Satellite DNA Genomics: The Ongoing Story
Abstract
1. Introduction
2. Advanced Methodologies in SatDNA Research
3. Distinction According to the Repeat Unit Length
4. SatDNA Sequences and Sequence Changes
4.1. SatDNA Sources
4.2. Structural Features
4.3. Sequence Variability
5. SatDNA Evolution: Copy Number Variations and SatDNA Library
6. SatDNA Genomics: Satellitomes, SatDNA Abundancies and Genome Size
7. Clustered and Dispersed Patterns of SatDNAs
8. Methodological Concerns, Risks Requiring Attention and Their Implications in SatDNA Research
8.1. Where to Set the Threshold?
8.2. Index Hopping Poses a Serious Threat to the Analysis of Satellitomes
8.3. Same Sequence, Different Organizational Forms
8.4. Advantages and Disadvantages of In Situ and In Silico Localizations and How They Complement Each Other
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| satDNAs | satellite DNAs |
| TEs | transposable elements |
| FISH | fluorescent in situ hybridization |
References
- Kit, S. Equilibrium Sedimentation in Density Gradients of DNA Preparations from Animal Tissues. J. Mol. Biol. 1961, 3, 711–716. [Google Scholar] [CrossRef]
- Sueoka, N. Variation and Heterogeneity of Base Composition of Deoxyribonucleic Acids: A Compilation of Old and New Data. J. Mol. Biol. 1961, 3, 31–40. [Google Scholar] [CrossRef]
- Szybalski, W. Use of Cesium Sulfate for Equilibrium Density Gradient Centrifugation. In Methods in Enzymology; Academic Press: New York, NY, USA, 1968; pp. 330–360. [Google Scholar] [CrossRef]
- Pech, M.; Igo-Kemenes, T.; Zachau, H.G. Nucleotide Sequence of a Highly Repetitive Component of Rat DNA. Nucleic Acids Res. 1979, 7, 417–432. [Google Scholar] [CrossRef] [PubMed]
- Singer, M. Highly Repeated Sequences in Mammalian Genomes. Int. J. Cytol. 1982, 76, 67–112. [Google Scholar] [CrossRef]
- Charlesworth, B.; Sniegowski, P.; Stephan, W. The Evolutionary Dynamics of Repetitive DNA in Eukaryotes. Nature 1994, 371, 215–220. [Google Scholar] [CrossRef]
- Schmidt, T.; Heslop-Harrison, J.S. Genomes, Genes and Junk: The Large-Scale Organization of Plant Chromosomes. Trends Plant Sci. 1998, 3, 195–199. [Google Scholar] [CrossRef]
- López-Flores, I.; Garrido-Ramos, M.A. The Repetitive DNA Content of Eukaryotic Genomes. Genome Dyn. 2012, 7, 1–28. [Google Scholar] [CrossRef]
- Biscotti, M.A.; Olmo, E.; Heslop-Harrison, J.S. Repetitive DNA in Eukaryotic Genomes. Chromosome Res. 2015, 23, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Ramos, M.A. Satellite DNA: An Evolving Topic. Genes 2017, 8, 230. [Google Scholar] [CrossRef]
- Thakur, J.; Packiaraj, J.; Henikoff, S. Sequence, Chromatin and Evolution of Satellite DNA. Int. J. Mol. Sci. 2021, 22, 4309. [Google Scholar] [CrossRef]
- Ugarković, Ð.; Sermek, A.; Ljubić, S.; Feliciello, I. Satellite DNAs in Health and Disease. Genes 2022, 13, 1154. [Google Scholar] [CrossRef]
- Liao, X.; Zhu, W.; Zhou, J.; Li, H.; Xu, X.; Zhang, B.; Gao, X. Repetitive DNA Sequence Detection and Its Role in the Human Genome. Commun. Biol. 2023, 6, 954. [Google Scholar] [CrossRef] [PubMed]
- Šatović-Vukšić, E.; Plohl, M. Satellite DNAs—From Localized to Highly Dispersed Genome Components. Genes 2023, 14, 742. [Google Scholar] [CrossRef]
- Flynn, J.M.; Yamashita, Y.M. The Implications of Satellite DNA Instability on Cellular Function and Evolution. Semin. Cell Dev. Biol. 2024, 156, 152–159. [Google Scholar] [CrossRef]
- Fonseca-Carvalho, M.; Veríssimo, G.; Lopes, M.; Ferreira, D.; Louzada, S.; Chaves, R. Answering the Cell Stress Call: Satellite Non-Coding Transcription as a Response Mechanism. Biomolecules 2024, 14, 124. [Google Scholar] [CrossRef]
- Cabral-de-Mello, D.C.; Palacios-Gimenez, O.M. Repetitive DNAs: The ‘Invisible‘ Regulators of Insect Adaptation and Speciation. Curr. Opin. Insect Sci. 2025, 67, 101295. [Google Scholar] [CrossRef]
- Talbert, P.B.; Henikoff, S. Centromeres Drive and Take a Break. Chromosome Res. 2025, 33, 17. [Google Scholar] [CrossRef] [PubMed]
- Šatović-Vukšić, E.; Majcen, P.; Plohl, M. Satellite DNAs Rising from the Transposon Graveyards. DNA Res. 2025, 32, dsaf026. [Google Scholar] [CrossRef]
- Camacho, J.P.M.; Cabrero, J.; López-León, M.D.; Martín-Peciña, M.; Perfectti, F.; Garrido-Ramos, M.A.; Ruiz-Ruano, F.J. Satellitome Comparison of Two Oedipodine Grasshoppers Highlights the Contingent Nature of Satellite DNA Evolution. BMC Biol. 2022, 20, 36, Correction in BMC Biol. 2022, 20, 69. [Google Scholar] [CrossRef]
- Cabral-de-Mello, D.C.; Yoshido, A.; Milani, D.; Šíchová, J.; Sahara, K.; Marec, F. The Burst of Satellite DNA in Leptidea Wood White Butterflies and Their Putative Role in Karyotype Evolution. DNA Res. 2024, 31, dsae030. [Google Scholar] [CrossRef] [PubMed]
- Gálvez-Galván, A.; Garrido-Ramos, M.A.; Prieto, P. Bread Wheat Satellitome: A Complex Scenario in a Huge Genome. Plant Mol. Biol. 2024, 114, 8. [Google Scholar] [CrossRef]
- Gálvez-Galván, A.; Garrido-Ramos, M.A.; Prieto, P. The Highly Dynamic Satellitomes of Cultivated Wheat Species. Ann. Bot. 2024, 134, 975–992. [Google Scholar] [CrossRef]
- Gálvez-Galván, A.; Barea, L.; Garrido-Ramos, M.A.; Prieto, P. Highly Divergent Satellitomes of Two Barley Species of Agronomic Importance, Hordeum chilense and H. vulgare. Plant Mol. Biol. 2024, 14, 108. [Google Scholar] [CrossRef] [PubMed]
- Mora, P.; Rico-Porras, J.M.; Palomeque, T.; Montiel, E.E.; Pita, S.; Cabral-de-Mello, D.C.; Lorite, P. Satellitome Analysis of Adalia bipunctata (Coleoptera): Revealing Centromeric Turnover and Potential Chromosome Rearrangements in a Comparative Interspecific Study. Int. J. Mol. Sci. 2024, 25, 9214. [Google Scholar] [CrossRef] [PubMed]
- Tunjić-Cvitanić, M.; García-Souto, D.; Pasantes, J.J.; Šatović-Vukšić, E. Dominance of Transposable Element-Related satDNAs Results in Great Complexity of “satDNA Library” and Invokes the Extension towards “Repetitive DNA Library”. Mar. Life Sci. Technol. 2024, 6, 236–251. [Google Scholar] [CrossRef]
- Sales-Oliveira, V.C.; Dos Santos, R.Z.; Goes, C.A.G.; Calegari, R.M.; Garrido-Ramos, M.A.; Altmanová, M.; Ezaz, T.; Liehr, T.; Porto-Foresti, F.; Utsunomia, R.; et al. Evolution of Ancient Satellite DNAs in Extant Alligators and Caimans (Crocodylia, Reptilia). BMC Biol. 2024, 22, 47. [Google Scholar] [CrossRef]
- Rico-Porras, J.M.; Mora, P.; Palomeque, T.; Montiel, E.E.; Cabral-de-Mello, D.C.; Lorite, P. Heterochromatin Is Not the Only Place for satDNAs: The High Diversity of satDNAs in the Euchromatin of the Beetle Chrysolina americana (Coleoptera, Chrysomelidae). Genes 2024, 15, 395. [Google Scholar] [CrossRef]
