Integrative Thermodynamic Strategies in Microbial Metabolism
Abstract
1. Introduction

2. Results
3. Discussion
- Proteome allocation hypothesis: The more negative of the NCR under nutrient-limited conditions is a result of the preferential use of catabolic pathways with a lower ATP yield per substrate, and thus, a more negative (normalized to a carbon-mole of new biomass formed). These pathways require fewer proteomic resources for ATP generation [3,14,16], freeing up a larger fraction of the proteome for the expression of nutrient transport systems and ribosomes. This redistribution could confer a selective advantage by enhancing the uptake of the limiting nutrient.
- Coupled transport contribution hypothesis: The more negative of the NCR may in part stem from the increased reliance on ATP-coupled or energetically driven transport mechanisms for nutrient uptake under limitation. When nutrients are scarce, cells may increasingly use active transporters that directly couple ATP hydrolysis to substrate import. While this incurs an energetic cost, it renders the overall nutrient uptake process thermodynamically more favorable and may contribute to the net negative of catabolism required to support growth. This strategy could enhance the substrate import efficiency under nutrient limitation, thereby offering a selective advantage despite the higher energetic investment.
- Bioenergetic efficiency hypothesis: The use of catabolic pathways with a more negative may also lead to increased cellular energy states, such as higher ATP/ADP ratios or higher membrane potentials. We hypothesize that this bioenergetic enhancement could improve the functionality of transporters that rely on ATP hydrolysis or membrane potential, thus supporting faster nutrient uptake under the anabolic limiting conditions discussed in this perspective. This could help overcome the additional thermodynamic burden of transporting the low-concentration extracellular limiting nutrient to the highly concentrated intracellular environment of this nutrient.
4. Materials and Methods
4.1. Net Catabolic Reaction
- From the experimentally measured catabolic products, we derived a list of net catabolic reactions, which resulted in the production of the observed metabolite. For example, if acetate was measured for growth on glucose, the assumed net catabolic reaction waswhich was further normalized to a carbon-mole asand converted into a vector v that contained the stoichiometric coefficients. The coefficients of this vector were ordered so that the first entries corresponded to the experimentally measured metabolites, including the biomass. If k catabolic products were determined, this resulted in k vectors .
- An additional vector was defined by characterizing the biomass growth as follows: From the elemental composition of the biomass X, the degree of reduction was determined using [45]. The degree of reduction of the carbon source S is denoted by . The idealized anabolic equation was then assumed to beIf the biomass was more reduced than the carbon source, we assumed that the electrons required for the reduction were obtained by the oxidation of some nutrient carbons to CO2. If the biomass was more oxidized, we assumed that oxygen was available as an electron acceptor. This assumption excludes anaerobic growth conditions in which the biomass is more oxidized than the carbon source. We did not include such cases in our present analysis. It has to be stressed that these idealized anabolic equations are not fully mass balanced because they do not consider the nitrogen, phosphorus, or sulfur balances. However, they are fully carbon balanced and the calculation of the degree of reduction using Roels [45] considers the reduction state of the nitrogen source.
- A linear combination was determined that fit the experimental vector e best by minimizing the residual squares:These residuals are reported, e.g., in Table 1. The fitting procedure was performed in Python (v. 3.11.4) with the method scipy.optimize.minimize.
- The resulting vector m, which when normalized to one unit of biomass formed, contains the coefficientsThese define the macrochemical growth equation (per of biomass) that best fits the experimentally measured exchange fluxes. The combination of catabolic routes (represented by the vector ) forms the NCR, which is used for further calculations.
