HSALR Mice Exhibit Co-Expression of Proteostasis Genes Prior to Development of Muscle Weakness
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DM1 | Myotonic Dystrophy Type 1 |
| WGCNA | Weighted Gene Co-expression Network Analysis |
| ER | Endoplasmic Reticulum |
| SR | Sarcoplasmic Reticulum |
| PCA | Principal Component Analysis |
| GS | Gene Significance |
| MM | Module Membership |
| ORA | Over-representation Analysis |
| FDR | False Discovery Rate |
| SIGORA | Significant Over-representation Analysis |
| DEG | Differentially Expressed Gene |
| ROS | Reactive Oxygen Species |
| UPS | Ubiquitin-Proteasome System |
| ERAD | ER-Associated Degradation |
| qPCR | quantitative Polymerase Chain Reaction |
References
- Brook, J.D.; McCurrach, M.E.; Harley, H.G.; Buckler, A.J.; Church, D.; Aburatani, H.; Hunter, K.; Stanton, V.P.; Thirion, J.-P.; Hudson, T.; et al. Molecular Basis of Myotonic Dystrophy: Expansion of a Trinucleotide (CTG) Repeat at the 3′ End of a Transcript Encoding a Protein Kinase Family Member. Cell 1992, 68, 799–808, Erratum in Cell 1992, 7, 385. [Google Scholar] [CrossRef]
- De Antonio, M.; Dogan, C.; Hamroun, D.; Mati, M.; Zerrouki, S.; Eymard, B.; Katsahian, S.; Bassez, G. Unravelling the Myotonic Dystrophy Type 1 Clinical Spectrum: A Systematic Registry-Based Study with Implications for Disease Classification. Rev. Neurol. 2016, 172, 572–580. [Google Scholar] [CrossRef]
- Savić Pavićević, D.; Miladinović, J.; Brkušanin, M.; Šviković, S.; Djurica, S.; Brajušković, G.; Romac, S. Molecular Genetics and Genetic Testing in Myotonic Dystrophy Type 1. BioMed. Res. Int. 2013, 2013, 391821. [Google Scholar] [CrossRef] [PubMed]
- Ranum, L.P.W.; Day, J.W. Myotonic Dystrophy: RNA Pathogenesis Comes into Focus. Am. J. Hum. Genet. 2004, 74, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Kalsotra, A.; Xiao, X.; Ward, A.J.; Castle, J.C.; Johnson, J.M.; Burge, C.B.; Cooper, T.A. A Postnatal Switch of CELF and MBNL Proteins Reprograms Alternative Splicing in the Developing Heart. Proc. Natl. Acad. Sci. USA 2008, 105, 20333–20338. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Espinosa, J.; González-Barriga, A.; López-Castel, A.; Artero, R. Deciphering the Complex Molecular Pathogenesis of Myotonic Dystrophy Type 1 through Omics Studies. Int. J. Mol. Sci. 2022, 23, 1441. [Google Scholar] [CrossRef]
- Mankodi, A.; Logigian, E.; Callahan, L.; McClain, C.; White, R.; Henderson, D.; Krym, M.; Thornton, C.A. Myotonic Dystrophy in Transgenic Mice Expressing an Expanded CUG Repeat. Science 2000, 289, 1769–1772. [Google Scholar] [CrossRef]
- Jones, K.; Wei, C.; Iakova, P.; Bugiardini, E.; Schneider-Gold, C.; Meola, G.; Woodgett, J.; Killian, J.; Timchenko, N.A.; Timchenko, L.T. GSK3β Mediates Muscle Pathology in Myotonic Dystrophy. J. Clin. Investig. 2012, 122, 4461–4472. [Google Scholar] [CrossRef]
- Wansink, D.G.; Wieringa, B. Transgenic Mouse Models for Myotonic Dystrophy Type 1 (DM1). Cytogenet. Genome Res. 2003, 100, 230–242. [Google Scholar] [CrossRef]
- Du, H.; Cline, M.S.; Osborne, R.J.; Tuttle, D.L.; Clark, T.A.; Donohue, J.P.; Hall, M.P.; Shiue, L.; Swanson, M.S.; Thornton, C.A.; et al. Aberrant Alternative Splicing and Extracellular Matrix Gene Expression in Mouse Models of Myotonic Dystrophy. Nat. Struct. Mol. Biol. 2010, 17, 187–193. [Google Scholar] [CrossRef]
- Tanner, M.K.; Tang, Z.; Thornton, C.A. Targeted Splice Sequencing Reveals RNA Toxicity and Therapeutic Response in Myotonic Dystrophy. Nucleic Acids Res. 2021, 49, 2240–2254. [Google Scholar] [CrossRef] [PubMed]
- Solovyeva, E.M.; Utzinger, S.; Vissières, A.; Mitchelmore, J.; Ahrné, E.; Hermes, E.; Poetsch, T.; Ronco, M.; Bidinosti, M.; Merkl, C.; et al. Integrative Proteogenomics for Differential Expression and Splicing Variation in a DM1 Mouse Model. Mol. Cell. Proteom. 2024, 23, 100683. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
- Hicks, S.M.; Frias, J.A.; Mishra, S.K.; Scotti, M.; Muscato, D.R.; Valero, M.C.; Adams, L.M.; Cleary, J.D.; Nakamori, M.; Wang, E.; et al. Alternative Splicing Dysregulation across Tissue and Therapeutic Approaches in a Mouse Model of Myotonic Dystrophy Type 1. Mol. Ther. Nucleic Acids 2024, 35, 102338. [Google Scholar] [CrossRef]
- Carrascosa-Sàez, M.; Colom-Rodrigo, A.; González-Martínez, I.; