MicroRNAs Let-7b-5p and miR-24-3p as Potential Therapeutic Agents Targeting Pancreatic Cancer Stem Cells
Abstract
1. Introduction
2. Results
2.1. Identification, Sorting, and Characterization of PCSC-like Cells from the Pancreatic Cancer Cell Line PANC-1
2.2. Identification of the miRNA Profile of PCSC-like Cells
2.3. Of the 31 DEmiRNAs, 10 Are Involved in Signaling Pathways That Regulate Pluripotency and Differentiation in PCSCs
2.4. Overexpression of Let-7b-5p and miR-24-3p Reduces the Expression of Key Pluripotency Factors and Their Target mRNAs, Promoting the Differentiation of PCSCs
2.5. Overexpression of Let-7b-5p and miR-24-3p In Vitro Reduces the PCSC Population and Pancreosphere Size and Leads to Decreased Cell Proliferation, Invasion, Migration, and Resistance to Gemcitabine
2.6. Pancreospheres Overexpressing miR-24-3p and Let-7b-5p Generated Smaller Tumors in Nu/Nu Mouse Xenograft Models
3. Discussion
4. Materials and Methods
4.1. Cell Culture of Pancreatic Cancer Cell Line PANC-1 and Primary Cell Lines MGKRAS004 and MGKRAS005
4.2. Pancreospheres Formation
4.3. Fluorescence-Activated Cell Sorting (FACS)
4.4. RNA Extraction and cDNA Synthesis
4.5. Quantitative PCR (qPCR)
4.6. Total Protein Extraction and Western Blotting
4.7. miRNA Microarray Analysis
4.8. Analysis of miRNA Differential Expression
4.9. RT-qPCR Expression of miRNAs
4.10. miRNA Target Prediction and Pathway Analysis
4.11. miRNA Mimic Transfection
4.12. Total RNA Extraction and RNA Sequencing
4.13. RNA-Seq and Pathway Analysis
4.14. Clonogenic Assays
4.15. Migration and Invasion Assays
4.16. MTT Assay
4.17. Lentiviral Transduction of PCSC+S
4.18. Xenograft Mouse Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PDAC | Pancreatic ductal adenocarcinoma |
| PCSCs | Pancreatic cancer stem cells |
| mRNA | Messenger RNA |
| DEmiRNAs | Differentially Expressed miRNAs |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
| RT-qPCR | Quantitative Reverse Transcription Polymerase Chain Reaction |
| WB | Western blot |
| miRNAs | MicroRNAs |
| CSCs | Cancer Stem Cells |
| mESCs | mouse Embryonic Stem Cells |
| hESCs | human Embryonic Stem Cells |
| FBS | Fetal Bovine Serum |
| PFA | Paraformaldehyde |
| MTT | 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide |
| TAC | Transcriptome Analysis Console |
| 3′ UTR | 3′ untranslated region |
| FACS | Fluorescence-Activated Cell Sorter |
| EMT | Epithelial-to-Mesenchymal Transition |
| TFs | Transcription Factors |
References
- Leiphrakpam, P.D.; Chowdhury, S.; Zhang, M.; Bajaj, V.; Dhir, M.; Are, C. Trends in the Global Incidence of Pancreatic Cancer and a Brief Review of its Histologic and Molecular Subtypes. J. Gastrointest. Cancer 2025, 56, 71. [Google Scholar] [CrossRef]
- Hayat, U.; Croce, P.S.; Saadeh, A.; Desai, K.; Appiah, J.; Khan, S.; Khan, Y.I.; Kumar, K.; Hanif, A. Current and Emerging Treatment Options for Pancreatic Cancer: A Comprehensive Review. J. Clin. Med. 2025, 14, 1129. [Google Scholar] [CrossRef]
- Cunningham, D.; Sclafani, F.; Okines, A.; Ratnayake, G.; Chau, I. Chemotherapy for Advanced Pancreatic Cancer. In Pancreatic Cancer; Neoptolemos, J.P., Urrutia, R., Abbruzzese, J., Büchler, M.W., Eds.; Springer: New York, NY, USA, 2017; pp. 1–48. [Google Scholar]
- Li, C.; Heidt, D.G.; Dalerba, P.; Burant, C.F.; Zhang, L.; Adsay, V.; Wicha, M.; Clarke, M.F.; Simeone, D.M. Identification of pancreatic cancer stem cells. Cancer Res. 2007, 67, 1030–1037. [Google Scholar] [CrossRef]
- Hou, Y.C.; Chao, Y.J.; Tung, H.L.; Wang, H.C.; Shan, Y.S. Coexpression of CD44-positive/CD133-positive cancer stem cells and CD204-positive tumor-associated macrophages is a predictor of survival in pancreatic ductal adenocarcinoma. Cancer 2014, 120, 2766–2777. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, H.; Yang, H.; Rao, M.S.; Zhan, M. Mechanisms controlling embryonic stem cell self-renewal and differentiation. Crit. Rev. Eukaryot. Gene Expr. 2006, 16, 211–231. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Yin, S.; Zeng, H.; Li, H.; Wan, X. Regulation of Embryonic Stem Cell Self-Renewal. Life 2022, 12, 1151. [Google Scholar] [CrossRef]
- Zhang, X.; Peterson, K.A.; Liu, X.S.; McMahon, A.P.; Ohba, S. Gene regulatory networks mediating canonical Wnt signal-directed control of pluripotency and differentiation in embryo stem cells. Stem Cells 2013, 31, 2667–2679. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S. Tgf-Beta family signaling in embryonic stem cells. Int. J. Stem Cells 2011, 4, 18–23. [Google Scholar] [CrossRef]
- Geiselmann, A.; Micouin, A.; Vandormael-Pournin, S.; Laville, V.; Chervova, A.; Mella, S.; Navarro, P.; Cohen-Tannoudji, M. PI3K/AKT signaling controls ICM maturation and proper epiblast and primitive endoderm specification in mice. Dev. Cell 2025, 60, 204–219 e6. [Google Scholar] [CrossRef]
- Khan, A.Q.; Ahmed, E.I.; Elareer, N.R.; Junejo, K.; Steinhoff, M.; Uddin, S. Role of miRNA-Regulated Cancer Stem Cells in the Pathogenesis of Human Malignancies. Cells 2019, 8, 840. [Google Scholar] [CrossRef]
- Ramachandran, I.; Ganapathy, V.; Gillies, E.; Fonseca, I.; Sureban, S.M.; Houchen, C.W.; Reis, A.; Queimado, L. Wnt inhibitory factor 1 suppresses cancer stemness and induces cellular senescence. Cell Death Dis. 2014, 5, e1246. [Google Scholar] [CrossRef]
- Yeh, D.W.; Chen, Y.S.; Lai, C.Y.; Liu, Y.L.; Lu, C.H.; Lo, J.F.; Chen, L.; Hsu, L.C.; Luo, Y.; Xiang, R.; et al. Downregulation of COMMD1 by miR-205 promotes a positive feedback loop for amplifying inflammatory- and stemness-associated properties of cancer cells. Cell Death Differ. 2016, 23, 841–852. [Google Scholar] [CrossRef]
- Gzil, A.; Zarebska, I.; Bursiewicz, W.; Antosik, P.; Grzanka, D.; Szylberg, L. Markers of pancreatic cancer stem cells and their clinical and therapeutic implications. Mol. Biol. Rep. 2019, 46, 6629–6645. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Shen, Y.; Chen, X.; He, J.; Liu, J.; Zu, X. Self-Renewal Signalling Pathway Inhibitors: Perspectives on Therapeutic Approaches for Cancer Stem Cells. Onco Targets Ther. 2020, 13, 525–540. [Google Scholar] [CrossRef]
- Naeli, P.; Winter, T.; Hackett, A.P.; Alboushi, L.; Jafarnejad, S.M. The intricate balance between microRNA-induced mRNA decay and translational repression. FEBS J. 2023, 290, 2508–2524. [Google Scholar] [CrossRef]
- Yoshida, K.; Yamamoto, Y.; Ochiya, T. miRNA signaling networks in cancer stem cells. Regen Ther. 2021, 17, 1–7. [Google Scholar] [CrossRef]
- Kaya, M.; Abuaisha, A.; Suer, I.; Emiroglu, S.; Onder, S.; Onay Ucar, E.; Yenerel, M.N.; Palanduz, S.; Cefle, K.; Ozturk, S.; et al. Let-7b-5p sensitizes breast cancer cells to doxorubicin through Aurora Kinase B. PLoS ONE 2025, 20, e0307420. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Meng, K.; Sheng, G.; Yang, T. MicroRNA-24 inhibits the proliferation, migration and invasion and enhances chemosensitivity of human gastric cancer by targeting DND1. J. BUON 2020, 25, 1001–1006. [Google Scholar] [PubMed]
