Supramolecular Assembly of Cell Wall Anisotropic Scatterers in Triticale Root Apex Reflects Aluminum Stress Response in Contrasting Genotypes
Abstract
1. Introduction
2. Results
2.1. Changes in the Amount of Extracted Fractions and the Composition of Matrix Polysaccharides as a Response to Aluminum Ion Stress
2.1.1. Yield of Isolated Fractions
2.1.2. Composition of the Fractions
2.2. Solid State NMR Characterization of WEPs from Root Apex Exposed to Al Stress
2.3. Identification of Different Subunits in Matrix CWPs and Their Macromolecular Characterization
2.3.1. Polysaccharide Subunits with Different Molar Mass
2.3.2. Identification of AS Domain
2.3.3. Yield and Macromolecular Characterization of Subunits
2.4. Changes in Macromolecular Characteristics of High Molar Mass Subunits Caused by Al Stress
2.4.1. Al-Induced Transformation of AS Domain Profile
2.4.2. Al-Induced Transformation of Macromolecular Parameters
2.5. Effect of Al Stress on Supramolecular Assembly of High Molar Mass WEPs
3. Discussion
3.1. Basic Characteristics of Root Cell Wall Fractions Isolated by a Sequential Extraction
3.2. Identification of Anisotropic Scatterer Domains and Their Macromolecular Characterization
3.3. Anisotropic Scatterer Domains Are Transformed Under Al Stress by Genotype-Specific Manners of Their HM Subunits Associations
4. Materials and Methods
4.1. Plant Material
4.2. Sequential Extraction and Purifications of Cell Wall Fractions
4.3. Analytical Methods
4.4. Solid State 13C Nuclear Magnetic Resonance Spectroscopy
4.5. Multi-Detection High-Performance Size-Exclusion Chromatography
4.6. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kochian, L.V.; Piñeros, M.A.; Liu, J.P.; Magalhaes, J.V. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance. Annu. Rev. Plant Biol. 2015, 66, 571–598. [Google Scholar] [CrossRef]
- Sade, H.; Meriga, B.; Surapu, V.; Gadi, J.; Sunita, M.S.L.; Suravajhala, P.; Kishor, P.B.K. Toxicity and tolerance of aluminum in plants: Tailoring plants to suit to acid soils. Biometals 2016, 29, 187–210. [Google Scholar] [CrossRef]
- Silva, T.F.; Ferreira, B.G.; dos Santos Isaias, R.M.; Alexandre, S.S.; França, M.G.C. Immunocytochemistry and Density Functional Theory evidence the competition of aluminum and calcium for pectin binding in Urochloa decumbens roots. Plant Physiol. Bioch. 2020, 153, 64–71. [Google Scholar] [CrossRef]
- Zhu, X.F.; Wan, J.X.; Wu, Q.; Zhao, X.S.; Zheng, S.J.; Shen, R.F. affects aluminium sensitivity by modulating the structure of glucuronoxylan in. Plant Cell Environ. 2017, 40, 1916–1925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.R.; Li, D.X.; Wei, J.; Ma, W.N.; Kong, X.Y.; Rengel, Z.; Chen, Q. Melatonin alleviates aluminum-induced root growth inhibition by interfering with nitric oxide production in Arabidopsis. Environ. Exp. Bot. 2019, 161, 157–165. [Google Scholar] [CrossRef]
- Wu, Q.; Tao, Y.; Huang, J.; Liu, Y.S.; Yang, X.Z.; Jing, H.K.; Shen, R.F.; Zhu, X.F. The MYB transcription factor MYB103 acts upstream of TRICHOME BIREFRINGENCE-LIKE27 in regulating aluminum sensitivity by modulating the O-acetylation level of cell wall xyloglucan in Arabidopsis thaliana. Plant J. 2022, 111, 529–545. [Google Scholar] [CrossRef] [PubMed]