4.2. Net Catabolic Gibbs Free Energy
4.3. Estimation of Errors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
| Symbol | Meaning |
| Gibbs free energy change of a reaction ( or ); indicates thermodynamic favorability | |
| NCR | Net catabolic reaction; the overall conversion of nutrients into catabolic products when 1 C-mol of biomass is formed |
| The reaction energy of the NCR under biochemical standard conditions (1 mM concentrations) | |
| Yield of ATP per mole of substrate consumed | |
| qATP | Specific ATP production rate (mol ATP per mol biomass per hour) |
| Turnover number of an enzyme; number of substrate molecules converted per enzyme per second | |
| Michaelis constant; substrate concentration at which the reaction rate is half of its maximum | |
| Degree of reduction of biomass | |
| Degree of reduction of substrate | |
| Gibbs free energy change per mole of ATP formed under biochemical standard conditions (1 mM concentrations) | |
| C-mol | Carbon-mole; a unit representing the amount of carbon in biomass or substrate |
| P/O ratio | Phosphate/oxygen ratio; number of ATP molecules synthesized per atom of oxygen reduced during oxidative phosphorylation; this reflects respiratory chain efficiency |
| EMP | Embden–Meyerhof–Parnas pathway; classical glycolysis pathway |
| ED | Entner–Doudoroff pathway; alternative glycolysis pathway with lower protein cost |
References
- Westerhoff, H.V.; Hellingwerf, K.J.; Van Dam, K. Thermodynamic efficiency of microbial growth is low but optimal for maximal growth rate. Proc. Natl. Acad. Sci. USA 1983, 80, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Cortassa, S.; Aon, M.; Westerhoff, H. Linear nonequilibrium thermodynamics describes the dynamics of an autocatalytic system. Biophys. J. 1991, 60, 794–803. [Google Scholar] [CrossRef]
- Molenaar, D.; van Berlo, R.; de Ridder, D.; Teusink, B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol. Syst. Biol. 2009, 5, 323. [Google Scholar] [CrossRef] [PubMed]
- von Stockar, U. The role of thermodynamics in biochemical engineering. J. Non-Equilib. Thermodyn. 2013, 38, 225–240. [Google Scholar] [CrossRef]
- Berkhout, J.; Bosdriesz, E.; Nikerel, E.; Molenaar, D.; de Ridder, D.; Teusink, B.; Bruggeman, F.J. How Biochemical Constraints of Cellular Growth Shape Evolutionary Adaptations in Metabolism. Genetics 2013, 194, 505–512. [Google Scholar] [CrossRef]
- Basan, M.; Hui, S.; Okano, H.; Zhang, Z.; Shen, Y.; Williamson, J.R.; Hwa, T. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 2015, 528, 99–104. [Google Scholar] [CrossRef]
- Basan, M.; Zhu, M.; Dai, X.; Warren, M.; Sévin, D.; Wang, Y.; Hwa, T. Inflating bacterial cells by increased protein synthesis. Mol. Syst. Biol. 2015, 11, 836. [Google Scholar] [CrossRef]
- Westerhoff, H.V.; Lolkema, J.S.; Otto, R.; Hellingwerf, K.J. Thermodynamics of growth non-equilibrium thermodynamics of bacterial growth the phenomenological and the Mosaic approach. Biochim. Biophys. Acta Bioenerg. (BBA) Rev. Bioenerg. 1982, 683, 181–220. [Google Scholar] [CrossRef]
- Flamholz, A.; Noor, E.; Bar-Even, A.; Liebermeister, W.; Milo, R. Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc. Natl. Acad. Sci. USA 2013, 110, 10039–10044. [Google Scholar] [CrossRef]
- Hui, S.; Silverman, J.M.; Chen, S.S.; Erickson, D.W.; Basan, M.; Wang, J.; Hwa, T.; Williamson, J.R. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol. 2015, 11, 784. [Google Scholar] [CrossRef]
- Buurman, E.T.; Pennock, J.; Tempest, D.W.; Teixeira de Mattos, M.J.; Neijssel, O.M. Replacement of potassium ions by ammonium ions in different micro-organisms grown in potassium-limited chemostat culture. Arch. Microbiol. 1989, 152, 58–63. [Google Scholar] [CrossRef]