- Bimonte, S.; Barbieri, A.; Leongito, M.; Palma, G.; Del Vecchio, V.; Falco, M.; Palaia, R.; Albino, V.; Piccirillo, M.; Amore, A.; et al. The Role of miRNAs in the Regulation of Pancreatic Cancer Stem Cells. Stem Cells Int. 2016, 2016, 8352684. [Google Scholar] [CrossRef]
- Yu, L.; Li, L.; Medeiros, L.J.; Young, K.H. NF-kappaB signaling pathway and its potential as a target for therapy in lymphoid neoplasms. Blood Rev. 2017, 31, 77–92. [Google Scholar] [CrossRef]
- Sakaki-Yumoto, M.; Katsuno, Y.; Derynck, R. TGF-beta family signaling in stem cells. Biochim. Biophys. Acta 2013, 1830, 2280–2296. [Google Scholar] [CrossRef]
- Brown, S.; Teo, A.; Pauklin, S.; Hannan, N.; Cho, C.H.; Lim, B.; Vardy, L.; Dunn, N.R.; Trotter, M.; Pedersen, R.; et al. Activin/Nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors. Stem Cells 2011, 29, 1176–1185. [Google Scholar] [CrossRef]
- Borlongan, M.C.; Wang, H. Profiling and targeting cancer stem cell signaling pathways for cancer therapeutics. Front. Cell Dev. Biol. 2023, 11, 1125174. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Shen, N.; Wicha, M.S.; Luo, M. The Roles of the Let-7 Family of MicroRNAs in the Regulation of Cancer Stemness. Cells 2021, 10, 2415. [Google Scholar] [CrossRef]
- Biamonte, F.; Santamaria, G.; Sacco, A.; Perrone, F.M.; Di Cello, A.; Battaglia, A.M.; Salatino, A.; Di Vito, A.; Aversa, I.; Venturella, R.; et al. MicroRNA let-7g acts as tumor suppressor and predictive biomarker for chemoresistance in human epithelial ovarian cancer. Sci. Rep. 2019, 9, 5668. [Google Scholar] [CrossRef]
- Torrisani, J.; Bournet, B.; du Rieu, M.C.; Bouisson, M.; Souque, A.; Escourrou, J.; Buscail, L.; Cordelier, P. let-7 MicroRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression. Hum. Gene Ther. 2009, 20, 831–844. [Google Scholar] [CrossRef]
- Cai, H.; Chen, Y.; Yang, X.; Ma, S.; Wang, Q.; Zhang, Y.; Niu, X.; Ding, G.; Yuan, Y. Let7b modulates the Wnt/beta-catenin pathway in liver cancer cells via downregulated Frizzled4. Tumour Biol. 2017, 39, 1010428317716076. [Google Scholar] [CrossRef]
- Karami Fath, M.; Ebrahimi, M.; Nourbakhsh, E.; Zia Hazara, A.; Mirzaei, A.; Shafieyari, S.; Salehi, A.; Hoseinzadeh, M.; Payandeh, Z.; Barati, G. PI3K/Akt/mTOR signaling pathway in cancer stem cells. Pathol. Res. Pract. 2022, 237, 154010. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Gao, Z.; Bao, Y.; Chen, L.; Huang, Y.; Liu, Y.; Dong, Q.; Wei, X. Wnt/beta-catenin signaling pathway in carcinogenesis and cancer therapy. J. Hematol. Oncol. 2024, 17, 46. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.; Taheriazam, A.; Daneii, P.; Hassanpour, A.; Kakavand, A.; Rezaei, S.; Hejazi, E.S.; Aboutalebi, M.; Gholamrezaie, H.; Saebfar, H.; et al. Targeting PI3K/Akt signaling in prostate cancer therapy. J. Cell Commun. Signal 2023, 17, 423–443. [Google Scholar] [CrossRef]
- Li, Q.; Wang, N.; Wei, H.; Li, C.; Wu, J.; Yang, G. miR-24-3p Regulates Progression of Gastric Mucosal Lesions and Suppresses Proliferation and Invasiveness of N87 Via Peroxiredoxin 6. Dig. Dis. Sci. 2016, 61, 3486–3497. [Google Scholar] [CrossRef]