- Amenós, M.; Corrales, I.; Poschenrieder, C.; Illés, P.; Baluka, F.; Barceló, J. Different Effects of Aluminum on the Actin Cytoskeleton and Brefeldin A-Sensitive Vesicle Recycling in Root Apex Cells of Two Maize Varieties Differing in Root Elongation Rate and Aluminum Tolerance. Plant Cell Physiol. 2009, 50, 528–540. [Google Scholar] [CrossRef]
- Cheng, X.; Fang, T.; Zhao, E.; Zheng, B.; Huang, B.; An, Y.; Zhou, P. Protective roles of salicylic acid in maintaining integrity and functions of photosynthetic photosystems for alfalfa (Medicago sativa L.) tolerance to aluminum toxicity. Plant Physiol. Bioch. 2020, 155, 570–578. [Google Scholar] [CrossRef]
- Yanık, F.; Vardar, F. Toxic Effects of Aluminum Oxide (Al2O3) Nanoparticles on Root Growth and Development in Triticum aestivum. Water Air Soil Pollut. 2015, 226, 296. [Google Scholar] [CrossRef]
- Schroeder, J.I.; Delhaize, E.; Frommer, W.B.; Guerinot, M.L.; Harrison, M.J.; Herrera-Estrella, L.; Horie, T.; Kochian, L.V.; Munns, R.; Nishizawa, N.K.; et al. Using membrane transporters to improve crops for sustainable food production. Nature 2013, 497, 60–66. [Google Scholar] [CrossRef]
- Ma, J.F.; Ryan, P.R.; Delhaize, E. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 2001, 6, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Kichigina, N.E.; Puhalsky, J.V.; Shaposhnikov, A.I.; Azarova, T.S.; Makarova, N.M.; Loskutov, S.I.; Safronova, V.I.; Tikhonovich, I.A.; Vishnyakova, M.A.; Semenova, E.V.; et al. Aluminum exclusion from root zone and maintenance of nutrient uptake are principal mechanisms of Al tolerance in Pisum sativum L. Physiol. Mol. Biol. Plant 2017, 23, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Maejima, E.; Osaki, M.; Wagatsuma, T.; Watanabe, T. Contribution of constitutive characteristics of lipids and phenolics in roots of tree species in Myrtales to aluminum tolerance. Physiol. Plant. 2017, 160, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.K.; Gao, X.F.; Ke, Y.; Chang, M.M.; Xie, L.; Li, X.F.; Gu, M.H.; Liu, J.P.; Tang, X.L. A unique aluminum resistance mechanism conferred by aluminum and salicylic-acid-activated root efflux of benzoxazinoids in maize. Plant Soil 2019, 437, 273–289. [Google Scholar] [CrossRef]
- Cai, M.; Wang, N.; Xing, C.; Wang, F.; Wu, K.; Du, X. Immobilization of aluminum with mucilage secreted by root cap and root border cells is related to aluminum resistance in Glycine max L. Environ. Sci. Pollut. R 2013, 20, 8924–8933. [Google Scholar] [CrossRef]
- Ofoe, R.; Thomas, R.H.; Asiedu, S.K.; Wang-Pruski, G.; Fofana, B.; Abbey, L. Aluminum in plant: Benefits, toxicity and tolerance mechanisms. Front. Plant Sci. 2023, 13, 2022. [Google Scholar] [CrossRef]
- Carpita, N.C. Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Phys. 1996, 47, 445–476. [Google Scholar] [CrossRef]
- Somerville, C.; Bauer, S.; Brininstool, G.; Facette, M.; Hamann, T.; Milne, J.; Osborne, E.; Paredez, A.; Persson, S.; Raab, T.; et al. Toward a systems approach to understanding plant-cell walls. Science 2004, 306, 2206–2211. [Google Scholar] [CrossRef]
- Vogel, J. Unique aspects of the grass cell wall. Curr. Opin. Plant Biol. 2008, 11, 301–307. [Google Scholar] [CrossRef]