- Buurman, E.T.; ten Voorde, G.J.; Teixeira de Mattos, M.J. The physiological function of periplasmic glucose oxidation in phosphate-limited chemostat cultures of Klebsiella pneumoniae NCTC 418. Microbiology 1994, 140, 2451–2458. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Teixeira de Mattos, M.; Neijssel, O. Bioenergetic consequences of microbial adaptation to low-nutrient environments. J. Biotechnol. 1997, 59, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Noor, E.; Flamholz, A.; Bar-Even, A.; Davidi, D.; Milo, R.; Liebermeister, W. The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization. PLoS Comput. Biol. 2016, 12, e1005167. [Google Scholar] [CrossRef]
- Bekker, M.; de Vries, S.; Ter Beek, A.; Hellingwerf, K.J.; de Mattos, M.J.T. Respiration of Escherichia coli Can Be Fully Uncoupled via the Nonelectrogenic Terminal Cytochrome bd -II Oxidase. J. Bacteriol. 2009, 191, 5510–5517. [Google Scholar] [CrossRef]
- Peebo, K.; Valgepea, K.; Maser, A.; Nahku, R.; Adamberg, K.; Vilu, R. Proteome reallocation in Escherichia coli with increasing specific growth rate. Mol. BioSyst. 2015, 11, 1184–1193. [Google Scholar] [CrossRef]
- Cheng, C.; O’Brien, E.J.; McCloskey, D.; Utrilla, J.; Olson, C.; LaCroix, R.A.; Sandberg, T.E.; Feist, A.M.; Palsson, B.O.; King, Z.A. Laboratory evolution reveals a two-dimensional rate-yield tradeoff in microbial metabolism. PLoS Comput. Biol. 2019, 15, e1007066. [Google Scholar] [CrossRef]
- Rieger, M.; Käppeli, O.; Fiechter, A. The Role Of Limited Respiration In The Incomplete Oxidation of Glucose By Saccharomyces cerevisiae. Microbiology 1983, 129, 653–661. [Google Scholar] [CrossRef]
- van Hoek, P.; van Dijken, J.P.; Pronk, J.T. Effect of Specific Growth Rate on Fermentative Capacity of Baker’s Yeast. Appl. Environ. Microbiol. 1998, 64, 4226–4233. [Google Scholar] [CrossRef] [PubMed]
- Oftadeh, O.; Salvy, P.; Masid, M.; Curvat, M.; Miskovic, L.; Hatzimanikatis, V. A genome-scale metabolic model of Saccharomyces cerevisiae that integrates expression constraints and reaction thermodynamics. Nat. Commun. 2021, 12, 4790. [Google Scholar] [CrossRef]
- Goel, A.; Eckhardt, T.H.; Puri, P.; de Jong, A.; Branco Dos Santos, F.; Giera, M.; Fusetti, F.; de Vos, W.M.; Kok, J.; Poolman, B.; et al. Protein costs do not explain evolution of metabolic strategies and regulation of ribosomal content: Does protein investment explain an anaerobic bacterial Crabtree effect? Mol. Microbiol. 2015, 97, 77–92. [Google Scholar] [CrossRef]
- Saadat, N.P.; Nies, T.; Rousset, Y.; Ebenhöh, O. Thermodynamic Limits and Optimality of Microbial Growth. Entropy 2020, 22, 277. [Google Scholar] [CrossRef]
- Chen, Y.; van Pelt-KleinJan, E.; van Olst, B.; Douwenga, S.; Boeren, S.; Bachmann, H.; Molenaar, D.; Nielsen, J.; Teusink, B. Proteome constraints reveal targets for improving microbial fitness in nutrient-rich environments. Mol. Syst. Biol. 2021, 17, e10093. [Google Scholar] [CrossRef]
- Tempest, D.W.; Neijssel, O.M. The Status of YATP and Maintenance Energy as Biologically Interpretable Phenomena. Annu. Rev. Microbiol. 1984, 38, 459–513. [Google Scholar] [CrossRef]
- Tai, S.L.; Boer, V.M.; Daran-Lapujade, P.; Walsh, M.C.; de Winde, J.H.; Daran, J.M.; Pronk, J.T. Two-dimensional Transcriptome Analysis in Chemostat Cultures. J. Biol. Chem. 2005, 280, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Behrends, V.; Maharjan, R.P.; Ryall, B.; Feng, L.; Liu, B.; Wang, L.; Bundy, J.G.; Ferenci, T. A metabolic trade-off between phosphate and glucose utilization in Escherichia coli. Mol. BioSyst. 2014, 10, 2820–2822. [Google Scholar] [CrossRef] [PubMed]