- Li, X.; Huang, X.; Chang, M.; Lin, R.; Zhang, J.; Lu, Y. Updates on altered signaling pathways in tumor drug resistance. Vis. Cancer Med. 2024, 5, 6. [Google Scholar] [CrossRef]
- McCubrey, J.A.; Abrams, S.L.; Fitzgerald, T.L.; Cocco, L.; Martelli, A.M.; Montalto, G.; Cervello, M.; Scalisi, A.; Candido, S.; Libra, M.; et al. Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis. Adv. Biol. Regul. 2015, 57, 75–101. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.Z.; Chan, J.; Wang, Q.; Zhang, W.; Sun, C.D.; Wang, L.H. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res. 2007, 67, 1979–1987. [Google Scholar] [CrossRef] [PubMed]
- Weng, D.; Song, X.; Xing, H.; Ma, X.; Xia, X.; Weng, Y.; Zhou, J.; Xu, G.; Meng, L.; Zhu, T.; et al. Implication of the Akt2/survivin pathway as a critical target in paclitaxel treatment in human ovarian cancer cells. Cancer Lett. 2009, 273, 257–265. [Google Scholar] [CrossRef]
- Girouard, J.; Lafleur, M.-J.; Parent, S.; Leblanc, V.; Asselin, E. Involvement of Akt isoforms in chemoresistance of endometrial carcinoma cells. Gynecol. Oncol. 2013, 128, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Chautard, E.; Ouedraogo, Z.G.; Biau, J.; Verrelle, P. Role of Akt in human malignant glioma: From oncogenesis to tumor aggressiveness. J. Neurooncol 2014, 117, 205–215. [Google Scholar] [CrossRef]
- Mure, H.; Matsuzaki, K.; Kitazato, K.T.; Mizobuchi, Y.; Kuwayama, K.; Kageji, T.; Nagahiro, S. Akt2 and Akt3 play a pivotal role in malignant gliomas. Neuro Oncol. 2010, 12, 221–232. [Google Scholar] [CrossRef]
- Peng, J.; Mo, R.; Ma, J.; Fan, J. let-7b and let-7c are determinants of intrinsic chemoresistance in renal cell carcinoma. World J. Surg. Oncol. 2015, 13, 175. [Google Scholar] [CrossRef]
- Yang, X.; Cai, H.; Liang, Y.; Chen, L.; Wang, X.; Si, R.; Qu, K.; Jiang, Z.; Ma, B.; Miao, C.; et al. Inhibition of c-Myc by let-7b mimic reverses mutidrug resistance in gastric cancer cells. Oncol. Rep. 2015, 33, 1723–1730. [Google Scholar] [CrossRef]
- Takahashi, R.U.; Miyazaki, H.; Ochiya, T. The role of microRNAs in the regulation of cancer stem cells. Front. Genet. 2014, 4, 295. [Google Scholar] [CrossRef]
- Wang, Y.; Mo, Y.; Wang, L.; Su, P.; Xie, Y. Let-7b contributes to hepatocellular cancer progression through Wnt/beta-catenin signaling. Saudi J. Biol. Sci. 2018, 25, 953–958. [Google Scholar] [CrossRef]
- Gou, S.; Liu, T.; Wang, C.; Yin, T.; Li, K.; Yang, M.; Zhou, J. Establishment of clonal colony-forming assay for propagation of pancreatic cancer cells with stem cell properties. Pancreas 2007, 34, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Briseno-Diaz, P.; Schnoor, M.; Bello-Ramirez, M.; Correa-Basurto, J.; Rojo-Dominguez, A.; Arregui, L.; Vega, L.; Nunez-Gonzalez, E.; Palau-Hernandez, L.A.; Parra-Torres, C.G.; et al. Synergistic effect of antagonists to KRas4B/PDE6 molecular complex in pancreatic cancer. Life Sci. Alliance 2023, 6, e202302019. [Google Scholar] [CrossRef]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Dang, X.; Qu, X.; Wang, W.; Liao, C.; Li, Y.; Zhang, X.; Xu, D.; Baglole, C.J.; Shang, D.; Chang, Y. Bioinformatic analysis of microRNA and mRNA Regulation in peripheral blood mononuclear cells of patients with chronic obstructive pulmonary disease. Respir. Res. 2017, 18, 4. [Google Scholar] [CrossRef]