- Zabotin, A.I.; Barisheva, T.S.; Zabotina, O.A.; Larskaya, I.A.; Lozovaya, V.V.; Beldman, G.; Voragen, A.G.J. Alterations in cell walls of winter wheat roots during low temperature acclimation. J. Plant Physiol. 1998, 152, 473–479. [Google Scholar] [CrossRef]
- Leucci, M.R.; Lenucci, M.S.; Piro, G.; Dalessandro, G. Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance. J. Plant Physiol. 2008, 165, 1168–1180. [Google Scholar] [CrossRef]
- Smith, M.M.; Hartley, R.D. Occurrence and Nature of Ferulic Acid Substitution of Cell-Wall Polysaccharides in Graminaceous Plants. Carbohydr. Res. 1983, 118, 65–80. [Google Scholar] [CrossRef]
- Hromadkova, Z.; Paulsen, B.S.; Polovka, M.; Kost’alova, Z.; Ebringerova, A. Structural features of two heteroxylan polysaccharide fractions from wheat bran with anti-complementary and antioxidant activities. Carbohydr. Polym. 2013, 93, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.R.; Chagas, A.P.; Jorge, R.A. Ion-exchange equilibria with aluminum pectinates. Colloids Surf. A Physicochem. Eng. Asp. 2002, 204, 183–192. [Google Scholar] [CrossRef]
- Zhu, X.F.; Sun, Y.; Zhang, B.C.; Mansoori, N.; Wan, J.X.; Liu, Y.; Wang, Z.W.; Shi, Y.Z.; Zhou, Y.H.; Zheng, S.J. TRICHOME BIREFRINGENCE-LIKE27 Affects Aluminum Sensitivity by Modulating the O-Acetylation of Xyloglucan and Aluminum-Binding Capacity in Arabidopsis. Plant Physiol. 2014, 166, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.L.; Li, Y.Y.; Zhang, Y.J.; Zhang, S.S.; Wu, Y.R.; Wu, P.; Zheng, S.J. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol. 2008, 146, 602–611. [Google Scholar] [CrossRef]
- Yang, J.L.; Zhu, X.F.; Peng, Y.X.; Zheng, C.; Li, G.X.; Liu, Y.; Shi, Y.Z.; Zheng, S.J. Cell Wall Hemicellulose Contributes Significantly to Aluminum Adsorption and Root Growth in Arabidopsis. Plant Physiol. 2011, 155, 1885–1892. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, J.L.; He, L.S.; Li, Y.Y.; Zheng, S.J. Effect of aluminum on cell wall, plasma membrane, antioxidants and root elongation in triticale. Biol. Plant. 2008, 52, 87–92. [Google Scholar] [CrossRef]
- Tabuchi, A.; Matsumoto, H. Changes in cell-wall properties of wheat roots during aluminum-induced growth inhibition. Physiol. Plant. 2001, 112, 353–358. [Google Scholar] [CrossRef]
- Jaskowiak, J.; Kwasniewska, J.; Milewska-Hendel, A.; Kurczynska, E.U.; Szurman-Zubrzycka, M.; Szarejko, I. Aluminum Alters the Histology and Pectin Cell Wall Composition of Barley Roots. Int. J. Mol. Sci. 2019, 20, 3039. [Google Scholar] [CrossRef]
- Cyran, M.R.; Snochowska, K.K.; Potrzebowski, M.J.; Kaźmierski, S.; Azadi, P.; Heiss, C.; Tan, L.; Ndukwe, I.; Bonikowski, R. Xylan-cellulose core structure of oat water-extractable β-glucan macromolecule: Insight into interactions and organization of the cell wall complex. Carbohydr. Polym. 2024, 324, 121522. [Google Scholar] [CrossRef]
- Phyo, P.; Wang, T.; Xiao, C.; Anderson, C.T.; Hong, M. Effects of Pectin Molecular Weight Changes on the Structure, Dynamics, and Polysaccharide Interactions of Primary Cell Walls of Arabidopsis thaliana: Insights from Solid-State NMR. Biomacromolecules 2017, 18, 2937–2950. [Google Scholar] [CrossRef]
