Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (82,208)

Search Parameters:
Keywords = metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 23946 KiB  
Article
Biomarkers of Inflammation and Radiographic Progression in Axial Spondyloarthritis: A Clinical Evaluation of Leptin, Adiponectin, TNF-α, and IL-17A
by Alexandra-Diana Diaconu, Laurențiu Șorodoc, Cristina Pomîrleanu, Liliana Georgeta Foia, Victorița Șorodoc, Cătălina Lionte, Mara Russu, Vladia Lăpuște, Larisa Ghemiș and Codrina Ancuța
J. Clin. Med. 2025, 14(15), 5605; https://doi.org/10.3390/jcm14155605 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: Axial spondyloarthritis (axSpA) is a chronic immune-mediated inflammatory disorder affecting the spine and sacroiliac joints, with variable clinical expression. This study assessed serum levels of inflammatory (TNF-α, IL-17A) and metabolic (leptin, adiponectin) biomarkers and their associations with disease activity, inflammation, structural [...] Read more.
Background/Objectives: Axial spondyloarthritis (axSpA) is a chronic immune-mediated inflammatory disorder affecting the spine and sacroiliac joints, with variable clinical expression. This study assessed serum levels of inflammatory (TNF-α, IL-17A) and metabolic (leptin, adiponectin) biomarkers and their associations with disease activity, inflammation, structural damage, and comorbidities. Methods: This prospective cross-sectional study assessed 89 axSpA patients using clinical, laboratory, and radiological evaluations. Disease activity was measured using ASDAS-CRP and BASDAI scores. Radiographic damage was quantified using the Modified Stoke Ankylosing Spondylitis Spine Score (mSASSS). Serum concentrations of TNF-α, IL-17A, leptin, and adiponectin were quantified by enzyme-linked immunosorbent assay (ELISA). Clinical and imaging correlations were analyzed. Results: Serum leptin levels correlated significantly with higher disease activity scores, inflammatory markers (CRP, ESR), radiographic progression (syndesmophyte formation, mSASSS), and arterial hypertension. Adiponectin levels were inversely associated with disease activity, structural damage, and arterial hypertension, suggesting anti-inflammatory, bone- and cardio-protective properties. TNF-α levels showed an association with inflammatory markers and were higher in patients with peripheral enthesitis. IL-17A levels were weakly correlated with disease activity and structural severity and were significantly lower in patients with a history of anterior uveitis. Conclusions: Leptin and adiponectin may serve as complementary biomarkers in axSpA, reflecting both inflammatory burden and structural damage. While TNF-α and IL-17A remain key therapeutic targets, their correlation with structural changes appears limited. Biomarker profiling could support personalized disease monitoring. Longitudinal studies are needed to validate prognostic implications. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

16 pages, 3573 KiB  
Article
Combining Time-Restricted Wheel Running and Feeding During the Light Phase Increases Running Intensity Under High-Fat Diet Conditions Without Altering the Total Amount of Daily Running
by Ayano Shiba, Roberta Tandari, Ewout Foppen, Chun-Xia Yi, Joram D. Mul, Dirk Jan Stenvers and Andries Kalsbeek
Int. J. Mol. Sci. 2025, 26(15), 7658; https://doi.org/10.3390/ijms26157658 (registering DOI) - 7 Aug 2025
Abstract
Excess caloric intake and insufficient physical activity are the two major drivers underlying the global obesity and type 2 diabetes mellitus epidemics. However, circadian misalignment of caloric intake and physical activity, as commonly experienced by nightshift workers, can also have detrimental effects on [...] Read more.