- Felix, T.F.; Lopez Lapa, R.M.; de Carvalho, M.; Bertoni, N.; Tokar, T.; Oliveira, R.A.; MA, M.R.; Hasimoto, C.N.; Oliveira, W.K.; Pelafsky, L.; et al. MicroRNA modulated networks of adaptive and innate immune response in pancreatic ductal adenocarcinoma. PLoS ONE 2019, 14, e0217421. [Google Scholar] [CrossRef] [PubMed]
- Irizarry, R.A.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y.D.; Antonellis, K.J.; Scherf, U.; Speed, T.P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Alvarez-Hilario, L.G.; Salmeron-Barcenas, E.G.; Avila-Lopez, P.A.; Hernandez-Montes, G.; Arechaga-Ocampo, E.; Herrera-Goepfert, R.; Albores-Saavedra, J.; Manzano-Robleda, M.D.C.; Saldivar-Ceron, H.I.; Martinez-Frias, S.P.; et al. Circulating miRNAs as Noninvasive Biomarkers for PDAC Diagnosis and Prognosis in Mexico. Int. J. Mol. Sci. 2023, 24, 15193. [Google Scholar] [CrossRef]
- Busk, P.K. A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinform. 2014, 15, 29. [Google Scholar] [CrossRef]
- Kehl, T.; Kern, F.; Backes, C.; Fehlmann, T.; Stockel, D.; Meese, E.; Lenhof, H.P.; Keller, A. miRPathDB 2.0: A novel release of the miRNA Pathway Dictionary Database. Nucleic Acids Res. 2020, 48, D142–D147. [Google Scholar] [CrossRef]
- McGeary, S.E.; Lin, K.S.; Shi, C.Y.; Pham, T.M.; Bisaria, N.; Kelley, G.M.; Bartel, D.P. The biochemical basis of microRNA targeting efficacy. Science 2019, 366, eaav1741. [Google Scholar] [CrossRef]
- Xie, Z.; Bailey, A.; Kuleshov, M.V.; Clarke, D.J.B.; Evangelista, J.E.; Jenkins, S.L.; Lachmann, A.; Wojciechowicz, M.L.; Kropiwnicki, E.; Jagodnik, K.M.; et al. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc. 2021, 1, e90. [Google Scholar] [CrossRef]
- Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Cech, M.; Chilton, J.; Clements, D.; Coraor, N.; Gruning, B.A.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46, W537–W544. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed]
- Avila-Lopez, P.A.; Guerrero, G.; Nunez-Martinez, H.N.; Peralta-Alvarez, C.A.; Hernandez-Montes, G.; Alvarez-Hilario, L.G.; Herrera-Goepfert, R.; Albores-Saavedra, J.; Villegas-Sepulveda, N.; Cedillo-Barron, L.; et al. H2A.Z overexpression suppresses senescence and chemosensitivity in pancreatic ductal adenocarcinoma. Oncogene 2021, 40, 2065–2080. [Google Scholar] [CrossRef] [PubMed]
- De Aluja, A.S. Animales de laboratorio y la Norma Oficial Mexicana (NOM-062-ZOO-1999). Gaceta Médica de México 2002, 138, 295–298. [Google Scholar] [PubMed]







| miRNA | Fold Change | p-Value | FDR |
|---|---|---|---|
| hsa-let-7b-5p | −585.62 | 0.000014 | 0.006000 |
| hsa-let-7a-5p | −253.85 | 0.000016 | 0.006000 |
| hsa-miR-23a-3p | −203.30 | 0.000013 | 0.006000 |
| hsa-miR-191-5p | −203.20 | 0.000007 | 0.006000 |
| hsa-let-7c-5p | −178.18 | 0.000017 | 0.006400 |
| hsa-miR-24-3p | −131.21 | 0.000023 | 0.006400 |
| hsa-let-7e-5p | −121.77 | 0.000024 | 0.006500 |
| hsa-miR-23b-3p | −83.93 | 0.000028 | 0.006800 |
| hsa-miR-103a-3p | −51.81 | 0.000048 | 0.010500 |
| hsa-miR-1246 | −48.17 | 0.000048 | 0.010500 |
| hsa-miR-432-5p | −47.51 | 0.000083 | 0.013400 |
| hsa-miR-3195 | −46.88 | 0.000088 | 0.013400 |
| hsa-miR-320a | −46.15 | 0.000087 | 0.013400 |
| hsa-miR-320c | −39.82 | 0.000069 | 0.013400 |
| hsa-miR-935 | −39.19 | 0.000093 | 0.013400 |
| hsa-miR-193a-5p | −34.28 | 0.000098 | 0.013400 |
| hsa-miR-3175 | −30.31 | 0.000099 | 0.013600 |
| hsa-miR-107 | −29.59 | 0.000100 | 0.014000 |
| hsa-miR-4443 | −25.57 | 0.000100 | 0.014000 |