- Wang, T.; Zabotina, O.; Hong, M. Pectin–Cellulose Interactions in the Arabidopsis Primary Cell Wall from Two-Dimensional Magic-Angle-Spinning Solid-State Nuclear Magnetic Resonance. Biochemistry 2012, 51, 9846–9856. [Google Scholar] [CrossRef]
- Newman, R.H. Estimation of the lateral dimensions of cellulose crystallites using C-13 NMR signal strengths. Solid State Nucl. Mag. 1999, 15, 21–29. [Google Scholar] [CrossRef]
- Larsson, P.T.; Hult, E.L.; Wickholm, K.; Pettersson, E.; Iversen, T. CP/MAS C-13-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl. Mag. 1999, 15, 31–40. [Google Scholar] [CrossRef]
- Wang, T.; Hong, M. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J. Exp. Bot. 2016, 67, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Dourado, F.; Cardoso, S.M.; Silva, A.M.S.; Gama, F.M.; Coimbra, M.A. NMR structural elucidation of the arabinan from Prunus dulcis immunobiological active pectic polysaccharides. Carbohydr. Polym. 2006, 66, 27–33. [Google Scholar] [CrossRef]
- Wang, T.; Salazar, A.; Zabotina, O.A.; Hong, M. Structure and Dynamics of Brachypodium Primary Cell Wall Polysaccharides from Two-Dimensional 13C Solid-State Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2014, 53, 2840–2854. [Google Scholar] [CrossRef] [PubMed]
- Makarova, E.N.; Shakhmatov, E.G. Covalently linked pectin-arabinoglucuronoxylan complex from Siberian fir Abies sibirica Ledeb. Carbohydr. Polym. 2022, 277, 118832. [Google Scholar] [CrossRef]
- Morris, G.A.; Ralet, M.-C.; Bonnin, E.; Thibault, J.-F.; Harding, S.E. Physical characterisation of the rhamnogalacturonan and homogalacturonan fractions of sugar beet (Beta vulgaris) pectin. Carbohydr. Polym. 2010, 82, 1161–1167. [Google Scholar] [CrossRef]
- Burchard, W. Solution Properties of Branched Macromolecules. In Advances in Polymer Science; Roovers, J., Ed.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 113–194. [Google Scholar]
- Zielke, C.; Lu, Y.; Nilsson, L. Aggregation and microstructure of cereal β-glucan and its association with other biomolecules. Colloid Surf. A 2019, 560, 402–409. [Google Scholar] [CrossRef]
- Schmidt, M.; Nerger, D.; Burchard, W. Quasi-Elastic Light-Scattering from Branched Polymers 1. Polyvinylacetate and Polyvinylacetate-Microgels Prepared by Emulsion Polymerization. Polymer 1979, 20, 582–588. [Google Scholar] [CrossRef]
- Stephen, A.M. Polysaccharides. In The Polysaccharides; Aspinall, G.O., Ed.; Academic Press: Cambridge, MA, USA, 1983; pp. 97–193. [Google Scholar]
- Doblin, M.S.; Pettolino, F.; Bacic, A. Plant cell walls: The skeleton of the plant world. Funct. Plant Biol. 2010, 37, 357–381. [Google Scholar] [CrossRef]
- Nieduszynski, I.A.; Marchessault, R.H. Structure of β,D(1–>4′)-xylan hydrate. Biopolymers 1972, 11, 1335–1344. [Google Scholar] [CrossRef]
- Simmons, T.J.; Mortimer, J.C.; Bernardinelli, O.D.; Pöppler, A.-C.; Brown, S.P.; deAzevedo, E.R.; Dupree, R.; Dupree, P. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat. Commun. 2016, 7, 13902. [Google Scholar] [CrossRef]
- Tan, L.; Eberhard, S.; Pattathil, S.; Warder, C.; Glushka, J.; Yuan, C.H.; Hao, Z.Y.; Zhu, X.; Avci, U.; Miller, J.S.; et al. An Arabidopsis Cell Wall Proteoglycan Consists of Pectin and Arabinoxylan Covalently Linked to an Arabinogalactan Protein. Plant Cell 2013, 25, 270–287. [Google Scholar] [CrossRef] [PubMed]