- Rico-Porras, J.M.; Mora, P.; Gasparotto, A.E.; Bardella, V.B.; Palomeque, T.; Lorite, P.; Cabral-de-Mello, D.C. Expansion of Satellite DNAs Derived from Transposable Elements in Beetles with Reduced Diploid Numbers. Heredity 2025, 134, 529–541. [Google Scholar] [CrossRef]
- Setti, P.G.; Ezaz, T.; Deon, G.A.; Utsunomia, R.; Tanomtong, A.; Ditcharoen, S.; Donbundit, N.; Sumontha, M.; Seetapan, K.; Buasriyot, P.; et al. Evolution of ZW Sex Chromosomes in Ptyas Snakes (Reptilia, Colubridae): New Insights from a Molecular Cytogenetic Perspective. Int. J. Mol. Sci. 2025, 26, 4540. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.A.D.; Charlesworth, D.; Utsunomia, R.; Garrido-Ramos, M.A.; Dos Santos, R.Z.; Porto-Foresti, F.; Artoni, R.F.; Liehr, T.; de Almeida, M.C.; de Bello Cioffi, M. Unraveling the Role of Satellite DNAs in the Evolution of the Giant XY Sex Chromosomes of the Flea Beetle Omophoita octoguttata (Coleoptera, Chrysomelidae). BMC Biol. 2025, 23, 53. [Google Scholar] [CrossRef]
- Sassi, F.M.C.; Garrido-Ramos, M.A.; Utsunomia, R.; Dos Santos, R.Z.; Ezaz, T.; Deon, G.A.; Porto-Foresti, F.; Liehr, T.; Cioffi, M.B. Independent Evolution of Satellite DNA Sequences in Homologous Sex Chromosomes of Neotropical Armored Catfish (Harttia). Commun. Biol. 2025, 8, 524. [Google Scholar] [CrossRef] [PubMed]
- de Souza, F.H.S.; Toma, G.A.; Vidal, J.A.D.; Garrido-Ramos, M.A.; Souza, G.M.; Dos Santos, R.Z.; Porto-Foresti, F.; Liehr, T.; Utsunomia, R.; Cioffi, M.B. Comparative Satellitomics in Arowanas (Telostei, Osteoglossiformes) Sheds Light on the Evolution of Ancient Satellite DNAs. Integr. Zool. 2025, 20, 1–14. [Google Scholar] [CrossRef]
- Albuquerque, L.; Milani, D.; Martí, E.; Ferretti, A.B.S.M.; Rico-Porras, J.M.; Mora, P.; Lorite, P.; Ziabari, O.S.; Brisson, J.A.; Palacios-Gimenez, O.M.; et al. Exploring the Satellitome of the Pest Aphid Acyrthosiphon pisum (Hemiptera, Aphididae): Insights into Genome Organization and Intraspecies Evolution. Genome Biol. Evol. 2025, 17, evaf104. [Google Scholar] [CrossRef]
- Salman, M.; Liu, X.; Liu, N.; Huang, Y. Comparative Repeatome Analysis of Pyrgomorphidae and Acrididae (Orthoptera: Caelifera) Revealed the Contribution of Repetitive DNA in Genome Gigantism. PLoS ONE 2025, 20, e0325165. [Google Scholar] [CrossRef]
- do Nascimento Moreira, C.; Crampton, W.G.R.; de Andrade Affonso, P.H.; Martins, C.; Cardoso, A.L. Genomic Landscape of Repetitive DNAs in Neotropical Electric Fishes. Mol. Genet. Genom. 2025, 300, 40. [Google Scholar] [CrossRef] [PubMed]
- Miga, K.H. Completing the Human Genome: The Progress and Challenge of Satellite DNA Assembly. Chromosome Res. 2015, 23, 421–426. [Google Scholar] [CrossRef]
- Peona, V.; Weissensteiner, M.H.; Suh, A. How Complete Are “Complete” Genome Assemblies?—An Avian Perspective. Mol. Ecol. Resour. 2018, 18, 1188–1195. [Google Scholar] [CrossRef]
- Sedlazeck, F.J.; Lee, H.; Darby, C.A.; Schatz, M.C. Piercing the Dark Matter: Bioinformatics of Long-Range Sequencing and Mapping. Nat. Rev. Genet. 2018, 19, 329–346. [Google Scholar] [CrossRef]
- Tørresen, O.K.; Star, B.; Mier, P.; Andrade-Navarro, M.A.; Bateman, A.; Jarnot, P.; Gruca, A.; Grynberg, M.; Kajava, A.V.; Promponas, V.J.; et al. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res. 2019, 47, 10994–11006. [Google Scholar] [CrossRef]
- Wallrath, L.L.; Rodriguez-Tirado, F.; Geyer, P.K. Shining Light on the Dark Side of the Genome. Cells 2022, 11, 330. [Google Scholar] [CrossRef] [PubMed]
- Lower, S.S.; McGurk, M.P.; Clark, A.G.; Barbash, D.A. Satellite DNA Evolution: Old Ideas, New Approaches. Curr. Opin. Genet. Dev. 2018, 49, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Šatović, E.; Tunjić Cvitanić, M.; Plohl, M. Tools and Databases for Solving Problems in Detection and Identification of Repetitive DNA Sequences. Period. Biol. 2020, 121–122, 7–14. [Google Scholar] [CrossRef]
- Šatović Vukšić, E.; Plohl, M. Exploring Satellite DNAs: Specificities of Bivalve Mollusks Genomes. In Satellite DNAs in Physiology and Evolution; Ugarković, Ð., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 57–83. [Google Scholar] [CrossRef]
- Novák, P.; Neumann, P.; Macas, J. Graph-Based Clustering and Characterization of Repetitive Sequences in Next-Generation Sequencing Data. BMC Bioinform. 2010, 11, 378. [Google Scholar] [CrossRef] [PubMed]
- Novák, P.; Neumann, P.; Pech, J.; Steinhaisl, J.; Macas, J. RepeatExplorer: A Galaxy-Based Web Server for Genome-Wide Characterization of Eukaryotic Repetitive Elements from Next-Generation Sequence Reads. Bioinformatics 2013, 29, 792–793. [Google Scholar] [CrossRef]
- Novák, P.; Robledillo, L.Á.; Koblížková, A.; Vrbová, I.; Neumann, P.; Macas, J. TAREAN: A Computational Tool for Identification and Characterization of Satellite DNA from Unassembled Short Reads. Nucleic Acids Res. 2017, 45, e111. [Google Scholar] [CrossRef]
- Novák, P.; Neumann, P. Global Analysis of Repetitive DNA from Unassembled Sequence Reads Using RepeatExplorer2. Nat. Protoc. 2020, 15, 3745–3776. [Google Scholar] [CrossRef]
- Weiss-Schneeweiss, H.; Leitch, A.R.; McCann, J.; Jang, T.S.; Macas, J. Employing Next Generation Sequencing to Explore the Repeat Landscape of the Plant Genome. In Next Generation Sequencing in Plant Systematics; Hörandl, E., Appelhans, M., Eds.; Koeltz Scientific Books: Königstein, Germany, 2015; pp. 155–180. [Google Scholar] [CrossRef]
- Ruiz-Ruano, F.J.; López-León, M.D.; Cabrero, J.; Camacho, J.P.M. High-Throughput Analysis of the Satellitome Illuminates Satellite DNA Evolution. Sci. Rep. 2016, 6, 28333. [Google Scholar] [CrossRef]
- Silva, B.S.M.L.; Heringer, P.; Dias, G.B.; Svartman, M.; Kuhn, G.C.S. De Novo Identification of Satellite DNAs in the Sequenced Genomes of Drosophila virilis and D. americana Using the RepeatExplorer and TAREAN Pipelines. PLoS ONE 2019, 14, e0223466. [Google Scholar] [CrossRef]
- Šatović-Vukšić, E.; Plohl, M. Classification Problems of Repetitive DNA Sequences. DNA 2021, 1, 84–90. [Google Scholar] [CrossRef]
- Kim, Y.B.; Oh, J.H.; McIver, L.J.; Rashkovetsky, E.; Michalak, K.; Garner, H.R.; Kang, L.; Nevo, E.; Korol, A.B.; Michalak, P. Divergence of Drosophila melanogaster Repeatomes in Response to a Sharp Microclimate Contrast in Evolution Canyon, Israel. Proc. Natl. Acad. Sci. USA 2014, 111, 10630–10635. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, E.L.; Jaszczyszyn, Y.; Naquin, D.; Thermes, C. The Third Revolution in Sequencing Technology. Trends Genet. 2018, 34, 666–681. [Google Scholar] [CrossRef]