| hsa-miR-15b-5p | −24.16 | 0.000100 | 0.014000 |
| hsa-miR-151a-5p | −22.21 | 0.000100 | 0.014000 |
| hsa-miR-210-3p | −21.12 | 0.000100 | 0.014000 |
| hsa-miR-3687 | −20.38 | 0.000100 | 0.014000 |
| hsa-miR-4485 | −15.77 | 0.000100 | 0.014000 |
| hsa-miR-106a-5p | −14.78 | 0.000100 | 0.014000 |
| hsa-miR-1275 | −12.33 | 0.000100 | 0.014000 |
| hsa-miR-7150 | −8.25 | 0.000100 | 0.014000 |
| hsa-miR-7977 | −7.71 | 0.000100 | 0.014000 |
| hsa-miR-4656 | −5.63 | 0.000100 | 0.014000 |
| hsa-miR-504-3p | −4.32 | 0.000200 | 0.014500 |
| hsa-miR-6781-5p | −3.21 | 0.000200 | 0.014600 |
| miRNA | Fold Change | p-Value | FDR |
|---|---|---|---|
| hsa-let-7b-5p | −585.62 | 0.000014 | 0.006000 |
| hsa-let-7a-5p | −253.85 | 0.000016 | 0.006000 |
| hsa-miR-23a-3p | −203.30 | 0.000013 | 0.006000 |
| hsa-miR-191-5p | −203.20 | 0.000007 | 0.006000 |
| hsa-let-7c-5p | −178.18 | 0.000017 | 0.006400 |
| hsa-miR-24-3p | −131.21 | 0.000023 | 0.006400 |
| hsa-let-7e-5p | −121.77 | 0.000024 | 0.006500 |
| hsa-miR-23b-3p | −83.93 | 0.000028 | 0.006800 |
| hsa-miR-103a-3p | −51.81 | 0.000048 | 0.010500 |
| hsa-miR-1246 | −48.17 | 0.000048 | 0.010500 |
| Let-7b-5p | Let−7a-5p | miR−23a−3p | miR-−191−5p | Let−7c−5p | miR−24−3p | Let−7e−5p | miR−23b−3p | miR−103a−3p | miR−1246 |
|---|---|---|---|---|---|---|---|---|---|
| ACVR1B | ACVR1B | FZD5 | BMI1 | ACVR1B | ACVR1B | ACVR1B | ACVR1B | ACVR1 | ACVR1 |
| ACVR1C | ACVR1C | MYC | FZD5 | ACVR1C | ACVR2B | ACVR1C | ACVR1C | ACVR1B | AXIN2 |
| ACVR2A | ACVR2A | PIK3R1 | INHBA | ACVR2A | APC | ACVR2A | ACVR2B | ACVR1C | DLX5 |
| ACVR2B | ACVR2B | SMAD3 | LIFR | ACVR2B | BMP4 | ACVR2B | BMP4 | ACVR2A | FGFR2 |
| AKT2 | AKT2 | SMAD5 | PCGF3 | AKT2 | BMPR1B | AKT2 | BMPR1A | ACVR2B | FZD3 |
| AKT3 | AKT3 | STAT3 | PIK3R1 | AKT3 | BMPR2 | AKT3 | BMPR2 | AKT2 | GSK3B |
| APC2 | APC2 | SMAD2 | APC2 | DVL3 | APC2 | FGF2 | AKT3 | JARID2 | |
| BMPR1A | BMPR1A | WNT10B | BMPR1A | ESRRB | BMPR1A | FGFR1 | APC | PIK3CA | |
| DVL3 | BMPR1B | WNT5A | DUSP9 | FGF2 | DUSP9 | FGFR2 | APC2 | SKIL | |
| FZD3 | DLX5 | DVL3 | FGFR3 | DVL3 | FZD3 | AXIN2 | |||
| FZD4 | DUSP9 | FZD3 | FZD4 | FZD3 | FZD4 | BMI1 | |||
| FZD9 | DVL3 | FZD4 | FZD5 | FZD4 | FZD5 | BMPR1B | |||
| HAND1 | FZD3 | FZD8 | GSK3B | FZD9 | FZD7 | BMPR2 | |||
| HOXA1 | FZD4 | FZD9 | ID4 | HAND1 | GRB2 | CTNNB1 | |||
| HOXB1 | FZD9 | HAND1 | IGF1 | HOXA1 | GSK3B | DLX5 | |||
| HOXD1 | HAND1 | HOXA1 | JAK1 | HOXB1 | HESX1 | DVL1 | |||
| HRAS | HOXA1 | HOXB1 | JARID2 | HOXD1 | HOXA1 | ESRRB | |||
| IGF1 | HOXB1 | HOXD1 | KAT6A | IGF1 | ID4 | FGF2 | |||
| IGF1R | HOXD1 | ID1 | MAPK14 | IGF1R | IGF1 | FGFR1 | |||
| KRAS | HRAS | IGF1 | MYC | KAT6A | INHBA | FGFR2 | |||
| LEFTY1 | IGF1 | IGF1R | NODAL | KRAS | INHBE | FGFR3 | |||
| MYC | IGF1R | JARID2 | ONECUT1 | LEFTY1 | ISL1 | FZD10 | |||
| NRAS | KRAS | KRAS | PAX6 | MYC | JAK1 | FZD4 | |||
| ONECUT1 | LEFTY1 | LEFTY1 | PCGF5 | NRAS | JARID2 | FZD6 | |||
| PCGF3 | MAPK11 | MYC | PCGF6 | ONECUT1 | KRAS | FZD7 | |||
| PCGF5 | MEIS1 | NRAS | PIK3R3 | PCGF3 | MAPK14 | GSK3B | |||
| PIK3CA | MYC | ONECUT1 | RAF1 | PCGF5 | MEIS1 | ID2 | |||
| SKIL | NRAS | PCGF3 | SMAD2 | PIK3CA | OTX1 | IGF1R | |||
| SMAD2 | ONECUT1 | PCGF5 | SMAD5 | SKIL | PCGF1 | INHBA | |||
| SMARCAD1 | PCGF3 | PIK3CA | SMAD9 | SMAD2 | PIK3CA | INHBB | |||
| STAT3 | PCGF5 | SETDB1 | TCF7 | SMARCAD1 | PIK3CB | JAK1 | |||