- Neijssel, O.M.; Tempest, D.W. The role of energy-spilling reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture. Arch. Microbiol. 1976, 110, 305–311. [Google Scholar] [CrossRef] [PubMed]
- von Stockar, U.; Liu, J. Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochim. Biophys. Acta 1999, 1412, 191–211. [Google Scholar] [CrossRef]
- von Stockar, U.; Maskow, T.; Liu, J.; Marison, I.W.; Patiño, R. Thermodynamics of microbial growth and metabolism: An analysis of the current situation. J. Biotechnol. 2006, 121, 517–533. [Google Scholar] [CrossRef]
- Ebenhöh, O.; Ebeling, J.; Meyer, R.; Pohlkotte, F.; Nies, T. Microbial Pathway Thermodynamics: Stoichiometric Models Unveil Anabolic and Catabolic Processes. Life 2024, 14, 247. [Google Scholar] [CrossRef]
- Simons, J.A.; Teixeira de Mattos, M.J.; Neijssel, O.M. Aerobic 2-ketogluconate metabolism of Klebsiella pneumoniae NCTC 418 grown in chemostat culture. J. Gen. Microbiol. 1991, 137, 1479–1483. [Google Scholar] [CrossRef]
- Vieira-Lara, M.A.; Warmerdam, M.; de Hulster, E.A.F.; van den Broek, M.; Daran, J.M.; Pronk, J.T. Quantitative physiology and biomass composition of Cyberlindnera jadinii in ethanol-grown cultures. Biotechnol. Biofuels Bioprod. 2024, 17, 142. [Google Scholar] [CrossRef]
- Warmerdam, M.; Vieira-Lara, M.A.; Mans, R.; Daran, J.M.; Pronk, J.T. Specific growth rates and growth stoichiometries of Saccharomycotina yeasts on ethanol as sole carbon and energy substrate. FEMS Yeast Res. 2024, 24, foae037. [Google Scholar] [CrossRef]
- Battjes, J.; Grigaitis, P.; Hoving, M.; Visser, T.D.; Stampfl, K.; Miguel, G.A.; van Heerden, J.; Andersen, J.K.; Bruggeman, F.J.; Teusink, B. Mitochondrial efficiency determines Crabtree effect across yeasts. bioRxiv 2024. [Google Scholar] [CrossRef]
- Kayser, A.; Weber, J.; Hecht, V.; Rinas, U. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology 2005, 151, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Neijssel, O.; Tempest, D. The regulation of carbohydrate metabolism in Klebsiella aerogenes NCTC 418 organisms, growing in chemostat culture. Arch. Microbiol. 1975, 106, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Folsom, J.P.; Parker, A.E.; Carlson, R.P. Physiological and Proteomic Analysis of Escherichia coli Iron-Limited Chemostat Growth. J. Bacteriol. 2014, 196, 2748–2761. [Google Scholar] [CrossRef]
- Folsom, J.P.; Carlson, R.P. Physiological, biomass elemental composition and proteomic analyses of Escherichia coli ammonium-limited chemostat growth, and comparison with iron- and glucose-limited chemostat growth. Microbiology 2015, 161, 1659–1670. [Google Scholar] [CrossRef]
- Nöh, K.; Wahl, A.; Wiechert, W. Computational tools for isotopically instationary 13C labeling experiments under metabolic steady state conditions. Metab. Eng. 2006, 8, 554–577. [Google Scholar] [CrossRef]
- Nöh, K.; Droste, P.; Wiechert, W. Visual workflows for 13 C-metabolic flux analysis. Bioinformatics 2014, 31, 346–354. [Google Scholar] [CrossRef]
- Sato-Watanabe, M.; Mogi, T.; Miyoshi, H.; Anraku, Y. Characterization and Functional Role of the QH Site of bo-Type Ubiquinol Oxidase from Escherichia coli. Biochemistry 1998, 37, 5356–5361. [Google Scholar] [CrossRef]
- Pouvreau, L.; Strampraad, M.; Berloo, S.V.; Kattenberg, J.; de Vries, S. NO, N2O, and O2 Reaction Kinetics: Scope and Limitations of the Clark Electrode. In Globins and Other Nitric Oxide-Reactive Proteins, Part A; Elsevier: Amsterdam, The Netherlands, 2008; pp. 97–112. [Google Scholar] [CrossRef]