Excess caloric intake and insufficient physical activity are the two major drivers underlying the global obesity and type 2 diabetes mellitus epidemics. However, circadian misalignment of caloric intake and physical activity, as commonly experienced by nightshift workers, can also have detrimental effects on body weight and glucose homeostasis. We have previously reported that combined restriction of eating and voluntary wheel running to the inactive phase (i.e., a rat model for circadian misalignment) shifted liver and muscle clock rhythms by ~12 h and prevented the reduction in the amplitude of the muscle clock oscillation otherwise induced by light-phase feeding. Here, we extended on these findings and investigated how a high-fat diet (HFD) affects body composition and liver and muscle clock gene rhythms in male Wistar rats while restricting both eating and exercise to either the inactive or active phase. To do this, we used four experimental conditions: sedentary controls with no wheel access on a non-obesogenic diet (NR), sedentary controls with no wheel access on an HFD (NR-H), and two experimental groups on an HFD with simultaneous access to a running wheel and HFD time-restricted to either the light phase (light-run-light-fed + HFD, LRLF-H) or the dark phase (dark-run-dark-fed + HFD. DRDF-H). Consumption of an HFD did not alter the daily running distance of the time-restricted groups but did increase the running intensity in the LRLF-H group compared to a previously published LRLF chow fed group. However, no such increase was observed for the DRDF-H group. LRLF-H ameliorated light phase-induced disturbances in the soleus clock more effectively than under chow conditions and had a protective effect against HFD-induced changes in liver clock gene expression. Together with (our) previously published results, these data suggest that eating healthy and being active at the wrong time of the day can be as detrimental as eating unhealthy and being active at the right time of the day. Full article
(This article belongs to the Special Issue Molecular Research on Diabetes and Obesity)
12 pages, 760 KiB  
Article
Prediction of Congenital Portosystemic Shunt in Neonatal Hypergalactosemia Using Gal-1-P/Gal Ratio, Bile Acid, and Ammonia
by Sayaka Suzuki-Ajihara, Ikuma Musha, Masato Arao, Koki Mori, Shunsuke Fujibayashi, Ihiro Ryo, Tomotaka Kono, Asako Tajima, Hiroshi Mochizuki, Atsuko Imai-Okazaki, Ryuichiro Araki, Chikahiko Numakura and Akira Ohtake
Int. J. Neonatal Screen. 2025, 11(3), 61; https://doi.org/10.3390/ijns11030061 (registering DOI) - 7 Aug 2025
Abstract
Congenital portosystemic shunts (CPSSs) are often associated with life-threatening systemic complications, which may be detected by identifying hypergalactosemia in newborn screening (NBS). However, diagnosing CPSS at an early stage is not easy. The purpose of this study was to predict CPSS early using [...] Read more.
Congenital portosystemic shunts (CPSSs) are often associated with life-threatening systemic complications, which may be detected by identifying hypergalactosemia in newborn screening (NBS). However, diagnosing CPSS at an early stage is not easy. The purpose of this study was to predict CPSS early using screening values and general blood tests. The medical records of 153 patients with hypergalactosemia who underwent NBS in Saitama Prefecture between 1 December 1997 and 31 October 2023 were retrospectively analyzed. We provided the final diagnosis of the analyzed patients. Of the 153 patients, 44 (29%) were in the CPSS group and 83 (54%) were in the transient galactosemia group. Using the initial screening items and the six blood test items, we attempted to extract a CPSS group from the transient galactosemia group. Finally, a model for CPSS prediction was established. From multiple logistic regression analysis, filtered blood galactose-1 phosphate/galactose, serum total bile acid, and ammonia were adopted as explanatory variables for the prediction model. If the cut-off value for predicted disease probability value (P) was >0.357, CPSS was identified with 86.4% sensitivity (95%CI 72.6–94.8%) and 81.9% specificity (95%CI 72.0–89.5%). This predictive model might allow prediction of CPSS and early intervention. Full article
(This article belongs to the Collection Newborn Screening in Japan)
17 pages, 4238 KiB  
Article
Carbonatogenic Bacteria from Corallium rubrum Colonies
by Vincenzo Pasquale, Roberto Sandulli, Elena Chianese, Antonio Lettino, Maria Esther Sanz-Montero, Mazhar Ali Jarwar and Stefano Dumontet
Minerals 2025, 15(8), 839; https://doi.org/10.3390/min15080839 (registering DOI) - 7 Aug 2025
Abstract
The precipitation of minerals, in particular carbonates, is a widespread phenomenon in all ecosystems, where it assumes a high relevance both from a geological and biogeochemical standpoint. Most carbonate rocks are of biological origin and made in an aquatic environment. In particular, bioprecipitation [...] Read more.