| WNT1 | PIK3CA | SKIL | WNT10A | STAT3 | PIK3R1 | JARID2 | |||
| WNT11 | PIK3R1 | SMAD2 | WNT11 | WNT1 | PIK3R3 | KLF4 | |||
| WNT9A | SKIL | SMARCAD1 | WNT2B | WNT9A | RAF1 | OTX1 | |||
| WNT9B | SMAD2 | STAT3 | WNT4 | WNT9B | REST | PAX6 | |||
| SMARCAD1 | WNT1 | WNT8B | SKIL | PCGF2 | |||||
| STAT3 | WNT9A | ZFHX3 | SMAD2 | PCGF3 | |||||
| WNT1 | WNT9B | SMAD3 | PCGF5 | ||||||
| WNT9A | SMAD4 | PIK3CD | |||||||
| WNT9B | SMAD5 | PIK3R1 | |||||||
| SMARCAD1 | PIK3R3 | ||||||||
| ZFHX3 | RAF1 | ||||||||
| ZIC3 | REST | ||||||||
| SMAD4 | |||||||||
| SMAD5 | |||||||||
| TCF3 | |||||||||
| WNT16 | |||||||||
| WNT3A | |||||||||
| WNT4 | |||||||||
| WNT5A | |||||||||
| WNT6 | |||||||||
| WNT8B | |||||||||
| ZFHX3 |
| Target | Forward (5’ to 3’) | Reverse (5’ to 3’) | Ta (°C) |
|---|---|---|---|
| SOX2 | GGATAAGTACACGCTGCCCG | ATGTGCGCGTAACTGTCCAT | 55 |
| OCT4 | CACTGCAGCAGATCAGCCA | TGTGCATAGTCGCTGCTTGA | 55 |
| NANOG | TGTCTTCTGCTGAGATGCCTCACA | CCTTCTGCGTCACACCATTGCTAT | 63 |
| KLF4 | GCAATATAAGCATAAAAGATCACCT | AACCAAGACTCACCAAGCACC | 59 |
| MYC | GAACTATGACCTCGACTACGACTC | GCAGATGAAACTCTGGTTCACCATG | 55 |
| NGN3 | GGTAGAAAGGATGACGCCTC | CCGAGTTGAGGTCGTGCAT | 51 |
| GATA6 | TCCCCCACAACACAACCTAC | GTAGAGCCCATCTTGACCCG | 60 |
| PTF1A | GAAGGTCATCATCTGCCATCGG | CCTTGAGTTGTTTTTCATCAGTCC | 60 |
| SOX9 | AGGAAGCTCGCGGACCAGTAC | GGTGGTCCTTCTTGTGCTGCAC | 63 |
| HNF6 | GAGGATGTGGAAGTGGCTGCAG | CTGTGAAGACCAACCTGGGCTT | 55 |
| CCND1 | ACCATCCAGTGACAAACCAT | GTAGCGTATCGTAGGAGTGG | 53 |
| KRAS | AAGGCCTGCTGAAAAATGAC | TGGTCCTGCACCAGTAATATG | 55 |
| HMGA2 | GAAGCCACTGGAGAAAAACGGC | GGCAGACTCTTGTGAGGATGTC | 60 |
| HNF4A | GGCTGCAAGGGCTTCTTC | GGCACTGGTTCCTCTTGTCT | 51 |
| CDKN1A | ACTCTCAGGGTCGAAAACGG | AGATGTAGAGCGGGCCTTTG | 53 |
| ABCC3 | GAGGAGAAAGCAGCCATTGGCA | TCCAATGGCAGCCGCACTTTGA | 60 |
| SMAD5 | CAGGAGTTTGCTCAGCTTCTGG | GGTGCTGGTTACATCCTGCCG | 60 |
| SMAD4 | CTACCAGCACTGCCAACTTTCC | CCTGATGCTATCTGCAACAGTCC | 63 |
| SMAD2 | GGGTTTTGAAGCCGTCTATCAGC | CCAACCACTGTAGAGGTCCATTC | 65 |
| FZD4 | TTCACACCGCTCATCCAGTACG | ACGGGTTCACAGCGTCTCTTGA | 63 |
| AKT2 | CATCCTCATGGAAGAGATCCGC | GAGGAAGAACCTGTGCTCCATG | 63 |
| ID2 | TTGTCAGCCTGCATCACCAGAG | AGCCACACAGTGCTTTGCTGTC | 63 |
| CTNNB1 | CACAAGCAGAGTGCTGAAGGTG | GATTCCTGAGAGTCCAAAGACAG | 60 |
| GAPDH | TTGTCAAGCTCATTTCCTGG | TGATGGTACATGACAAGGTG | 60 |
| miR-Let-7b-5p | CAGTGAGGTAGTAGGTTGTGT | GGTCCAGTTTTTTTTTTTTTTTAACCA | 55 |
| miR-Let-7a-5p | GCAGTGAGGTAGTAGGTTG | GGTCCAGTTTTTTTTTTTTTTTAACTATAC | 53 |
| miR-Let-7c-5p | GCAGTGAGGTAGTAGGTTGT | GGTCCAGTTTTTTTTTTTTTTTAACCA | 55 |
| miR-24-3p | AGTGGCTCAGTTCAGCA | GTCCAGTTTTTTTTTTTTTTTCTGTTC | 47 |
| miR-Let-7e-5p | GCAGTGAGGTAGGAGGTTG | GGTCCAGTTTTTTTTTTTTTTTAACTATAC | 55 |
| miR-103a-3p | GCAGAGCAGCATTGTACAG | GGTCCAGTTTTTTTTTTTTTTTCATAG | 60 |
| miR-320a | CAGAAAAGCTGGGTTGAGA | CAGTTTTTTTTTTTTTTTCGCCCT | 55 |
| miR-107 | GCAGAGCAGCATTGTACAG | GGTCCAGTTTTTTTTTTTTTTTGATAG | 60 |
| miR-15b-5p | GCAGTAGCAGCACATCA | CCAGTTTTTTTTTTTTTTTGTAAACCA | 47 |
| miR-210-3p | GCGCAGCTGTGCGTGTGACA | GTTTTTTTTTTTTTTTCAGCCGCT | 60 |
| RNU6 | CTCGCTTCGGCAGCACATATACT | ACGCTTCACGAATTTGCGTGTC | 60 |
| RT-primer | CAGGTCCAGTTTTTTTTTTTTTTTVN | - | - |
| Antibody | Molecular Weight (kDa) | Source | Dilution | Assay | Catalogue Number | Manufacturer |
|---|---|---|---|---|---|---|
| β-Catenin | 92 | Rabbit | 1:1000 | WB | #9582 | Cell Signaling |