- Altemose, N.; Logsdon, G.A.; Bzikadze, A.V.; Sidhwani, P.; Langley, S.A.; Caldas, G.V.; Hoyt, S.J.; Uralsky, L.; Ryabov, F.D.; Shew, C.J.; et al. Complete genomic and epigenetic maps of human centromeres. Science 2022, 376, eabl4178. [Google Scholar] [CrossRef]
- Sproul, J.S.; Hotaling, S.; Heckenhauer, J.; Powell, A.; Marshall, D.; Larracuente, A.M.; Kelley, J.L.; Pauls, S.U.; Frandsen, P.B. Analyses of 600+ Insect Genomes Reveal Repetitive Element Dynamics and Highlight Biodiversity-Scale Repeat Annotation Challenges. Genome Res. 2023, 33, 1708–1717. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.; Rhie, A.; Hebbar, P.; Eichler, E.E. Complete Sequencing of Ape Genomes. Nature 2025, 641, 401–418. [Google Scholar] [CrossRef]
- Oppert, B.; Dossey, A.T.; Chu, F.-C.; Šatović-Vukšić, E.; Plohl, M.; Smith, T.P.L.; Koren, S.; Olmstead, M.L.; Leierer, D.; Ragan, G.; et al. The Genome of the Yellow Mealworm, Tenebrio molitor: It’s Bigger Than You Think. Genes 2023, 14, 2209. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Ramos, M.A. Satellite DNA in Plants: More than Just Rubbish. Cytogenet. Genome Res. 2015, 146, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Ramos, M.A. The Genomics of Plant Satellite DNA. In Satellite DNAs in Physiology and Evolution; Ugarković, Đ., Ed.; Springer: Cham, Switzerland, 2021; pp. 103–143. [Google Scholar] [CrossRef]
- Lohe, A.R.; Hilliker, A.J.; Roberts, P.A. Mapping Simple Repeated DNA Sequences in Heterochromatin of Drosophila melanogaster. Genetics 1993, 134, 1149–1174. [Google Scholar] [CrossRef]
- Lopes, M.; Louzada, S.; Gama-Carvalho, M.; Chaves, R. Genomic Tackling of Human Satellite DNA: Breaking Barriers through Time. Int. J. Mol. Sci. 2021, 22, 4707. [Google Scholar] [CrossRef]
- Ruiz-Ruano, F.J.; Cuadrado, Á.; Montiel, E.E.; Camacho, J.P.M.; López-León, M.D. Next Generation Sequencing and FISH Reveal Uneven and Nonrandom Microsatellite Distribution in Two Grasshopper Genomes. Chromosoma 2015, 124, 221–234. [Google Scholar] [CrossRef]
- Thomas, J.; Pritham, E.J. Helitrons, the Eukaryotic Rolling-Circle Transposable Elements. Microbiol. Spectr. 2015, 3, 1–32. [Google Scholar] [CrossRef]
- Rajan-Babu, I.-S.; Dolzhenko, E.; Eberle, M.A.; Friedman, J.M. Sequence Composition Changes in Short Tandem Repeats: Heterogeneity, Detection, Mechanisms and Clinical Implications. Nat. Rev. Genet. 2024, 25, 476–499. [Google Scholar] [CrossRef]
- Hannan, A.J. Tandem Repeats Mediating Genetic Plasticity in Health and Disease. Nat. Rev. Genet. 2018, 19, 286–298. [Google Scholar] [CrossRef] [PubMed]
- Tanudisastro, H.A.; Deveson, I.W.; Dashnow, H.; MacArthur, D. Sequencing and Characterizing Short Tandem Repeats in the Human Genome. Nat. Rev. Genet. 2024, 25, 460–475. [Google Scholar] [CrossRef] [PubMed]
- Hammock, E.A.D.; Young, L.J. Microsatellite Instability Generates Diversity in Brain and Sociobehavioral Traits. Science 2005, 308, 1630–1634. [Google Scholar] [CrossRef] [PubMed]
- Sureshkumar, S.; Chhabra, A.; Guo, Y.L.; Balasubramanian, S. Simple Sequence Repeats and Their Expansions: Role in Plant Development, Environmental Response and Adaptation. New Phytol. 2025, 247, 504–517. [Google Scholar] [CrossRef]
- Johnson, K.M.; Mahler, N.R.; Saund, R.S.; Theisen, E.R.; Taslim, C.; Callender, N.W.; Crow, J.C.; Miller, K.R.; Lessnick, S.L. Role for the EWS domain of EWS/FLI in binding GGAA-microsatellites required for Ewing sarcoma anchorage independent growth. Proc. Natl. Acad. Sci. USA 2017, 114, 9870–9875. [Google Scholar] [CrossRef]
- Tak, Y.E.; Boulay, G.; Lee, L.; Iyer, S.; Perry, N.T.; Schultz, H.T.; Garcia, S.P.; Broye, L.; Horng, J.E.; Rengarajan, S.; et al. Genome-wide functional perturbation of human microsatellite repeats using engineered zinc finger transcription factors. Cell Genom. 2022, 2, 100119. [Google Scholar] [CrossRef]
- Giorgetti, L.; Siggers, T.; Tiana, G.; Caprara, G.; Notarbartolo, S.; Corona, T.; Pasparakis, M.; Milani, P.; Bulyk, M.L.; Natoli, G. Noncooperative interactions between transcription factors and clustered DNA binding sites enable graded transcriptional responses to environmental inputs. Mol. Cell 2010, 37, 418–428. [Google Scholar] [CrossRef]
- Balestrieri, C.; Alfarano, G.; Milan, M.; Tosi, V.; Prosperini, E.; Nicoli, P.; Palamidessi, A.; Scita, G.; Diaferia, G.R.; Natoli, G. Co-optation of tandem DNA repeats for the maintenance of mesenchymal identity. Cell 2018, 173, 1150–1164.e14. [Google Scholar] [CrossRef]
- Horton, C.A.; Alexandari, A.M.; Hayes, M.G.B.; Marklund, E.; Schaepe, J.M.; Aditham, A.K.; Shah, N.; Suzuki, P.H.; Shrikumar, A.; Afek, A.; et al. Short tandem repeats bind transcription factors to tune eukaryotic gene expression. Science 2023, 381, eadd1250. [Google Scholar] [CrossRef]
- Grapotte, M.; Saraswat, M.; Bessière, C.; Menichelli, C.; Ramilowski, J.A.; Severin, J.; Hayashizaki, Y.; Itoh, M.; Tagami, M.; Murata, M.; et al. Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network. Nat. Commun. 2021, 12, 3297. [Google Scholar] [CrossRef]
- Aracena, K.A.; Lin, Y.L.; Luo, K.; Pacis, A.; Gona, S.; Mu, Z.; Yotova, V.; Sindeaux, R.; Pramatarova, A.; Simon, M.M.; et al. Epigenetic variation impacts individual differences in the transcriptional response to influenza infection. Nat. Genet. 2024, 56, 408–419. [Google Scholar] [CrossRef]
- Li, Z.; Gao, E.; Zhou, J.; Han, W.; Xu, X.; Gao, X. Applications of Deep Learning in Understanding Gene Regulation. Cell Rep. Methods 2023, 3, 100384. [Google Scholar] [CrossRef] [PubMed]
- Willems, T.; Zielinski, D.; Yuan, J.; Gordon, A.; Gymrek, M.; Erlich, Y. Genome-wide profiling of heritable and de novo STR variations. Nat. Methods 2017, 14, 590–592. [Google Scholar] [CrossRef] [PubMed]
- Aksenova, A.Y.; Mirkin, S.M. At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences. Genes 2019, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Rosas Bringas, F.R.; Yin, Z.; Yao, Y.; Boudeman, J.; Ollivaud, S.; Chang, M. Interstitial Telomeric Sequences Promote Gross Chromosomal Rearrangement via Multiple Mechanisms. Proc. Natl. Acad. Sci. USA 2024, 121, e2407314121. [Google Scholar] [CrossRef]
- Boštjančić, L.L.; Bonassin, L.; Anušić, L.; Lovrenčić, L.; Besendorfer, V.; Maguire, I.; Grandjean, F.; Austin, C.M.; Greve, C.; Hamadou, A.B.; et al. The Pontastacus leptodactylus (Astacidae) Repeatome Provides Insight into Genome Evolution and Reveals Remarkable Diversity of Satellite DNA. Front. Genet. 2021, 11, 611745. [Google Scholar] [CrossRef]