The precipitation of minerals, in particular carbonates, is a widespread phenomenon in all ecosystems, where it assumes a high relevance both from a geological and biogeochemical standpoint. Most carbonate rocks are of biological origin and made in an aquatic environment. In particular, bioprecipitation of carbonates is believed to have started in the Mesoproterozoic Era, thanks to a process often driven by photosynthetic microorganisms. Nevertheless, an important contribution to carbonate precipitation is also due to the metabolic activity of heterotrophic bacteria, which is not restricted to specific taxonomic groups or to specific environments, making this process a ubiquitous phenomenon. In this framework, the relationship between carbonatogenic microorganisms and other living organisms assumes a particular interest. This study aims to isolate and identify the culturable heterotrophic bacterial component associated with the coenosarc of Corallium rubrum in order to evaluate the occurrence of strains able to precipitate carbonates. In particular, the study was focused on the identification and characterisation of bacterial strains isolated from a coral coenosarc showing a high carbonatogenic capacity under laboratory conditions. Samples of C. rubrum were taken in the coastal waters of three Italian regions. The concentration of the aerobic heterotrophic microflora colonising C. rubrum coenosarc samples spanned from 3 to 6∙106 CFU/cm2. This variation in microbial populations colonising the C. rubrum coenosarc, spanning over 6 orders of magnitude, is not mirrored by a corresponding variability in the colony morphotypes recorded, with the mean being 5.1 (±2.1 sd). Among these bacteria, the carbonatogenic predominant species was Staphylococcus equorum (93% of the isolates), whereas Staphylococcus xylosus and Shewanella sp. accounted only for 3% of isolates each. All these strains showed a remarkable capacity of precipitating calcium carbonate, in the form of calcite crystals organised radially as well crystalised spherulites (S. equorum) or coalescing spherulites (Shewanella sp.). S. xylosus only produced amorphous precipitates of calcium carbonate. All bacterial strains identified were positive both for the production of urease and carbon anhydrase in vitro at 30 °C. It seems that they potentially possess the major biochemical abilities conducive to Ca2+ precipitation, as they showed in vitro. In addition, all our carbonatogenic isolates were able to hydrolyse the phytic acid calcium salt and then were potentially able to induce precipitation of calcium phosphates also through such a mechanism. Full article
(This article belongs to the Special Issue Carbonate Petrology and Geochemistry, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 973 KiB  
Article
Normalization of Oxygen Levels Induces a Metabolic Reprogramming in Livers Exposed to Intermittent Hypoxia Mimicking Obstructive Sleep Apnea
by Miguel Á. Hernández-García, Beatriz Aldave-Orzáiz, Carlos Ernesto Fernández-García, Esther Fuertes-Yebra, Esther Rey, Ángela Berlana, Ramón Farré, Carmelo García-Monzón, Isaac Almendros, Pedro Landete and Águeda González-Rodríguez
Antioxidants 2025, 14(8), 971; https://doi.org/10.3390/antiox14080971 (registering DOI) - 7 Aug 2025
Abstract
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), is strongly associated with metabolic syndrome and metabolic dysfunction-associated steatotic liver disease (MASLD). IH exacerbates MASLD progression through oxidative stress, inflammation, and lipid accumulation. This study aims to investigate the impact of oxygen normalization [...] Read more.
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), is strongly associated with metabolic syndrome and metabolic dysfunction-associated steatotic liver disease (MASLD). IH exacerbates MASLD progression through oxidative stress, inflammation, and lipid accumulation. This study aims to investigate the impact of oxygen normalization on metabolic dysfunction in OSA patients using continuous positive airway pressure (CPAP) therapy, and in mice exposed to IH followed by a reoxygenation period. In the clinical study, 76 participants (44 OSA patients and 32 controls) were analyzed. OSA patients had higher insulin resistance, triglycerides, very low density lipoprotein (VLDL) content, and liver enzyme levels, along with a higher prevalence of liver steatosis. After 18 months of CPAP therapy, OSA patients showed significant improvements in insulin resistance, lipid profiles (total cholesterol and VLDL), liver function markers (AST and albumin), and steatosis risk scores (Fatty Liver Index and OWLiver test). In the experimental study, IH induced hepatic lipid accumulation, oxidative stress, and inflammation, and reoxygenation reversed these deleterious effects in mice. At the molecular level, IH downregulated fatty acid oxidation (FAO)-related genes, thus impairing the FAO process. Reoxygenation maintained elevated levels of lipogenic genes but restored FAO gene expression and activity, suggesting enhanced lipid clearance despite ongoing lipogenesis. Indeed, serum β hydroxybutyrate, a key marker of hepatic FAO in patients, was impaired in OSA patients but normalized after CPAP therapy, supporting improved FAO function. CPAP therapy improves lipid profiles, liver function, and MASLD progression in OSA patients. Experimental findings highlight the therapeutic potential of oxygen normalization in reversing IH-induced liver damage by FAO pathway restoration, indicating a metabolic reprogramming in the liver. Full article
(This article belongs to the Special Issue Oxidative Stress in Sleep Disorders)
18 pages, 567 KiB  
Review
Mephedrone and Its Metabolites: A Narrative Review
by Ordak Michal, Tkacz Daria, Juzwiuk Izabela, Wiktoria Gorecka, Nasierowski Tadeusz, Muszynska Elzbieta and Bujalska-Zadrozny Magdanena
Int. J. Mol. Sci. 2025, 26(15), 7656; https://doi.org/10.3390/ijms26157656 (registering DOI) - 7 Aug 2025
Abstract
New psychoactive substances (NPSs) have emerged as a significant global public health challenge due to their ability to mimic traditional drugs. Among these, mephedrone has gained attention because of its widespread use and associated toxicities. This review provides a comprehensive analysis of the [...] Read more.