| SMAD1 | 52–56 | Mouse | 1:200 | WB | SC-7965 | Santa Cruz |
| pAKT | 60 | Rabbit | 1:2000 | WB | #4060 | Cell Signaling |
| AKT | 60 | Rabbit | 1:1000 | WB | #9272 | Cell Signaling |
| pERK1/2 | 42, 44 | Rabbit | 1:1000 | WB | #9101 | Cell Signaling |
| ERK1/2 | 42, 44 | Rabbit | 1:1000 | WB | #9102 | Cell Signaling |
| SMAD4 | 70 | Rabbit | 1:1000 | WB | #46535 | Cell Signaling |
| Pan-RAS | 21 | Mouse | 1:250 | WB | AESA02 | Cytoskeleton |
| E-cadherin | 80, 120 | Mouse | 1:750 | WB | SC-8426 | Santa Cruz |
| p21 | 21 | Mouse | 1:500 | WB | GTX629543 | GeneTex |
| Myc | 67 | Mouse | 1:1000 | WB | 626802 | BioLegends |
| Sox9 | 56 | Rabbit | 1:1000 | WB | 185966 | Abcam |
| GATA4 | 45 | Mouse | 1:100 | WB | SC-25310 | Santa Cruz |
| Nanog | 42 | Rabbit | 1:2000 | WB | #4903 | Cell Signaling |
| SOX2 | 35 | Rabbit | 1:1000 | WB | #3579 | Cell Signaling |
| GAPDH | 36 | Rabbit | 1:80,000 | WB | GTX100118 | GeneTex |
| Mouse-HRP | - | Rabbit | 1:5000 | WB | SAB3701023 | Sigma |
| Rabbit-HRP | - | goat | 1:5000 | WB | A0545 | Sigma |
| CD24-FITC | 35–45 | Mouse | 1:100 | FC | 555427 | BD Pharmingen |
| CD44-PE | 80–95 | Mouse | 1:100 | FC | 555479 | BD Pharmingen |
| CD133/1-APC | 120 | Mouse | 1:100 | FC | 130-113-668 | Miltenyi Biotec |
| CD24-FITC | 30–50 | Mouse | 1:100 | FC | ab30350 | Abcam |
| CD44-PE | 81 | Mouse | 1:100 | FC | ab269300 | Abcam |
| CD133-APC | 97 | Mouse | 1:100 | FC | ab253259 | Abcam |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medrano-Silva, M.; Salmerón-Bárcenas, E.G.; Arechaga-Ocampo, E.; Villegas-Sepúlveda, N.; Santos-Argumedo, L.; Pérez-Tapia, S.M.; Padilla-Cristerna, M.L.; Hernández-Montes, G.; Hernández-Galicia, G.; Sánchez-Argáez, A.B.; et al. MicroRNAs Let-7b-5p and miR-24-3p as Potential Therapeutic Agents Targeting Pancreatic Cancer Stem Cells. Int. J. Mol. Sci. 2025, 26, 11066. https://doi.org/10.3390/ijms262211066
Medrano-Silva M, Salmerón-Bárcenas EG, Arechaga-Ocampo E, Villegas-Sepúlveda N, Santos-Argumedo L, Pérez-Tapia SM, Padilla-Cristerna ML, Hernández-Montes G, Hernández-Galicia G, Sánchez-Argáez AB, et al. MicroRNAs Let-7b-5p and miR-24-3p as Potential Therapeutic Agents Targeting Pancreatic Cancer Stem Cells. International Journal of Molecular Sciences. 2025; 26(22):11066. https://doi.org/10.3390/ijms262211066
Chicago/Turabian StyleMedrano-Silva, Maricela, Eric Genaro Salmerón-Bárcenas, Elena Arechaga-Ocampo, Nicolas Villegas-Sepúlveda, Leopoldo Santos-Argumedo, Sonia Mayra Pérez-Tapia, Mayte Lizeth Padilla-Cristerna, Georgina Hernández-Montes, Gabriela Hernández-Galicia, Ana Beatriz Sánchez-Argáez, and et al. 2025. "MicroRNAs Let-7b-5p and miR-24-3p as Potential Therapeutic Agents Targeting Pancreatic Cancer Stem Cells" International Journal of Molecular Sciences 26, no. 22: 11066. https://doi.org/10.3390/ijms262211066
APA StyleMedrano-Silva, M., Salmerón-Bárcenas, E. G., Arechaga-Ocampo, E., Villegas-Sepúlveda, N., Santos-Argumedo, L., Pérez-Tapia, S. M., Padilla-Cristerna, M. L., Hernández-Montes, G., Hernández-Galicia, G., Sánchez-Argáez, A. B., Briseño-Díaz, P., Sánchez-Torres, C., Aguilar-Rojas, A., Martínez-Zayas, A., Vargas, M., & Hernández-Rivas, R. (2025). MicroRNAs Let-7b-5p and miR-24-3p as Potential Therapeutic Agents Targeting Pancreatic Cancer Stem Cells. International Journal of Molecular Sciences, 26(22), 11066. https://doi.org/10.3390/ijms262211066