- Cyran, M.R.; Saulnier, L. Macromolecular structure of water-extractable arabinoxylans in endosperm and wholemeal rye breads as factor controlling their extract viscosities. Food Chem. 2012, 131, 667–676. [Google Scholar] [CrossRef]
- Nguema-Ona, E.; Bannigan, A.; Chevalier, L.; Baskin, T.I.; Driouich, A. Disruption of arabinogalactan proteins disorganizes cortical microtubules in the root of. Plant J. 2007, 52, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Dick-Pérez, M.; Zhang, Y.A.; Hayes, J.; Salazar, A.; Zabotina, O.A.; Hong, M. Structure and Interactions of Plant Cell-Wall Polysaccharides by Two- and Three-Dimensional Magic-Angle-Spinning Solid-State NMR. Biochemistry 2011, 50, 989–1000. [Google Scholar] [CrossRef]
- Petrova, A.; Ageeva, M.; Kozlova, L. Root growth of monocotyledons and dicotyledons is limited by different tissues. Plant J. 2023, 116, 1462–1476. [Google Scholar] [CrossRef]
- Tomos, A.D.; Malone, M.; Pritchard, J. The Biophysics of Differential Growth. Environ. Exp. Bot. 1989, 29, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Nakagaki, M.; Heller, W. Anisotropic Light Scattering by Flowing Flexible Macromolecules. J. Polym. Sci. 1959, 38, 117–131. [Google Scholar] [CrossRef]
- Cui, W.; Mazza, G. Physicochemical characteristics of flaxseed gum. Food Res. Int. 1996, 29, 397–402. [Google Scholar] [CrossRef]
- Li, W.; Cui, S.W.; Wang, Q.; Yada, R.Y. Studies of aggregation behaviours of cereal β-glucans in dilute aqueous solutions by light scattering: Part I. Structure effects. Food Hydrocoll. 2011, 25, 189–195. [Google Scholar] [CrossRef]
- Cyran, M.R.; Snochowska, K.K. Evidence of intermolecular associations of β-glucan and high-molar mass xylan in a hot water extract of raw oat groat. Carbohydr. Polym. 2021, 272, 118463. [Google Scholar] [CrossRef]
- Sun, C.; Lu, L.; Liu, L.; Liu, W.; Yu, Y.; Liu, X.; Hu, Y.; Jin, C.; Lin, X. Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum). New Phytol. 2014, 201, 1240–1250. [Google Scholar] [CrossRef]
- Fincher, G.B.; Stone, B.A. Cell Walls and Their Components in Cereal Grain Technology. In Advances in Cereal Science and Technology; Pomeranz, Y., Ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 1986; Volume 8, pp. 207–295. [Google Scholar]
- Aniol, A. Induction of Aluminum Tolerance in Wheat Seedlings by Low-Doses of Aluminum in the Nutrient Solution. Plant Physiol. 1984, 76, 551–555. [Google Scholar] [CrossRef]
- Niedziela, A.; Domżalska, L.; Dynkowska, W.M.; Pernisová, M.; Rybka, K. Aluminum Stress Induces Irreversible Proteomic Changes in the Roots of the Sensitive but Not the Tolerant Genotype of Triticale Seedlings. Plants 2022, 11, 165. [Google Scholar] [CrossRef]
- Siedlecka, A.; Wiklund, S.; Péronne, M.-A.L.; Micheli, F.; Leśniewska, J.; Sethson, I.; Edlund, U.; Richard, L.; Sundberg, B.R.; Mellerowicz, E.J. Pectin Methyl Esterase Inhibits Intrusive and Symplastic Cell Growth in Developing Wood Cells of Populus. Plant Physiol. 2007, 146, 323–324. [Google Scholar] [CrossRef]
- Müller-Maatsch, J.; Bencivenni, M.; Caligiani, A.; Tedeschi, T.; Bruggeman, G.; Bosch, M.; Petrusan, J.; Van Droogenbroeck, B.; Elst, K.; Sforza, S. Pectin content and composition from different food waste streams. Food Chem. 2016, 201, 37–45. [Google Scholar] [CrossRef]