New psychoactive substances (NPSs) have emerged as a significant global public health challenge due to their ability to mimic traditional drugs. Among these, mephedrone has gained attention because of its widespread use and associated toxicities. This review provides a comprehensive analysis of the structure, pharmacokinetic properties, and metabolic pathways of mephedrone, highlighting its phase I and phase II metabolites as potential biomarkers for detection and forensic applications. A comprehensive literature search was performed without date restrictions. The search employed key terms such as “mephedrone metabolites”, “pharmacokinetics of mephedrone”, “phase I metabolites of mephedrone”, and “phase II metabolites of mephedrone”. Additionally, the reference lists of selected studies were screened to ensure a thorough review of the literature. Mephedrone is a chiral compound existing in two enantiomeric forms, exhibiting different affinities for monoamine transporters and distinct pharmacological profiles. In vivo animal studies indicate rapid absorption, significant tissue distribution, and the formation of multiple phase I metabolites (e.g., normephedrone, dihydromephedrone, 4-carboxymephedrone) that influence its neurochemical effects. Phase II metabolism involves conjugation reactions leading to metabolites such as N-succinyl-normephedrone and N-glutaryl-normephedrone, further complicating its metabolic profile. These findings underscore the importance of elucidating mephedrone’s metabolic pathways to improve detection methods, enhance our understanding of its toxicological risks, and inform future therapeutic strategies. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

24 pages, 4458 KiB  
Review
Selenium-Enriched Microorganisms: Metabolism, Production, and Applications
by Lin Luo, Xue Hou, Dandan Yi, Guangai Deng, Zhiyong Wang and Mu Peng
Microorganisms 2025, 13(8), 1849; https://doi.org/10.3390/microorganisms13081849 (registering DOI) - 7 Aug 2025
Abstract
Microorganisms, as abundant biological resources, offer significant potential in the development of selenium-enrichment technologies. Selenium-enriched microorganisms not only absorb, reduce, and accumulate selenium efficiently but also produce various selenium compounds without relying on synthetic chemical processes. In particular, nano-selenium produced by these microorganisms [...] Read more.
Microorganisms, as abundant biological resources, offer significant potential in the development of selenium-enrichment technologies. Selenium-enriched microorganisms not only absorb, reduce, and accumulate selenium efficiently but also produce various selenium compounds without relying on synthetic chemical processes. In particular, nano-selenium produced by these microorganisms during cultivation has garnered attention due to its unique physicochemical properties and biological activity, making it a promising raw material for functional foods and pharmaceutical products. This paper reviews selenium-enriched microorganisms, focusing on their classification, selenium metabolism, and transformation mechanisms. It explores how selenium is absorbed, reduced, and transformed within microbial cells, analyzing the biochemical processes by which inorganic selenium is converted into organic and nano-selenium forms. Finally, the broad applications of selenium-enriched microbial products in food, medicine, and agriculture are explored, including their roles in selenium-rich foods, nano-selenium materials, and disease prevention and treatment. Full article
(This article belongs to the Special Issue Exploring the Diversity of Microbial Applications)
Show Figures

Figure 1

21 pages, 742 KiB  
Review
Gut Microbiota and Its Metabolites Modulate Pregnancy Outcomes by Regulating Placental Autophagy and Ferroptosis
by Xingyu Du, Mabrouk Elsabagh, Feiyang He, Huisi Wu, Bei Zhang, Kewei Fan, Mengzhi Wang and Hao Zhang
Antioxidants 2025, 14(8), 970; https://doi.org/10.3390/antiox14080970 (registering DOI) - 7 Aug 2025
Abstract
During pregnancy, the regulation of autophagy and ferroptosis dynamically supports placental development and fetal health. Both processes—autophagy, clearing damaged organelles to maintain placental function, and ferroptosis, driven by iron-dependent lipid peroxidation—are involved in pathological conditions such as preeclampsia. Emerging evidence suggests that gut [...] Read more.