- Tautz, D.; Renz, M. Simple Sequences Are Ubiquitous Repetitive Components of Eukaryotic Genomes. Nucleic Acids Res. 1984, 12, 4127–4138. [Google Scholar] [CrossRef]
- Ramel, C. Mini- and Microsatellites. Environ. Health Perspect. 1997, 105 (Suppl. 4), 781–789. [Google Scholar] [CrossRef][Green Version]
- Plohl, M.; Meštrović, N.; Mravinac, B. Satellite DNA Evolution. Genome Dyn. 2012, 7, 126–152. [Google Scholar] [CrossRef]
- Fry, K.; Salser, W. Nucleotide Sequences of HS-α Satellite DNA from Kangaroo Rat Dipodomys ordii and Characterization of Similar Sequences in Other Rodents. Cell 1977, 12, 1069–1084. [Google Scholar] [CrossRef]
- Navajas-Pérez, R.; Quesada del Bosque, M.E.; Garrido-Ramos, M.A. Effect of Location, Organization and Repeat-Copy Number in Satellite DNA Evolution. Mol. Genet. Genom. 2009, 282, 395–406. [Google Scholar] [CrossRef]
- Cheng, Z.J.; Murata, M. A Centromeric Tandem Repeat Family Originating from a Part of Ty3/Gypsy-Retroelement in Wheat and Its Relatives. Genetics 2003, 164, 665–672. [Google Scholar] [CrossRef]
- Plohl, M.; Petrović, V.; Luchetti, A.; Ricci, A.; Šatović, E.; Passamonti, M.; Mantovani, B. Long-Term Conservation vs. High Sequence Divergence: The Case of an Extraordinarily Old Satellite DNA in Bivalve Mollusks. Heredity 2010, 104, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Wolfgruber, T.K.; Presting, G.G. Tandem Repeats Derived from Centromeric Retrotransposons. BMC Genom. 2013, 14, 142. [Google Scholar] [CrossRef]
- Zhang, H.; Kobližková, A.; Wang, K.; Gong, Z.; Oliveira, L.; Torres, G.A.; Wu, Y.; Zhang, W.; Novák, P.; Buell, C.R.; et al. Boom-Bust Turnovers of Megabase-Sized Centromeric DNA in Solanum Species: Rapid Evolution of DNA Sequences Associated with Centromeres. Plant Cell 2014, 26, 1436–1447. [Google Scholar] [CrossRef] [PubMed]
- Meštrović, N.; Mravinac, B.; Pavlek, M.; Vojvoda-Zeljko, T.; Šatović, E.; Plohl, M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res. 2015, 23, 583–596. [Google Scholar] [CrossRef] [PubMed]
- McGurk, M.P.; Barbash, D.A. Double Insertion of Transposable Elements Provides a Substrate for the Evolution of Satellite DNA. Genome Res. 2018, 28, 714–725. [Google Scholar] [CrossRef]
- Belyayev, A.; Josefiová, J.; Jandová, M.; Mahelka, V.; Krak, K.; Mandák, B. Transposons and Satellite DNA: On the Origin of the Major Satellite DNA Family in the Chenopodium Genome. Mob. DNA 2020, 11, 20. [Google Scholar] [CrossRef]
- Tunjić-Cvitanić, M.; Pasantes, J.J.; García-Souto, D.; Cvitanić, T.; Plohl, M.; Šatović-Vukšić, E. Satellitome Analysis of the Pacific Oyster Crassostrea gigas Reveals New Pattern of Satellite DNA Organization, Highly Scattered across the Genome. Int. J. Mol. Sci. 2021, 22, 6798. [Google Scholar] [CrossRef]
- Vassetzky, N.S.; Kosushkin, S.A.; Ryskov, A.P. SINE-Derived Satellites in Scaled Reptiles. Mob. DNA 2023, 14, 21. [Google Scholar] [CrossRef]
- Silva, B.S.M.L.; Picorelli, A.C.R.; Kuhn, G.C.S. In Silico Identification and Characterization of Satellite DNAs in 23 Drosophila Species from the Montium Group. Genes 2023, 14, 300. [Google Scholar] [CrossRef]
- Kapitonov, V.V.; Jurka, J. Helitrons on a Roll: Eukaryotic Rolling-Circle Transposons. Trends Genet. 2007, 23, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Dias, G.B.; Heringer, P.; Svartman, M.; Kuhn, G.C.S. Tetris Is a Foldback Transposon That Provided the Building Blocks for an Emerging Satellite DNA of Drosophila virilis. Genome Biol. Evol. 2014, 6, 1302–1313. [Google Scholar] [CrossRef] [PubMed]
- Dias, G.B.; Heringer, P.; Svartman, M.; Kuhn, G.C.S. Helitrons Shaping the Genomic Architecture of Drosophila: Enrichment of DINE-TR1 in Alpha- and Beta-Heterochromatin, Satellite DNA Emergence, and piRNA Expression. Chromosome Res. 2015, 23, 597–613. [Google Scholar] [CrossRef] [PubMed]
- Dias, G.B.; Heringer, P.; Kuhn, G.C.S. Helitrons in Drosophila: Chromatin Modulation and Tandem Insertions. Mob. Genet. Elem. 2016, 6, e1154638. [Google Scholar] [CrossRef]
- Grabundzija, I.; Messing, S.A.; Thomas, J.; Cosby, R.L.; Bilic, I.; Miskey, C.; Gogol-Döring, A.; Kapitonov, V.; Diem, T.; Dalda, A.; et al. A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. Nat. Commun. 2016, 7, 10716. [Google Scholar] [CrossRef]
- Macas, J.; Koblížková, A.; Navrátilová, A.; Neumann, P. Hypervariable 3′ UTR Region of Plant LTR-Retrotransposons as a Source of Novel Satellite Repeats. Gene 2009, 448, 198–206. [Google Scholar] [CrossRef]
- Vondrak, T.; Robledillo, Á.L.; Novák, P.; Koblížková, A.; Neumann, P.; Macas, J. Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. Plant J. 2020, 101, 484–500. [Google Scholar] [CrossRef]
- Jesionek, W.; Bodláková, M.; Kubát, Z.; Čegan, R.; Vyskot, B.; Vrána, J.; Šafář, J.; Puterova, J.; Hobza, R. Fundamentally Different Repetitive Element Composition of Sex Chromosomes in Rumex acetosa. Ann. Bot. 2021, 127, 33–47. [Google Scholar] [CrossRef]
- Stupar, R.M.; Song, J.; Tek, A.L.; Cheng, Z.; Dong, F.; Jiang, J. Highly Condensed Potato Pericentromeric Heterochromatin Contains rDNA-Related Tandem Repeats. Genetics 2002, 162, 1435–1444. [Google Scholar] [CrossRef]
- Macas, J.; Navrátilová, A.; Mészáros, T. Sequence Subfamilies of Satellite Repeats Related to rDNA Intergenic Spacer Are Differentially Amplified on Vicia sativa Chromosomes. Chromosoma 2003, 112, 152–158. [Google Scholar] [CrossRef]
- Lim, K.Y.; Kovarik, A.; Matyasek, R.; Chase, M.W.; Knapp, S.; McCarthy, E.; Clarkson, J.J.; Leitch, A.R. Comparative Genomics and Repetitive Sequence Divergence in the Species of Diploid Nicotiana Section Alatae. Plant J. 2006, 48, 907–919. [Google Scholar] [CrossRef]
- Jo, S.H.; Koo, D.H.; Kim, J.F.; Hur, C.G.; Lee, S.; Yang, T.J.; Kwon, S.Y.; Choi, D. Evolution of Ribosomal DNA-Derived Satellite Repeat in Tomato Genome. BMC Plant Biol. 2009, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.; Fonsêca, A.; dos Santos, K.G.; Mosiolek, M.; Pedrosa-Harand, A. Contrasting Evolution of a Satellite DNA and Its Ancestral IGS rDNA in Phaseolus (Fabaceae). Genome 2012, 55, 683–689. [Google Scholar] [CrossRef]
- Sader, M.; Vaio, M.; Cauz-Santos, L.A.; Dornelas, M.C.; Vieira, M.L.C.; Melo, N.; Pedrosa-Harand, A. Large vs small genomes in Passiflora: The influence of the mobilome and the satellitome. Planta 2021, 253, 86. [Google Scholar] [CrossRef]
- Martins, C.; Ferreira, I.A.; Oliveira, C.; Foresti, F.; Galetti, P.M., Jr. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica 2006, 127, 133–141. [Google Scholar] [CrossRef]