- Englyst, H.N.; Cummings, J.H. Improved Method for Measurement of Dietary Fiber as Non-Starch Polysaccharides in Plant Foods. J. Assoc. Off. Anal. Chem. 1988, 71, 808–814. [Google Scholar] [CrossRef]
- Scott, R.W. Colorimetric Determination of Hexuronic Acids in Plant Materials. Anal. Chem. 1979, 51, 936–941. [Google Scholar] [CrossRef]
- Kim, J.B.; Carpita, N.C. Changes in Esterification of the Uronic-Acid Groups of Cell-Wall Polysaccharides during Elongation of Maize Coleoptiles. Plant Physiol. 1992, 98, 646–653. [Google Scholar] [CrossRef]






| Root Sample/Genotype | WEPs | CDTA-EPs | AEPs | RES | ||||
|---|---|---|---|---|---|---|---|---|
| Control | Stress | Control | Stress | Control | Stress | Control | Stress | |
| Apical segment | ||||||||
| L438 | ||||||||
| Rhamnose | 4.91 ± 0.22 | 4.43 ± 0.18 | 5.35 ± 0.23 | 3.86 ± 0.14 | 3.52 ± 0.08 | 3.14 ± 0.11 | 0.67 ± 0.04 | 0.64 ± 0.03 |
| Fucose | 1.81 ± 0.08 | 1.29 ± 0.06 | 2.21 ± 0.10 | 1.92 ± 0.08 | 1.13 ± 0.06 | 1.28 ± 0.04 | 0.28 ± 0.01 | 0.32 ± 0.01 |
| Arabinose | 26.08 ± 1.12 | 24.92 ± 1.20 | 25.9 ± 0.95 | 28.84 ± 1.31 | 26.00 ± 1.06 | 27.64 ± 1.33 | 22.64 ± 1.09 | 24.17 ± 1.19 |
| Xylose | 15.09 ± 0.68 | 13.87 ± 0.59 | 20.1 ± 0.91 | 19.8 ± 0.90 | 24.00 ± 0.99 | 19.14 ± 0.88 | 51.32 ± 1.95 | 49.05 ± 2.40 |
| Mannose | 4.35 ± 0.21 | 4.32 ± 0.15 | 3.23 ± 0.11 | 2.62 ± 0.10 | 3.54 ± 0.14 | 3.83 ± 0.18 | 0.49 ± 0.00 | 0.54 ± 0.01 |
| Galactose | 23.73 ± 0.98 | 27.06 ± 1.01 | 14.56 ± 0.71 | 15.37 ± 0.75 | 18.21 ± 0.54 | 20.52 ± 0.59 | 10.83 ± 0.51 | 13.36 ± 0.57 |
| Glucose | 16.17 ± 0.79 | 16.1 ± 0.59 | 23.78 ± 1.18 | 15.79 ± 0.45 | 17.76 ± 0.80 | 17.35 ± 0.86 | 9.8 ± 0.32 | 7.09 ± 0.25 |
| Uronic acids | 7.84 ± 0.35 | 8.00 ± 0.19 | 4.87 ± 0.23 | 11.8 ± 0.36 | 5.84 ± 0.25 | 7.11 ± 0.35 | 3.99 ± 0.18 | 4.86 ± 0.20 |
| UA/Rha † | 1.60 ± 0.06 | 1.80 ± 0.07 | 0.91 ± 0.02 | 3.06 ± 0.14 | 1.65 ± 0.07 | 2.26 ± 0.06 | 5.96 ± 0.29 | 7.59 ± 0.29 |
| CWP content ‡ | 22.49 ± 1.02 | 31.63 ± 1.56 | 10.85 ± 0.49 | 7.55 ± 0.37 | 15.41 ± 0.66 | 15.76 ± 0.63 | 39.26 ± 1.59 | 40.87 ± 1.91 |
| L198 | ||||||||
| Rhamnose | 3.78 ± 0.18 | 3.29 ± 0.08 | 5.06 ± 0.24 | 3.25 ± 0.15 | 4.26 ± 0.19 | 2.89 ± 0.10 | 0.80 ± 0.05 | 0.60 ± 0.03 |
| Fucose | 1.74 ± 0.05 | 1.68 ± 0.07 | 2.56 ± 0.10 | 1.24 ± 0.05 | 1.24 ± 0.04 | 0.88 ± 0.04 | 0.34 ± 0.02 | 0.28 ± 0.00 |
| Arabinose | 28.4 ± 1.40 | 26.57 ± 1.31 | 23.76 ± 1.18 | 24.14 ± 1.19 | 24.72 ± 1.23 | 23.78 ± 1.11 | 22.21 ± 1.10 | 22.8 ± 1.03 |
| Xylose | 18.81 ± 0.84 | 16.38 ± 0.72 | 21.23 ± 1.01 | 19.24 ± 0.92 | 22.52 ± 1.05 | 29.36 ± 1.37 | 50.98 ± 2.15 | 51.75 ± 1.29 |
| Mannose | 2.91 ± 0.14 | 2.71 ± 0.13 | 3.33 ± 0.15 | 2.74 ± 0.13 | 3.49 ± 0.15 | 2.65 ± 0.08 | 0.54 ± 0.03 | 0.41 ± 0.01 |
| Galactose | 21.78 ± 0.92 | 24.65 ± 1.11 | 15.14 ± 0.69 | 13.87 ± 0.63 | 12.35 ± 0.51 | 14.56 ± 0.55 | 10.94 ± 0.45 | 11.35 ± 0.51 |
| Glucose | 16.68 ± 0.73 | 16.91 ± 0.54 | 21.68 ± 0.98 | 18.15 ± 0.85 | 22.29 ± 1.10 | 17.94 ± 0.89 | 8.91 ± 0.27 | 7.63 ± 0.15 |
| Uronic acids | 5.89 ± 0.19 | 7.82 ± 0.31 | 7.25 ± 0.27 | 17.35 ± 0.79 | 9.12 ± 0.42 | 7.95 ± 0.36 | 5.29 ± 0.21 | 5.19 ± 0.22 |
| UA/Rha † | 1.56 ± 0.07 | 2.37 ± 0.10 | 1.43 ± 0.05 | 5.33 ± 0.24 | 2.14 ± 0.05 | 2.75 ± 0.09 | 6.61 ± 0.30 | 8.65 ± 0.41 |