During pregnancy, the regulation of autophagy and ferroptosis dynamically supports placental development and fetal health. Both processes—autophagy, clearing damaged organelles to maintain placental function, and ferroptosis, driven by iron-dependent lipid peroxidation—are involved in pathological conditions such as preeclampsia. Emerging evidence suggests that gut microbiota-derived metabolites act as key regulators of this balance, yet their specific roles across different trimesters remain unclear. This review compiles evidence on how gut microbiota metabolites, like short-chain fatty acids and trimethylamine N-oxide, serve as trimester-specific modulators of the autophagy–ferroptosis balance during pregnancy. We explain how these metabolites influence pregnancy outcomes by regulating placental autophagy and ferroptosis. Furthermore, we explore potential diagnostic and therapeutic approaches for pregnancy complications, focusing on metabolite-based biomarkers and interventions that target microbial–metabolic interactions. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
12 pages, 427 KiB  
Article
Beyond Metabolism: Psychiatric and Social Dimensions in Bariatric Surgery Candidates with a BMI ≥ 50—A Prospective Cohort Study
by Marta Herstowska, Karolina Myśliwiec, Marta Bandura, Jędrzej Chrzanowski, Jacek Burzyński, Arkadiusz Michalak, Agnieszka Lejk, Izabela Karamon, Wojciech Fendler and Łukasz Kaska
Nutrients 2025, 17(15), 2573; https://doi.org/10.3390/nu17152573 (registering DOI) - 7 Aug 2025
Abstract
Background: Super morbid obesity (SMO), defined as a body mass index (BMI) ≥ 50 kg/m2, represents a distinct and increasingly prevalent subgroup of patients undergoing bariatric surgery. Compared to individuals with lower BMI, patients with BMI ≥ 50 kg/m2 often [...] Read more.
Background: Super morbid obesity (SMO), defined as a body mass index (BMI) ≥ 50 kg/m2, represents a distinct and increasingly prevalent subgroup of patients undergoing bariatric surgery. Compared to individuals with lower BMI, patients with BMI ≥ 50 kg/m2 often exhibit unique clinical, psychological, and social characteristics that may influence treatment outcomes. Objective: This study aimed to compare demographic, metabolic, and psychiatric profiles of patients with BMI ≥ 50 kg/m2 and non-super morbid obesity (NSMO; BMI < 50 kg/m2) who were evaluated prior to bariatric surgery. Methods: A total of 319 patients were recruited between December 2022 and December 2023 at a bariatric center in Gdansk, Poland. All participants underwent a comprehensive preoperative assessment, including laboratory testing, psychometric screening (BDI, PHQ-9), and psychiatric interviews. Patients were stratified into class IV obesity and NSMO groups for comparative analysis. Results: Patients with BMI ≥ 50 kg/m2 were significantly older and more likely to report a history of lifelong obesity, family history of obesity, and childhood trauma. They had higher rates of obesity-related health problems such as hypertension, obstructive sleep apnea, and chronic venous insufficiency, as well as worse liver function and lipid profiles. Although the overall psychiatric burden was high in both groups, patients with BMI ≥ 50 kg/m2 reported fewer prior diagnoses of depression and eating disorders, despite similar scores on screening tools. Conclusions: Patients with BMI ≥ 50 kg/m2 represent a clinically distinct population with elevated metabolic risk, complex psychosocial backgrounds, and possibly underrecognized psychiatric burden. These findings underscore the need for multidisciplinary preoperative assessment and individualized treatment strategies in this group of patients. Full article
(This article belongs to the Section Nutrition and Metabolism)
15 pages, 3707 KiB  
Article
Biodegradation of Both Ethanol and Acetaldehyde by Acetobacter ghanensis JN01
by Hongyan Liu, Jingjing Wang, Qianqian Xu, Xiaoyu Cao, Xinyue Du, Kun Lin and Hai Yan
Catalysts 2025, 15(8), 756; https://doi.org/10.3390/catal15080756 (registering DOI) - 7 Aug 2025
Abstract
Excessive alcohol consumption is associated with systemic health risks due to the production of acetaldehyde, a primary carcinogen that not only pollutes the environment but also endangers human health. In this study, a promising bacterial strain for biodegrading both ethanol and acetaldehyde was [...] Read more.