- Vittorazzi, S.E.; Lourenço, L.B.; Del-Grande, M.L.; Recco-Pimentel, S.M. Satellite DNA derived from 5S rDNA in Physalaemus cuvieri (Anura, Leiuperidae). Cytogenet. Genome Res. 2011, 134, 101–107. [Google Scholar] [CrossRef]
- Kumke, K.; Macas, J.; Fuchs, J.; Altschmied, L.; Kour, J.; Dhar, M.K.; Houben, A. Plantago lagopus B Chromosome Is Enriched in 5S rDNA-Derived Satellite DNA. Cytogenet. Genome Res. 2016, 148, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, H.; Zhang, T.; Zeng, Z.; Zhang, P.; Zhu, B.; Han, Y.; Braz, G.T.; Casler, M.D.; Schmutz, J.; et al. Amplification and Adaptation of Centromeric Repeats in Polyploid Switchgrass Species. New Phytol. 2018, 218, 1645–1657. [Google Scholar] [CrossRef] [PubMed]
- Targueta, C.P.; Gatto, K.P.; Vittorazzi, S.E.; Recco-Pimentel, S.R.; Lourenço, L.B. High diversity of 5S ribosomal DNA and evidence of recombination with the satellite DNA PcP190 in frogs. Gene 2023, 851, 147015. [Google Scholar] [CrossRef]
- Ruiz-Ruano, F.J.; Navarro-Domínguez, B.; Camacho, J.P.M.; Garrido-Ramos, M.A. Characterization of the Satellitome in Lower Vascular Plants: The Case of the Endangered Fern Vandenboschia speciosa. Ann. Bot. 2019, 123, 587–599. [Google Scholar] [CrossRef]
- McCann, J.; Macas, J.; Novák, P.; Stuessy, T.F.; Villaseñor, J.L.; Weiss-Schneeweiss, H. Differential Genome Size and Repetitive DNA Evolution in Diploid Species of Melampodium Sect. Melampodium (Asteraceae). Front. Plant Sci. 2020, 11, 362. [Google Scholar] [CrossRef] [PubMed]
- Ávila Robledillo, L.; Koblížková, A.; Novák, P.; Böttinger, K.; Vrbová, I.; Neumann, P.; Schubert, I.; Macas, J. Satellite DNA in Vicia faba Is Characterized by Remarkable Diversity in Its Sequence Composition, Association with Centromeres, and Replication Timing. Sci. Rep. 2018, 8, 5838. [Google Scholar] [CrossRef] [PubMed]
- Ávila Robledillo, L.; Neumann, P.; Koblížková, A.; Novák, P.; Vrbová, I.; Macas, J. Extraordinary Sequence Diversity and Promiscuity of Centromeric Satellites in the Legume Tribe Fabeae. Mol. Biol. Evol. 2020, 37, 2341–2356. [Google Scholar] [CrossRef]
- Garrido-Ramos, M.A.; Jamilena, M.; Lozano, R.; Ruiz Rejón, C.; Ruiz Rejón, M. The EcoRI Centromeric Satellite DNA of the Sparidae Family (Pisces, Perciformes) Contains a Sequence Motive Common to Other Vertebrate Centromeric Satellite DNAs. Cytogenet. Cell Genet. 1995, 71, 345–351. [Google Scholar] [CrossRef]
- De la Herrán, R.; Ruiz Rejón, C.; Ruiz Rejón, M.; Garrido-Ramos, M.A. The Molecular Phylogeny of the Sparidae (Pisces, Perciformes) Based on Two Satellite DNA Families. Heredity 2001, 87, 691–697. [Google Scholar] [CrossRef]
- Navajas-Pérez, R.; de la Herrán, R.; Jamilena, M.; Lozano, R.; Ruiz Rejón, C.R.; Ruiz Rejón, M.; Garrido-Ramos, M.A. Reduced Rates of Sequence Evolution of Y-Linked Satellite DNA in Rumex (Polygonaceae). J. Mol. Evol. 2005, 60, 391–399. [Google Scholar] [CrossRef]
- Henikoff, S.; Ahmad, K.; Malik, H.S. The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA. Science 2001, 293, 1098–1102. [Google Scholar] [CrossRef] [PubMed]
- Plohl, M.; Luchetti, A.; Meštrović, N.; Mantovani, B. Satellite DNAs between Selfishness and Functionality: Structure, Genomics and Evolution of Tandem Repeats in Centromeric (Hetero)Chromatin. Gene 2008, 409, 72–82. [Google Scholar] [CrossRef]
- Talbert, P.B.; Henikoff, S. The Genetics and Epigenetics of Satellite Centromeres. Genome Res. 2022, 32, 608–615. [Google Scholar] [CrossRef]
- Dudka, D.; Dawicki-McKenna, J.M.; Sun, X.; Beeravolu, K.; Akera, T.; Lampson, M.A.; Black, B.E. Satellite DNA Shapes Dictate Pericentromere Packaging in Female Meiosis. Nature 2025, 638, 814–822. [Google Scholar] [CrossRef]
- Šatović, E.; Vojvoda Zeljko, T.; Luchetti, A.; Mantovani, B.; Plohl, M. Adjacent Sequences Disclose Potential for Intra-Genomic Dispersal of Satellite DNA Repeats and Suggest a Complex Network with Transposable Elements. BMC Genom. 2016, 17, 997. [Google Scholar] [CrossRef]
- Dover, G. Molecular Drive: A Cohesive Mode of Species Evolution. Nature 1982, 299, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Dover, G.A. Molecular Drive in Multigene Families: How Biological Novelties Arise, Spread and Are Assimilated. Trends Genet. 1986, 2, 159–165. [Google Scholar] [CrossRef]
- Elder, J.F.; Turner, B.J. Concerted Evolution of Repetitive DNA Sequences in Eukaryotes. Q. Rev. Biol. 1995, 70, 297–320. [Google Scholar] [CrossRef]
- Smith, G. Evolution of Repeated DNA Sequences by Unequal Crossover. Science 1976, 191, 528–535. [Google Scholar] [CrossRef]
- Strachan, T.; Webb, D.; Dover, G.A. Transition Stages of Molecular Drive in Multiple-Copy DNA Families in Drosophila. EMBO J. 1985, 4, 1701–1708. [Google Scholar] [CrossRef] [PubMed]
- Stephan, W. Recombination and the Evolution of Satellite DNA. Genet. Res. 1986, 47, 167–174. [Google Scholar] [CrossRef]
- Kuhn, G.C.S.; Küttler, H.; Moreira-Filho, O.; Heslop-Harrison, J.S. The 1.688 Repetitive DNA of Drosophila: Concerted Evolution at Different Genomic Scales and Association with Genes. Mol. Biol. Evol. 2012, 29, 7–11. [Google Scholar] [CrossRef] [PubMed]
- McAllister, B.F.; Werren, J.H. Evolution of Tandemly Repeated Sequences: What Happens at the End of an Array? J. Mol. Evol. 1999, 48, 469–481. [Google Scholar] [CrossRef]
- Mravinac, B.; Plohl, M. Satellite DNA Junctions Identify the Potential Origin of New Repetitive Elements in the Beetle Tribolium madens. Gene 2007, 394, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, G.C.S.; Teo, C.H.; Schwarzacher, T.; Heslop-Harrison, J.S. Evolutionary Dynamics and Sites of Illegitimate Recombination Revealed in the Interspersion and Sequence Junctions of Two Nonhomologous Satellite DNAs in Cactophilic Drosophila Species. Heredity 2009, 102, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Ramos, M.A.; de la Herrán, R.; Jamilena, R.; Lozano, R.; Ruiz-Rejón, C.; Ruiz-Rejón, M. Evolution of Centromeric Satellite DNA and Its Use in Phylogenetic Studies of the Sparidae Family (Pisces, Perciformes). Mol. Phylogenet. Evol. 1999, 12, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Nijman, I.J.; Lenstra, J.A. Mutation and Recombination in Cattle Satellite DNA: A Feedback Model for the Evolution of Satellite DNA Repeats. J. Mol. Evol. 2001, 52, 361–371. [Google Scholar] [CrossRef]
- Robles, F.; de la Herran, R.; Ludwig, A.; Ruiz Rejon, C.; Ruiz Rejon, M.; Garrido-Ramos, M.A. Evolution of Ancient Satellite DNAs in Sturgeon Genomes. Gene 2004, 338, 133–142. [Google Scholar] [CrossRef]