| CWP content ‡ | 32.91 ± 1.55 | 27.17 ± 1.06 | 13.94 ± 0.64 | 8.53 ± 0.42 | 15.18 ± 0.73 | 23.1 ± 1.02 | 32.21 ± 1.79 | 39.45 ± 1.53 |
| Hairy root segment | ||||||||
| L438 | ||||||||
| Rhamnose | 8.49 ± 0.53 | 8.10 ± 0.61 | 7.09 ± 0.50 | 7.45 ± 0.43 | 5.82 ± 0.45 | 6.89 ± 0.38 | 0.82 ± 0.05 | 0.92 ± 0.05 |
| Fucose | 2.64 ± 0.18 | 2.61 ± 0.20 | 2.21 ± 0.19 | 2.35 ± 0.12 | 1.94 ± 0.12 | 2.33 ± 0.16 | 0.29 ± 0.02 | 0.35 ± 0.05 |
| Arabinose | 22.64 ± 1.54 | 19.71 ± 1.35 | 25.43 ± 1.08 | 22.65 ± 1.18 | 31.57 ± 2.03 | 25.86 ± 1.75 | 20.23 ± 1.22 | 20.88 ± 1.36 |
| Xylose | 11.18 ± 0.68 | 11.59 ± 0.85 | 15.60 ± 0.95 | 18.11 ± 0.73 | 22.4 ±1.42 | 19.27 ± 0.89 | 52.51 ± 3.05 | 51.98 ± 3.51 |
| Mannose | 7.23 ± 0.51 | 7.79 ± 0.52 | 4.68 ± 0.36 | 5.31 ± 0.33 | 3.08 ± 0.21 | 4.43 ± 0.32 | 0.65 ± 0.05 | 0.82 ± 0.07 |
| Galactose | 27.99 ± 1.59 | 29.36 ± 1.85 | 19.35 ± 1.29 | 22.4 ± 1.09 | 17.11 ± 1.01 | 24.28 ± 1.23 | 11.32 ± 0.78 | 11.65 ± 0.86 |
| Glucose | 12.03 ± 0.84 | 12.78 ± 0.74 | 12.46 ± 0.81 | 9.97 ± 0.85 | 8.87 ± 0.63 | 8.84 ± 0.56 | 9.72 ± 0.59 | 8.43 ± 0.49 |
| Uronic acids | 7.80 ± 0.56 | 8.06 ± 0.56 | 13.18 ± 0.95 | 11.77 ± 0.42 | 9.22 ± 0.49 | 8.10 ± 0.49 | 4.46 ± 0.36 | 4.97 ± 0.38 |
| UA/Rha † | 0.91 ± 0.06 | 1.00 ± 0.09 | 1.86 ± 0.14 | 1.58 ± 0.11 | 1.58 ± 0.11 | 1.18 ± 0.09 | 5.44 ± 0.41 | 5.40 ± 0.35 |
| CWP content ‡ | 34.62 ± 2.02 | 30.78 ± 2.10 | 6.07 ± 0.48 | 7.73 ± 0.56 | 15.4 ± 1.11 | 7.90 ± 0.59 | 36.74 ± 1.96 | 37.84 ± 2.14 |
| L198 | ||||||||
| Rhamnose | 6.70 ± 0.41 | 7.74 ± 0.54 | 7.06 ± 0.43 | 7.23 ± 0.51 | 6.55 ± 0.46 | 4.87 ± 0.31 | 0.71 ± 0.05 | 0.62 ± 0.05 |
| Fucose | 3.43 ± 0.26 | 3.37 ± 0.20 | 3.12 ± 0.22 | 2.99 ± 0.12 | 2.49 ± 0.15 | 1.98 ± 0.16 | 0.30 ± 0.02 | 0.29 ± 0.02 |
| Arabinose | 25.51 ± 1.63 | 27.79 ± 1.88 | 26.84 ± 1.72 | 27.58 ±1.13 | 27.02 ± 1.88 | 26.55 ± 1.52 | 19.73 ± 1.14 | 19.55 ± 1.29 |
| Xylose | 19.07 ± 1.26 | 11.08 ± 0.65 | 21.84 ± 1.14 | 15.42 ± 0.87 | 22.51 ± 1.42 | 22.31 ± 1.46 | 55.26 ± 2.85 | 53.2 ± 2.55 |
| Mannose | 3.61 ± 0.25 | 3.56 ± 0.25 | 3.05 ± 0.21 | 3.37 ± 0.24 | 2.61 ± 0.18 | 2.83 ± 0.15 | 0.50 ± 0.04 | 0.39 ± 0.03 |
| Galactose | 24.61 ± 1.53 | 30.21 ± 2.05 | 17.6 ± 1.08 | 22.67 ± 1.33 | 20.7 ± 1.12 | 26.14 ± 0.91 | 11.75 ± 0.73 | 12.33 ± 0.77 |
| Glucose | 9.10 ± 0.64 | 8.19 ± 0.54 | 8.72 ± 0.51 | 8.79 ± 0.63 | 7.65 ± 0.45 | 8.44 ± 0.53 | 8.00 ± 0.47 | 9.20 ± 0.56 |
| Uronic acids | 7.96 ± 0.60 | 8.06 ± 0.49 | 11.77 ± 0.73 | 11.95 ± 0.66 | 10.47 ± 0.63 | 6.90 ± 0.49 | 3.75 ± 0.26 | 4.43 ± 0.35 |
| UA/Rha † | 1.19 ± 0.08 | 1.04 ± 0.07 | 1.67 ± 0.12 | 1.65 ± 0.16 | 1.75 ± 0.08 | 1.42 ± 0.10 | 5.28 ± 0.39 | 7.14 ± 0.52 |
| CWP content ‡ | 32.15 ± 2.18 | 26.44 ± 1.73 | 6.97 ± 0.43 | 8.48 ± 0.50 | 9.07 ± 0.64 | 11.45 ± 0.84 | 36.25 ± 2.06 | 38.37 ± 2.31 |
| Sample/Genotype | Subunit | Yield † (%) | Mw (kDa) | Mw/Mn | [η] (mL g–1) | Rg (nm) | Rh (nm) | Rg/Rh | M-H a |
|---|---|---|---|---|---|---|---|---|---|
| Apical segment | |||||||||
| L438 control | HM-A | 3.0 | 3330 | 1.03 | 1375 | 101 | 116 | 1.17 | NC |
| HM-B | 16.5 | 2528 | 1.19 | 365 | 53 | 67 | 0.79 | 0.86 | |
| LM-C | 31.9 | 226 | 1.27 | 65 | 45 | 12 | 3.75 | 1.15 | |
| LM-D | 48.6 | 66 | 1.25 | 10 | 23 | 4 | 5.75 | 1.02 | |