- Mason, M.G.; Shepherd, M.; Nicholls, P.; Dobbin, P.S.; Dodsworth, K.S.; Poole, R.K.; Cooper, C.E. Cytochrome bd confers nitric oxide resistance to Escherichia coli. Nat. Chem. Biol. 2008, 5, 94–96. [Google Scholar] [CrossRef]
- Atlung, T.; Knudsen, K.; Heerfordt, L.; Brøndsted, L. Effects of sigmaS and the transcriptional activator AppY on induction of the Escherichia coli hya and cbdAB-appA operons in response to carbon and phosphate starvation. J. Bacteriol. 1997, 179, 2141–2146. [Google Scholar] [CrossRef] [PubMed]
- Roels, J. Simple model for the energetics of growth on substrates with different degrees of reduction. Biotechnol. Bioeng. 1980, 22, 33–53. [Google Scholar] [CrossRef]
- Shen, L.; Fall, L.; Walton, G.M.; Atkinson, D.E. Interaction between energy charge and metabolite modulation in the regulation of enzymes of amphibolic sequences. Phosphofructokinase and pyruvate dehydrogenase. Biochemistry 1968, 7, 4041–4045. [Google Scholar] [CrossRef]
- Schuster, S.; Hilgetag, C. On elementary Flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 1994, 2, 165–182. [Google Scholar] [CrossRef]
- Mavrovouniotis, M.L. Group contributions for estimating standard gibbs energies of formation of biochemical compounds in aqueous solution. Biotechnol. Bioeng. 1990, 36, 1070–1082. [Google Scholar] [CrossRef]
- Alberty, R.A. Thermodynamics of Biochemical Reactions; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]



| Condition | Limitation | Respiration | Fermentation | ΔG (kJ/C–mol Biomass) | Quality of Fit () |
|---|---|---|---|---|---|
| Aerobic | Carbon | 0.7 | 0 | −344 | 0.02 |
| Nitrogen | 0.79 | 6.17 | −610 | 3.03 | |
| Phosphorus | 1.15 | 6.17 | −784 | 5.22 | |
| Sulfur | 0.77 | 3.41 | −497 | 1.23 | |
| Anaerobic | Carbon | 0 | 7.27 | −260 | 2.22 |
| Nitrogen | 0 | 10.50 | −376 | 8.73 | |
| Phosphorus | 0 | 10.50 | −391 | 10.70 | |
| Sulfur | 0 | 9.65 | −346 | 15.59 |
| Condition | Limitation | ΔG (kJ/C–mol Biomass) |
|---|---|---|
| Ammonia | Carbon | |
| Nitrogen | ||
| Phosphorus | ||
| Potassium | ||
| Nitrate | Carbon | |
| Nitrogen | ||
| Phosphorus | ||
| Potassium |
| Organism | Reaction | (kJ/mol ATP) | Growth |
|---|---|---|---|
| L. lactis | Glucose + 3 ADP + 3 Pi → Acetate + Ethanol + 2 Formate + 3 ATP + 2 H2O | −43.8 | Slow |
| L. lactis | Glucose + 2 ADP + 2 Pi → 2Lactate + 2 ATP + 2 H2O | −59.4 | Fast |
| S. cerevisiae | Glucose + 36 ADP + 36 Pi + 6 O2 → 6 CO2 + 36 ATP + 36 H2O | −38.2 | Slow |
| S. cerevisiae | Glucose + 2 ADP + 2 Pi → 2 Ethanol + 2 CO2 + 2 ATP + 2 H2O | −93.9 | Fast |
| E. coli | Glucose + 28 ADP + 28 Pi + 6 O2 → 6 CO2 + 28 ATP + 28 H2O | −61.6 | Slow |
| E. coli | Glucose + 5 ADP + 5 Pi + 2 O2 → 2 Acetate + 2 CO2 + 5 ATP + 5 H2O | −198.7 | Fast |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekker, M.; Ebenhöh, O. Integrative Thermodynamic Strategies in Microbial Metabolism. Int. J. Mol. Sci. 2025, 26, 10921. https://doi.org/10.3390/ijms262210921
Bekker M, Ebenhöh O. Integrative Thermodynamic Strategies in Microbial Metabolism. International Journal of Molecular Sciences. 2025; 26(22):10921. https://doi.org/10.3390/ijms262210921
Chicago/Turabian StyleBekker, Martijn, and Oliver Ebenhöh. 2025. "Integrative Thermodynamic Strategies in Microbial Metabolism" International Journal of Molecular Sciences 26, no. 22: 10921. https://doi.org/10.3390/ijms262210921
APA StyleBekker, M., & Ebenhöh, O. (2025). Integrative Thermodynamic Strategies in Microbial Metabolism. International Journal of Molecular Sciences, 26(22), 10921. https://doi.org/10.3390/ijms262210921

