBio HiFi | 615 | 20.1 | 32.7 |
Insecticide-sensitive bed bug | PacBio HiFi | 645 | 22.3 | 36.2 | |
Japanese parasitic wasp | Copidosoma floridanum | PacBio HiFi | 553 | 28.1 | 50.8 |
Beefsteak plant (red perilla) | Perilla frutescens | PacBio HiFi + Hi-C | 1259 | 72.4 | 57.5 |
Oriental armyworm | Mythimna separata | PacBio CCS + short reads | 682 | 127 | 187 |
Edible green alga | Ulva prolifera | ONT + short reads | 104 | 17.2 | 166 |
Organism | Lineage | Information Provider | Date of Information Provided | Start Date of Use | Scheduled Date of Sales Launch |
---|---|---|---|---|---|
GABA-rich tomato | #87-17 | Sanatech Life Science | 2020-12-11 | 2020-12 | 2021-04 |
Increased edible portion red seabream | E189-E90 | Regional Fish | 2021-09-17 | 2021-09 | 2021-10 |
E361-E90 | Regional Fish | 2022-12-06 | 2022-12 | 2023-01 | |
High-growth tiger puffer | 4D-4D | Regional Fish | 2021-10-29 | 2021-10 | 2021-11 |
Traditional lineage-4D | Regional Fish | 2022-12-06 | 2022-12 | 2023-01 | |
Waxy maize | PH1V69 CRISPR–Cas9 | Corteva Agriscience Japan | 2023-03-20 | NA | NA |
GABA-rich tomato | #206-4 | Sanatech Life Science | 2023-07-27 | NA | NA |
High-growth flounder | 8D | Regional Fish | 2023-12-25 | 2023-12 | 2024-04 |
Organisms | Stresses | Manuscript DOI |
---|---|---|
Human | Hypoxic | [41,42] |
Human, Mouse | Oxidative | [43] |
D. melanogaster, C. elegans | Oxidative | [44] |
A. thaliana, O. Sativa | Hypoxia | [45] |
Insects | Crowding | [46] |
Insects | Caste | [47] |
Human, Mouse | Heat | [48] |
A. thaliana | Abiotic | [49] |
Pig, Chicken | Breeding | [50] |
Fishes | Gender | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bono, H. Recent Advances in Genome Editing and Bioinformatics: Addressing Challenges in Genome Editing Implementation and Genome Sequencing. Int. J. Mol. Sci. 2025, 26, 3442. https://doi.org/10.3390/ijms26073442
Bono H. Recent Advances in Genome Editing and Bioinformatics: Addressing Challenges in Genome Editing Implementation and Genome Sequencing. International Journal of Molecular Sciences. 2025; 26(7):3442. https://doi.org/10.3390/ijms26073442
Chicago/Turabian StyleBono, Hidemasa. 2025. "Recent Advances in Genome Editing and Bioinformatics: Addressing Challenges in Genome Editing Implementation and Genome Sequencing" International Journal of Molecular Sciences 26, no. 7: 3442. https://doi.org/10.3390/ijms26073442
APA StyleBono, H. (2025). Recent Advances in Genome Editing and Bioinformatics: Addressing Challenges in Genome Editing Implementation and Genome Sequencing. International Journal of Molecular Sciences, 26(7), 3442. https://doi.org/10.3390/ijms26073442