- Luchetti, A.; Cesari, M.; Carrara, G.; Cavicchi, S.; Passamonti, M.; Scali, V.; Mantovani, B. Unisexuality and Molecular Drive: Bag320 Sequence Diversity in Bacillus Taxa (Insecta, Phasmatodea). J. Mol. Evol. 2003, 56, 587–596. [Google Scholar] [CrossRef]
- Luchetti, A.; Marino, A.; Scanabissi, F.; Mantovani, B. Genomic Dynamics of a Low Copy Number Satellite DNA Family in Leptestheria dahalacensis (Crustacea, Branchiopoda, Conchostraca). Gene 2004, 342, 313–320. [Google Scholar] [CrossRef]
- Luchetti, A.; Marini, M.; Mantovani, B. Non-Concerted Evolution of the RET76 Satellite DNA Family in Reticulitermes Taxa (Insecta, Isoptera). Genetica 2006, 128, 123–132. [Google Scholar] [CrossRef]
- Navajas-Pérez, R.; Schwarzacher, T.; de la Herrán, R.; Ruiz Rejón, C.; Ruiz Rejón, M.; Garrido-Ramos, M.A. The Origin and Evolution of the Variability in a Y-Specific Satellite DNA of Rumex acetosa and Its Relatives. Gene 2006, 368, 61–71. [Google Scholar] [CrossRef]
- Milani, D.; Ruiz-Ruano, F.J.; Camacho, J.P.M.; Cabral-de-Mello, D.C. Out of Patterns, the Euchromatic B Chromosome of the Grasshopper Abacris flavolineata Is Not Enriched in High-Copy Repeats. Heredity 2021, 127, 475–483. [Google Scholar] [CrossRef]
- Mravinac, B.; Ugarković, Ð.; Franjević, D.; Plohl, M. Long Inversely Oriented Subunits Form a Complex Monomer of Tribolium brevicornis Satellite DNA. J. Mol. Evol. 2005, 60, 513–525. [Google Scholar] [CrossRef]
- Quesada del Bosque, M.E.; López-Flores, I.; Suárez-Santiago, V.N.; Garrido-Ramos, M.A. Differential Spreading of HinfI Satellite DNA Variants during Radiation in Centaureinae. Ann. Bot. 2013, 112, 1793–1802. [Google Scholar] [CrossRef]
- Quesada del Bosque, M.E.; López-Flores, I.; Suárez-Santiago, V.N.; Garrido-Ramos, M.A. Satellite-DNA Diversification and the Evolution of Major Lineages in Cardueae (Carduoideae, Asteraceae). J. Plant Res. 2014, 127, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Belyayev, A.; Josefiová, J.; Jandová, M.; Kalendar, R.; Krak, K.; Mandák, B. Natural History of a Satellite DNA Family: From the Ancestral Genome Component to Species-Specific Sequences, Concerted and Non-Concerted Evolution. Int. J. Mol. Sci. 2019, 20, 1201. [Google Scholar] [CrossRef] [PubMed]
- Belyayev, A.; Jandová, M.; Josefiová, J.; Kalendar, R.; Mahelka, V.; Mandák, B.; Krak, K. The Major Satellite DNA Families of the Diploid Chenopodium album Aggregate Species: Arguments for and against the “Library Hypothesis”. PLoS ONE 2020, 15, e0241206. [Google Scholar] [CrossRef]
- Mravinac, B.; Plohl, M.; Meštrović, N.; Ugarković, Ð. Sequence of PRAT Satellite DNA “Frozen” in Some Coleopteran Species. J. Mol. Evol. 2002, 54, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Šatović, E.; Plohl, M. Distribution of DTHS3 Satellite DNA across 12 Bivalve Species. J. Genet. 2018, 97, 575–580. [Google Scholar] [CrossRef]
- Dos Santos, R.Z.; Calegari, R.M.; Silva, D.M.Z.A.; Ruiz-Ruano, F.J.; Melo, S.; Oliveira, C.; Foresti, F.; Uliano-Silva, M.; Porto-Foresti, F.; Utsunomia, R. A Long-Term Conserved Satellite DNA That Remains Unexpanded in Several Genomes of Characiformes Fish Is Actively Transcribed. Genome Biol. Evol. 2021, 13, evab002. [Google Scholar] [CrossRef]
- Despot-Slade, E.; Širca, S.; Mravinac, B.; Castagnone-Sereno, P.; Plohl, M.; Meštrović, N. Satellitome Analyses in Nematodes Illuminate Complex Species History and Show Conserved Features in Satellite DNAs. BMC Biol. 2022, 20, 259. [Google Scholar] [CrossRef]
- Mahtani, M.M.; Willard, H.F. Pulsed-Field Gel Analysis of Alpha-Satellite DNA at the Human X Chromosome Centromere: High-Frequency Polymorphisms and Array Size Estimate. Genomics 1990, 7, 607–613. [Google Scholar] [CrossRef]
- Cheng, Z.; Dong, F.; Langdon, T.; Ouyang, S.; Buell, C.R.; Gu, M.; Blattner, F.R.; Jiang, J. Functional Rice Centromeres Are Marked by a Satellite Repeat and a Centromere-Specific Retrotransposon. Plant Cell 2002, 14, 1691–1704. [Google Scholar] [CrossRef]
- Ugarković, Ð.; Plohl, M. Variation in Satellite DNA Profiles—Causes and Effects. EMBO J. 2002, 21, 5955–5959. [Google Scholar] [CrossRef]
- Cohen, S.; Agmon, N.; Sobol, O.; Segal, D. Extrachromosomal Circles of Satellite Repeats and 5S Ribosomal DNA in Human Cells. Mob. DNA 2010, 1, 11. [Google Scholar] [CrossRef] [PubMed]
- Scalvenzi, T.; Pollet, N. Insights on Genome Size Evolution from a Miniature Inverted Repeat Transposon Driving a Satellite DNA. Mol. Phylogenet. Evol. 2014, 81, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Packiaraj, J.; Thakur, J. DNA Satellite and Chromatin Organization at Mouse Centromeres and Pericentromeres. Genome Biol. 2024, 25, 52. [Google Scholar] [CrossRef]
- Bardella, V.B.; Milani, D.; Cabral-de-Mello, D.C. Analysis of Holhymenia histrio Genome Provides Insight into the SatDNA Evolution in an Insect with Holocentric Chromosomes. Chromosome Res. 2020, 28, 369–380. [Google Scholar] [CrossRef]
- Pires, S.; Jorge, P.; Liehr, T.; Oliva-Teles, N. Challenges in Classifying Human Chromosomal Heteromorphisms Using Banding Cytogenetics: From Controversial Guidelines to the Need for a Universal Scoring System. Hum. Genome Var. 2024, 11, 38. [Google Scholar] [CrossRef]
- Cuñado, N.; Navajas-Pérez, R.; de la Herrán, R.; Ruiz Rejón, C.; Ruiz Rejón, M.; Santos, J.L.; Garrido-Ramos, M.A. The Evolution of Sex Chromosomes in the Genus Rumex (Polygonaceae): Identification of a New Species with Heteromorphic Sex Chromosomes. Chromosome Res. 2007, 15, 825–833. [Google Scholar] [CrossRef]
- Ferretti, A.B.S.M.; Milani, D.; Palacios-Gimenez, O.M.; Ruiz-Ruano, F.J.; Cabral-de-Mello, D.C. High dynamism for neo-sex chromosomes: Satellite DNAs reveal complex evolution in a grasshopper. Heredity 2020, 125, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Cabral-de-Mello, D.C.; Mora, P.; Rico-Porras, J.M.; Ferretti, A.B.S.M.; Palomeque, T.; Lorite, P. The Spread of Satellite DNAs in Euchromatin and Insights into the Multiple Sex Chromosome Evolution in Hemiptera Revealed by Repeatome Analysis of the Bug Oxycarenus hyalinipennis. Insect Mol. Biol. 2023, 32, 725–737. [Google Scholar] [CrossRef]
- Palacios-Gimenez, O.M.; Dias, G.B.; De Lima, L.G.; Kuhn, G.C.E.S.; Ramos, É.; Martins, C.; Cabral-De-Mello, D.C. High-Throughput Analysis of the Satellitome Revealed Enormous Diversity of Satellite DNAs in the Neo-Y Chromosome of the Cricket Eneoptera surinamensis. Sci. Rep. 2017, 7, 6422. [Google Scholar] [CrossRef] [PubMed]
- Utsunomia, R.; Silva, D.M.Z.d.A.; Ruiz-Ruano, F.J.; Goes, C.A.G.; Melo, S.; Ramos, L.P.; Oliveira, C.; Porto-Foresti, F.; Foresti, F.; Hashimoto, D.T. Satellitome Landscape Analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) Reveals Intense Accumulation of Satellite Sequences on the Heteromorphic Sex Chromosome. Sci. Rep. 2019, 9, 5856. [Google Scholar] [CrossRef] [PubMed]