Excessive alcohol consumption is associated with systemic health risks due to the production of acetaldehyde, a primary carcinogen that not only pollutes the environment but also endangers human health. In this study, a promising bacterial strain for biodegrading both ethanol and acetaldehyde was successfully isolated from the traditional fermented food Jiaosu and identified as Acetobacter ghanensis JN01 based on average nucleotide identity (ANI) analysis. Initial ethanol of 1 g/L was completely biodegraded within 4 h, while initial acetaldehyde of 1 g/L was also rapidly removed at 2 or 1 h by whole cells or cell-free extracts (CEs) of JN01, respectively, which indicated that JN01 indeed has a strong ability in the biodegradation of both ethanol and acetaldehyde. Whole-genome sequencing revealed a 2.85 Mb draft genome of JN01 with 57.0% guanine–cytosine (GC) content and the key metabolic genes (adh1, adh2, and aldh) encoding involving alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), co-located with NADH dehydrogenase genes and ethanol-responsive regulatory motifs, supporting the metabolic pathway of transforming ethanol to acetaldehyde, and, subsequently, converting acetaldehyde to acetic acid. Furthermore, selected in vitro safety-related traits of JN01 were also assessed, which is very important in the development of microbial catalysts against both ethanol and acetaldehyde. Full article
(This article belongs to the Section Biocatalysis)
14 pages, 1038 KiB  
Article
Evaluation of Metabolic Characteristics Induced by Deoxynivalenol in 3D4/21 Cells
by Yu Han, Bo Yu, Wenao Weng, Liangyu Shi and Jing Zhang
Animals 2025, 15(15), 2324; https://doi.org/10.3390/ani15152324 (registering DOI) - 7 Aug 2025
Abstract
Deoxynivalenol (DON) is a common mycotoxin that causes immunosuppression in pigs. Its effects on cellular metabolism remain unclear. In this study, we investigate DON-induced metabolic alterations in porcine alveolar macrophage cell line 3D4/21 using non-targeted metabolomics. MTT assays showed DON reduced cell viability [...] Read more.
Deoxynivalenol (DON) is a common mycotoxin that causes immunosuppression in pigs. Its effects on cellular metabolism remain unclear. In this study, we investigate DON-induced metabolic alterations in porcine alveolar macrophage cell line 3D4/21 using non-targeted metabolomics. MTT assays showed DON reduced cell viability in a concentration- and time-dependent manner. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) revealed distinct metabolic profiles between control and DON-treated groups. Metabolomic analysis identified 127 differential metabolites (VIP > 1, p < 0.05), primarily in purine metabolism, glutathione metabolism, and arginine–proline metabolism. Integration with transcriptomic data confirmed that these pathways play key roles in DON-induced immunotoxicity. Specifically, changes in purine metabolism suggested disrupted nucleotide synthesis and energy balance, while glutathione depletion indicated weakened antioxidant defense. These findings provided a systems biology perspective on DON’s metabolic reprogramming of immune cells and identified potential therapeutic targets to reduce mycotoxin-related immunosuppression in swine. Full article
(This article belongs to the Section Animal Physiology)
19 pages, 3173 KiB  
Article
Whole-Genome Resequencing Analysis of Athletic Traits in Grassland-Thoroughbred
by Wenqi Ding, Wendian Gong, Tugeqin Bou, Lin Shi, Yanan Lin, Xiaoyuan Shi, Zheng Li, Huize Wu, Manglai Dugarjaviin and Dongyi Bai
Animals 2025, 15(15), 2323; https://doi.org/10.3390/ani15152323 (registering DOI) - 7 Aug 2025
Abstract
Speed is not only the primary objective of racehorse breeding but also a crucial indicator for evaluating racehorse performance. This study investigates a newly developed racehorse breed in China. Through whole-genome resequencing, we selected 60 offspring obtained from the crossbreeding of Thoroughbred horses [...] Read more.