| L438 stress | HM-A | 2.5 | 4452 | 1.04 | 1657 | 105 | 126 | 0.83 | NC |
| HM-B | 16.7 | 4333 | 1.20 | 360 | 50 | 72 | 0.69 | 0.83 | |
| LM-C | 37.1 | 367 | 1.29 | 53 | 51 | 14 | 3.64 | 1.11 | |
| LM-D | 43.7 | 117 | 1.23 | 15 | 53 | 13 | 4.08 | 1.00 | |
| L198 control | HM-A | 2.6 | 3461 | 1.00 | 1431 | 134 | 100 | 1.35 | NC |
| HM-B | 18.9 | 1573 | 1.49 | 346 | 59 | 43 | 1.37 | 0.54 | |
| LM-C | 39.4 | 164 | 1.24 | 61 | 55 | 11 | 4.72 | 1.24 | |
| LM-D | 38.1 | 44 | 1.17 | 12 | 27 | 6 | 4.50 | 0.98 | |
| L198 stress | HM-A | 2.0 | 6086 | 1.03 | 1223 | 122 | 103 | 1.18 | NC |
| HM-B | 14.1 | 4683 | 1.29 | 349 | 57 | 55 | 1.04 | 0.61 | |
| LM-C | 35.4 | 299 | 1.33 | 47 | 55 | 13 | 4.23 | 1.16 | |
| LM-D | 48.5 | 57 | 1.19 | 12 | 52 | 11 | 4.73 | 0.95 | |
| Hairy root segment | |||||||||
| L438 control | HM-A | 5.9 | 7129 | 1.03 | 1531 | 103 | 111 | 0.93 | NC |
| HM-B | 17.4 | 8058 | 1.12 | 521 | 55 | 89 | 0.62 (0.14) ‡ | 1.06 | |
| LM-C | 31.2 | 692 | 1.20 | 64 | 54 | 19 | 2.84 | 1.06 | |
| LM-D | 45.5 | 221 | 1.18 | 22 | 55 | 11 | 5.00 | 1.22 | |
| L438 stress | HM-A | 5.0 | 5058 | 1.03 | 1849 | 117 | 109 | 1.07 | NC |
| HM-B | 17.3 | 6145 | 1.12 | 539 | 56 | 80 | 0.70 (0.16) ‡ | 1.21 | |
| LM-C | 32.2 | 563 | 1.22 | 61 | 53 | 17 | 1.15 | 1.21 | |
| LM-D | 45.5 | 171 | 1.17 | 19 | 56 | 10 | 5.6 | 1.89 | |
| L198 control | HM-A | 5.5 | 10,100 | 1.03 | 1561 | 85 | 141 | 0.60 | NC |
| HM-B | 20.9 | 7963 | 1.26 | 399 | 53 | 80 | 0.66 (0.32) ‡ | 0.75 | |
| LM-C | 35.0 | 882 | 1.18 | 64 | 63 | 20 | 3.15 | 1.13 | |
| LM-D | 38.6 | 360 | 1.11 | 22 | 66 | 10 | 6.6 | 1.03 | |
| L198 stress | HM-A | 4.5 | 13,800 | 1.05 | 1575 | 94 | 147 | 0.64 | NC |
| HM-B | 19.7 | 11,400 | 1.16 | 395 | 53 | 91 | 0.58 (0.58) ‡ | 0.80 | |
| LM-C | 37.3 | 1250 | 1.18 | 54 | 61 | 21 | 2.90 | 1.94 | |
| LM-D | 38.5 | 506 | 1.19 | 21 | 64 | 11 | 5.82 | 1.91 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cyran, M.R.; Rybka, K.; Niedziela, A.; Potrzebowski, M.J.; Kaźmierski, S. Supramolecular Assembly of Cell Wall Anisotropic Scatterers in Triticale Root Apex Reflects Aluminum Stress Response in Contrasting Genotypes. Int. J. Mol. Sci. 2025, 26, 11519. https://doi.org/10.3390/ijms262311519
Cyran MR, Rybka K, Niedziela A, Potrzebowski MJ, Kaźmierski S. Supramolecular Assembly of Cell Wall Anisotropic Scatterers in Triticale Root Apex Reflects Aluminum Stress Response in Contrasting Genotypes. International Journal of Molecular Sciences. 2025; 26(23):11519. https://doi.org/10.3390/ijms262311519
Chicago/Turabian StyleCyran, Małgorzata R., Krystyna Rybka, Agnieszka Niedziela, Marek J. Potrzebowski, and Sławomir Kaźmierski. 2025. "Supramolecular Assembly of Cell Wall Anisotropic Scatterers in Triticale Root Apex Reflects Aluminum Stress Response in Contrasting Genotypes" International Journal of Molecular Sciences 26, no. 23: 11519. https://doi.org/10.3390/ijms262311519
APA StyleCyran, M. R., Rybka, K., Niedziela, A., Potrzebowski, M. J., & Kaźmierski, S. (2025). Supramolecular Assembly of Cell Wall Anisotropic Scatterers in Triticale Root Apex Reflects Aluminum Stress Response in Contrasting Genotypes. International Journal of Molecular Sciences, 26(23), 11519. https://doi.org/10.3390/ijms262311519