- Haerter, C.A.G.; Viana, P.F.; Takagui, F.H.; Tonello, S.; Margarido, V.P.; Blanco, D.R.; Traldi, J.B.; Lui, R.L.; Feldberg, E. A Variant W Chromosome in Centromochlus heckelii (Siluriformes, Auchenipteridae) and the Role of Repeated DNA in Its Heteromorphism. Genet. Mol. Biol. 2025, 48, e20240071. [Google Scholar] [CrossRef] [PubMed]
- Meštrović, N.; Plohl, M.; Mravinac, B.; Ugarković, Ð. Evolution of Satellite DNAs from the Genus Palorus—Experimental Evidence for the Library Hypothesis. Mol. Biol. Evol. 1998, 15, 1062–1068. [Google Scholar] [CrossRef]
- Meštrović, N.; Castagnone-Sereno, P.; Plohl, M. Interplay of Selective Pressure and Stochastic Events Directs Evolution of the MEL172 Satellite DNA Library in Root–Knot Nematodes. Mol. Biol. Evol. 2006, 23, 2316–2325. [Google Scholar] [CrossRef]
- Mora, P.; Montiel, E.E.; Rico-Porras, J.M.; Palomeque, T.; Panzera, F.; Lorite, P. Making the Genome Huge: The Case of Triatoma delpontei, a Triatominae Species with More than 50% of Its Genome Full of Satellite DNA. Genes 2023, 14, 371. [Google Scholar] [CrossRef]
- Palacios-Gimenez, O.M.; Milani, D.; Song, H.; Marti, D.A.; López-León, M.D.; Ruiz-Ruano, F.J.; Camacho, J.P.M.; Cabral-De-Mello, D.C.; O’Neill, R. Eight Million Years of Satellite DNA Evolution in Grasshoppers of the Genus Schistocerca Illuminate the Ins and Outs of the Library Hypothesis. Genome Biol. Evol. 2020, 12, 88–102. [Google Scholar] [CrossRef]
- Pita, S.; Panzera, F.; Mora, P.; Vela, J.; Cuadrado, Á.; Sánchez, A.; Palomeque, T.; Lorite, P. Comparative Repeatome Analysis on Triatoma infestans Andean and Non-Andean Lineages, Main Vector of Chagas Disease. PLoS ONE 2017, 12, e0181635. [Google Scholar] [CrossRef]
- de Silva, D.M.Z.A.; Utsunomia, R.; Ruiz-Ruano, F.J.; Daniel, S.N.; Porto-Foresti, F.; Hashimoto, D.T.; Oliveira, C.; Camacho, J.P.M.; Foresti, F.; Silva, D.M.Z.d.A.; et al. High-Throughput Analysis Unveils a Highly Shared Satellite DNA Library among Three Species of Fish Genus Astyanax. Sci. Rep. 2017, 7, 12726. [Google Scholar] [CrossRef]
- Petraccioli, A.; Odierna, G.; Capriglione, T.; Barucca, M.; Forconi, M.; Olmo, E.; Biscotti, M.A. A Novel Satellite DNA Isolated in Pecten jacobaeus Shows High Sequence Similarity among Molluscs. Mol. Genet. Genom. 2015, 290, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Sena, R.S.; Heringer, P.; Valeri, M.P.; Pereira, V.S.; Kuhn, G.C.S.; Svartman, M. Identification and Characterization of Satellite DNAs in Two-Toed Sloths of the Genus Choloepus (Megalonychidae, Xenarthra). Sci. Rep. 2020, 10, 19202. [Google Scholar] [CrossRef] [PubMed]
- Cabral-de-Mello, D.C.; Zrzavá, M.; Kubíčková, S.; Rendón, P.; Marec, F. The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths. Front. Genet. 2021, 12, 661417. [Google Scholar] [CrossRef]
- Heitkam, T.; Schulte, L.; Weber, B.; Liedtke, S.; Breitenbach, S.; Kögler, A.; Morgenstern, K.; Brückner, M.; Tröber, U.; Wolf, H.; et al. Comparative Repeat Profiling of Two Closely Related Conifers (Larix decidua and Larix kaempferi) Reveals High Genome Similarity with Only Few Fast-Evolving Satellite DNAs. Front. Genet. 2021, 12, 683668. [Google Scholar] [CrossRef] [PubMed]
- Montiel, E.E.; Mora, P.; Rico-Porras, J.M.; Palomeque, T.; Lorite, P. Satellitome of the Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), the Most Diverse among Insects. Front. Ecol. Evol. 2022, 10, 826808. [Google Scholar] [CrossRef]
- Navarro-Dominguez, B.; Cabrero, J.; López-León, M.D.; Ruiz-Ruano, F.J.; Pita, M.; Bella, J.L.; Camacho, J.P.M. Tandem Repeat DNA Provides Many Cytological Markers for Hybrid Zone Analysis in Two Subspecies of the Grasshopper Chorthippus parallelus. Genes 2023, 14, 397. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, F.; Schwarzacher, T.; Heslop-Harrison, J.S.; Teng, N. The Nature and Genomic Landscape of Repetitive DNA Classes in Chrysanthemum nankingense Shows Recent Genomic Changes. Ann. Bot. 2023, 131, 215–228. [Google Scholar] [CrossRef]
- Crepaldi, C.; Martí, E.; Gonçalves, É.M.; Martí, D.A.; Parise-Maltempi, P.P. Genomic Differences between the Sexes in a Fish Species Seen through Satellite DNAs. Front. Genet. 2021, 12, 728670. [Google Scholar] [CrossRef]
- Mora, P.; Vela, J.; Ruiz-Ruano, F.J.; Ruiz-Mena, A.; Montiel, E.E.; Palomeque, T.; Lorite, P. Satellitome Analysis in the Ladybird Beetle Hippodamia variegata (Coleoptera, Coccinellidae). Genes 2020, 11, 783. [Google Scholar] [CrossRef]
- Pereira, J.A.; Milani, D.; Ferretti, A.B.S.M.; Bardella, V.B.; Cabral-de-Mello, D.C.; Lopes, D.M. The Extensive Amplification of Heterochromatin in Melipona Bees Revealed by High Throughput Genomic and Chromosomal Analysis. Chromosoma 2021, 130, 251–262. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Aleix-Mata, G.; Montiel, E.E.; Cabral-de-Mello, D.C.; Marchal, J.A.; Sanchez, A. Satellitome Analysis on Talpa aquitania Genome and Inferences about the satDNAs Evolution on Some Talpidae. Genes 2022, 14, 117. [Google Scholar] [CrossRef]
- Ruiz-Ruano, F.J.; Navarro-Domínguez, B.; Camacho, J.P.M.; Garrido-Ramos, M.A. Transposable Element Landscapes Illuminate Past Evolutionary Events in the Endangered Fern Vandenboschia speciosa. Genome 2022, 65, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.D.; Cao, H.X.; Jovtchev, G.; Neumann, P.; Novák, P.; Fojtová, M.; Vu, G.T.; Macas, J.; Fajkus, J.; Schubert, I.; et al. Centromere and Telomere Sequence Alterations Reflect the Rapid Genome Evolution within the Carnivorous Plant Genus Genlisea. Plant J. 2015, 84, 1087–1099. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Hoffman, J.I.; Schielzeth, H. Comparative Analysis of Genomic Repeat Content in Gomphocerine Grasshoppers Reveals Expansion of Satellite DNA and Helitrons in Species with Unusually Large Genomes. Genome Biol. Evol. 2020, 12, 1180–1193. [Google Scholar] [CrossRef]
- de Lima, L.G.; Ruiz-Ruano, F.J. In-Depth Satellitome Analyses of 37 Drosophila Species Illuminate Repetitive DNA Evolution in the Drosophila Genus. Genome Biol. Evol. 2022, 14, evac064. [Google Scholar] [CrossRef] [PubMed]
- Gržan, T.; Dombi, M.; Despot-Slade, E.; Veseljak, D.; Volarić, M.; Meštrović, N.; Plohl, M.; Mravinac, B. The Low-Copy-Number Satellite DNAs of the Model Beetle Tribolium castaneum. Genes 2023, 14, 999. [Google Scholar] [CrossRef]