Speed is not only the primary objective of racehorse breeding but also a crucial indicator for evaluating racehorse performance. This study investigates a newly developed racehorse breed in China. Through whole-genome resequencing, we selected 60 offspring obtained from the crossbreeding of Thoroughbred horses and Xilingol horses for this study. This breed is tentatively named “Grassland-Thoroughbred”, and the samples were divided into two groups based on racing ability: 30 racehorses and 30 non-racehorses. Based on whole-genome sequencing data, the study achieved an average sequencing depth of 25.63×. The analysis revealed strong selection pressure on chromosomes (Chr) 1 and 3. Selection signals were detected using methods such as the nucleotide diversity ratio (π ratio), integrated haplotype score (iHS), fixation index (Fst), and cross-population extended haplotype homozygosity (XP-EHH). Regions ranked in the top 5% by at least three methods were designated as candidate regions. This approach detected 215 candidate genes. Additionally, the Fst method was employed to detect Indels, and the top 1% regions detected were considered candidate regions, covering 661 candidate genes. Functional enrichment analysis of the candidate genes suggests that pathways related to immune regulation, neural signal transmission, muscle contraction, and energy metabolism may significantly influence differences in performance. Among these identified genes, PPARGC1A, FOXO1, SGCD, FOXP2, PRKG1, SLC25A15, CKMT2, and TRAP1 play crucial roles in muscle function, metabolism, sensory perception, and neurobiology, indicating their key significance in shaping racehorse phenotypes. This study not only enhances understanding of the molecular mechanisms underlying racehorse speed but also provides essential theoretical and practical references for the molecular breeding of Grassland-Thoroughbreds. Full article
(This article belongs to the Section Animal Genetics and Genomics)
17 pages, 3032 KiB  
Article
The Loss of Complex I in Renal Oncocytoma Is Associated with Defective Mitophagy Due to Lysosomal Dysfunction
by Lin Lin, Neal Patel, Lucia Fernandez-del-Rio, Cristiane Benica, Blake Wilde, Eirini Christodoulou, Shinji Ohtake, Anhyo Jeong, Aboubacar Kaba, Nedas Matulionis, Randy Caliliw, Xiaowu Gai, Heather Christofk, David Shackelford and Brian Shuch
Int. J. Mol. Sci. 2025, 26(15), 7654; https://doi.org/10.3390/ijms26157654 (registering DOI) - 7 Aug 2025
Abstract
Renal oncocytoma (RO) is a benign renal neoplasm characterized by dense accumulation of dysfunctional mitochondria possibly resulting from increased mitochondrial biogenesis and decreased mitophagy; however, the mechanisms controlling these mitochondrial changes are unclear. ROs harbor recurrent inactivating mutations in mitochondrial genes encoding the [...] Read more.
Renal oncocytoma (RO) is a benign renal neoplasm characterized by dense accumulation of dysfunctional mitochondria possibly resulting from increased mitochondrial biogenesis and decreased mitophagy; however, the mechanisms controlling these mitochondrial changes are unclear. ROs harbor recurrent inactivating mutations in mitochondrial genes encoding the Electron Transport Chain (ETC) Complex I, and we hypothesize that Complex I loss in ROs directly impairs mitophagy. Our analysis of ROs and normal kidney (NK) tissues shows that a significant portion (8 out of 17) of ROs have mtDNA Complex I loss-of-function mutations with high variant allele frequency (>50%). ROs indeed exhibit reduced Complex I expression and activity. Analysis of the various steps of mitophagy pathway demonstrates that AMPK activation in ROs leads to induction of mitochondrial biogenesis, autophagy, and formation of autophagosomes. However, the subsequent steps involving lysosome biogenesis and function are defective, resulting in an overall inhibition of mitophagy. Inhibiting Complex I in a normal kidney cell line recapitulated the observed lysosomal and mitophagy defects. Our data suggest Complex I loss in RO results in defective mitophagy due to lysosomal loss and dysfunction. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

16 pages, 610 KiB  
Review
From Deficiency to Therapy: Systemic Consequences of ALAS1 Disruption and the Protective Role of 5-ALA
by Koen van Wijk and Osamu Nakajima
Life 2025, 15(8), 1259; https://doi.org/10.3390/life15081259 (registering DOI) - 7 Aug 2025
Abstract
Heme, an essential prosthetic group involved in mitochondrial respiration and transcriptional regulation, is synthesized via the rate-limiting enzyme 5-aminolevulinic acid synthase (ALAS). Utilizing heterozygous mouse models for ALAS1 and ALAS2, our studies have revealed diverse systemic consequences of chronic heme deficiency. ALAS1-heterozygous (ALAS1+/−) [...] Read more.
Heme, an essential prosthetic group involved in mitochondrial respiration and transcriptional regulation, is synthesized via the rate-limiting enzyme 5-aminolevulinic acid synthase (ALAS). Utilizing heterozygous mouse models for ALAS1 and ALAS2, our studies have revealed diverse systemic consequences of chronic heme deficiency. ALAS1-heterozygous (ALAS1+/−) mice develop metabolic dysfunction characterized by insulin resistance, glucose intolerance, and abnormal glycogen accumulation, linked mechanistically to reduced AMP-activated protein kinase (AMPK) signaling. These mice also exhibit pronounced mitochondrial dysfunction, impaired autophagy, and accelerated aging phenotypes, including sarcopenia and metabolic decline, highlighting heme’s role as a critical metabolic regulator. Additionally, ALAS2 heterozygosity (ALAS2+/−) leads to impaired erythropoiesis, resulting in anemia and ineffective iron utilization. Importantly, supplementation with the heme precursor 5-aminolevulinic acid (5-ALA) significantly mitigates ALAS1+/− phenotypes, restoring metabolic function, mitochondrial health, autophagy, and immune competence. This review encapsulates key findings from our group’s research together with advances made by multiple research groups over the past decade, collectively establishing heme homeostasis as a central regulator of systemic physiology and highlighting the therapeutic potential of 5-ALA in treating heme-deficient pathologies. Full article
Show Figures

Figure 1

13 pages, 5445 KiB  
Article
Association of 6:2 Fluorotelomer Ethoxylate Exposure with Serum Lipids in General Adults
by Yan Wu, Qianjin Li, Rendi Deng, Rui Wang, Junfen Fu, Fangfang Ren and Hangbiao Jin
Toxics 2025, 13(8), 664; https://doi.org/10.3390/toxics13080664 (registering DOI) - 7 Aug 2025
Abstract
A series of 6:2 fluorotelomer ethoxylates (FTEOs) has been recently detected in human serum. Whether it has the potential to disrupt lipid metabolism in human populations remains largely unexplored. This study quantified serum concentrations of 6:2 FTEOs in 237 healthy Chinese adults, examined [...] Read more.
A series of 6:2 fluorotelomer ethoxylates (FTEOs) has been recently detected in human serum. Whether it has the potential to disrupt lipid metabolism in human populations remains largely unexplored. This study quantified serum concentrations of 6:2 FTEOs in 237 healthy Chinese adults, examined the gender- and age-specific differences in serum levels of 6:2 FTEOs, and investigated the associations between serum levels of 6:2 FTEOs and lipid profiles for the first time. Nine 6:2 FTEO homologues were detected in collected human serum, with detection frequencies of 22–81%. 6:2 FTEO8 and 6:2 FTEO9 were the more abundant 6:2 FTEO homologues in human serum, displaying the mean levels of 0.69 ng/mL (range < LOD–7.36 ng/mL) and 0.71 ng/mL (<LOD–8.12 ng/mL), respectively. Male participants had much higher (p < 0.05) mean serum levels of 6:2 FTEO6 (0.61 vs. 0.31 ng/mL), 6:2 FTEO7 (0.44 vs. 0.21 ng/mL), 6:2 FTEO8 (0.91 vs. 0.38 ng/mL), and 6:2 FTEO11 (0.35 vs. 0.18 ng/mL) than female subjects. Correlation analysis revealed a significantly positive relationship (p < 0.01) between the age of participants and human serum concentrations of 6:2 FTEO6–6:2 FTEO11. Multivariate linear regression identified significant positive associations between specific 6:2 FTEO homologues (e.g., 6:2 FTEO6, 6:2 FTEO8–6:2 FTEO10) and elevated total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglyceride levels. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

Back to TopTop