- Brajković, J.; Feliciello, I.; Bruvo-Mađarić, B.; Ugarković, D. Satellite DNA-Like Elements Associated with Genes within Euchromatin of the Beetle Tribolium castaneum. G3 Genes Genomes Genet. 2012, 2, 931–941. [Google Scholar] [CrossRef]
- De Lima, L.G.; Svartman, M.; Kuhn, G.C.S. Dissecting the Satellite DNA Landscape in Three Cactophilic Drosophila Sequenced Genomes. G3 Genes Genomes Genet. 2017, 7, 2831–2843. [Google Scholar] [CrossRef]
- Sproul, J.S.; Khost, D.E.; Eickbush, D.G.; Negm, S.; Wei, X.; Wong, I.; Larracuente, A.M. Dynamic Evolution of Euchromatic Satellites on the X Chromosome in Drosophila melanogaster and the simulans Clade. Mol. Biol. Evol. 2020, 37, 2241–2256. [Google Scholar] [CrossRef]
- Cabral-de-Mello, D.C.; Gasparotto, A.E.; Rico-Porras, J.M.; Ferretti, A.B.S.M.; Mora, P.; Alves-Gomes, R.T.; Lourejan, V.; Scudeler, E.L.; Lorite, P.; Bardella, V.B. First insights into the satellitomes and new evidence for the absence of canonical insect telomere in the Neuroptera order. Genome 2025, 68, 1–12. [Google Scholar] [CrossRef]
- Ugarković, D.; Podnar, M.; Plohl, M. Satellite DNA of the Red Flour Beetle Tribolium castaneum—Comparative Study of Satellites from the Genus Tribolium. Mol. Biol. Evol. 1996, 13, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Feliciello, I.; Chinali, G.; Ugarković, Đ. Structure and Evolutionary Dynamics of the Major Satellite in the Red Flour Beetle Tribolium castaneum. Genetica 2011, 139, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Feliciello, I.; Pezer, Ž.; Kordiš, D.; Bruvo Mađarić, B.; Ugarković, Đ. Evolutionary History of Alpha Satellite DNA Repeats Dispersed within Human Genome Euchromatin. Genome Biol. Evol. 2020, 12, 2125–2138. [Google Scholar] [CrossRef]
- Paar, V.; Glunčić, M.; Rosandić, M.; Basar, I.; Vlahović, I. Intragene Higher Order Repeats in Neuroblastoma Breakpoint Family Genes Distinguish Humans from Chimpanzees. Mol. Biol. Evol. 2011, 28, 1877–1892. [Google Scholar] [CrossRef] [PubMed]
- Brajković, J.; Pezer, Ž.; Bruvo-MadWarić, B.; Sermek, A.; Feliciello, I.; Ugarković, D.W. Dispersion profiles and gene associations of repetitive DNAs in the euchromatin of the beetle Tribolium castaneum. G3 Genes Genomes Genet. 2018, 8, 875–886. [Google Scholar] [CrossRef]
- Chaves, R.; Ferreira, D.; Mendes-da-Silva, A.; Meles, S.; Adega, F. FA-SAT Is an Old Satellite DNA Frozen in Several Bilateria Genomes. Genome Biol. Evol. 2017, 9, 3073–3087. [Google Scholar] [CrossRef]
- Tunjić Cvitanić, M.; Vojvoda Zeljko, T.; Pasantes, J.J.; García-Souto, D.; Gržan, T.; Despot-Slade, E.; Plohl, M.; Šatović, E. Sequence Composition Underlying Centromeric and Heterochromatic Genome Compartments of the Pacific Oyster Crassostrea gigas. Genes 2020, 11, 695. [Google Scholar] [CrossRef]
- Pavlek, M.; Gelfand, Y.; Plohl, M.; Meštrović, N. Genome-Wide Analysis of Tandem Repeats in Tribolium castaneum Genome Reveals Abundant and Highly Dynamic Tandem Repeat Families with Satellite DNA Features in Euchromatic Chromosomal Arms. DNA Res. 2015, 22, 387–401. [Google Scholar] [CrossRef]
- Montiel, E.E.; Panzera, F.; Palomeque, T.; Lorite, P.; Pita, S. Satellitome Analysis of Rhodnius prolixus, One of the Main Chagas Disease Vector Species. Int. J. Mol. Sci. 2021, 22, 6052. [Google Scholar] [CrossRef]
- Marques, A.; Ribeiro, T.; Neumann, P.; Macas, J.; Novák, P.; Schubert, V.; Pellino, M.; Fuchs, J.; Ma, W.; Kuhlmann, M.; et al. Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proc. Natl. Acad. Sci. USA 2015, 112, 13633–13638. [Google Scholar] [CrossRef]
- Hofstatter, P.G.; Thangavel, G.; Lux, T.; Neumann, P.; Vondrak, T.; Novak, P.; Zhang, M.; Costa, L.; Castellani, M.; Scott, A.; et al. Repeat-Based Holocentromeres Influence Genome Architecture and Karyotype Evolution. Cell 2022, 185, 3153–3168.e18. [Google Scholar] [CrossRef]
- Despot-Slade, E.; Mravinac, B.; Širca, S.; Castagnone-Sereno, P.; Plohl, M.; Meštrović, N. The Centromere Histone Is Conserved and Associated with Tandem Repeats Sharing a Conserved 19-bp Box in the Holocentromere of Meloidogyne Nematodes. Mol. Biol. Evol. 2021, 38, 1943–1965. [Google Scholar] [CrossRef]
- de Souza, T.B.; Parteka, L.M.; Kuo, Y.-T.; Nascimento, T.; Schubert, V.; Pedrosa-Harand, A.; Marques, A.; Houben, A.; Laforga Vanzela, A.L. Distinct patterns of satDNA distribution in holocentric chromosomes of spike-sedges (Eleocharis, Cyperaceae). Genome 2025, 68, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Anjos, A.; Milani, D.; Bardella, V.B.; Paladini, A.; Cabral-de-Mello, D.C. Evolution of satDNAs on holocentric chromosomes: Insights from hemipteran insects of the genus Mahanarva. Chromosome Res. 2023, 31, 5. [Google Scholar] [CrossRef] [PubMed]
- Costello, M.; Fleharty, M.; Abreu, J.; Farjoun, Y.; Ferriera, S.; Holmes, L.; Granger, B.; Green, L.; Howd, T.; Mason, T.; et al. Characterization and Remediation of Sample Index Swaps by Non-Redundant Dual Indexing on Massively Parallel Sequencing Platforms. BMC Genom. 2018, 19, 332. [Google Scholar] [CrossRef] [PubMed]


| Species | Genome Size (Gb) | satDNAs in the Satellitome | % of the Genome | Reference |
|---|---|---|---|---|
| Crayfish Pontastacus leptodactylus | 18.7 | 258 | 27.5 | [81] |
| Wheat Triticum aestivum | 16.95 | 36 | 2.53 | [22] |
| Killarney fern Vandenboschia speciosa | 10.5 | 11 | 0.43 | [116] |
| Plant Chrysanthemum nankingense | 3.07 | few microsatellites | 0.16 | [181] |
| Freshwater fish Megaleporinus elongatus | 1.02 | 140 | 5 | [182] |
| Red palm weevil Rhynchophorus ferrugineus | 0.78 | 112 | 25 | [179] |
| Pacific oyster Crassostrea gigas | 0.6 | 52 | 6.3 | [94] |
| Kissing bug Triatoma delpontei | 2.84 | 160 | 51.1 | [171] |
| Ladybird beetle Hippodamia variegata | 0.28 | 29 | 14.7 | [183] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrido-Ramos, M.A.; Plohl, M.; Šatović-Vukšić, E. Satellite DNA Genomics: The Ongoing Story. Int. J. Mol. Sci. 2025, 26, 11291. https://doi.org/10.3390/ijms262311291
Garrido-Ramos MA, Plohl M, Šatović-Vukšić E. Satellite DNA Genomics: The Ongoing Story. International Journal of Molecular Sciences. 2025; 26(23):11291. https://doi.org/10.3390/ijms262311291
Chicago/Turabian StyleGarrido-Ramos, Manuel A., Miroslav Plohl, and Eva Šatović-Vukšić. 2025. "Satellite DNA Genomics: The Ongoing Story" International Journal of Molecular Sciences 26, no. 23: 11291. https://doi.org/10.3390/ijms262311291
APA StyleGarrido-Ramos, M. A., Plohl, M., & Šatović-Vukšić, E. (2025). Satellite DNA Genomics: The Ongoing Story. International Journal of Molecular Sciences, 26(23), 11291. https://doi.org/10.3390/ijms262311291

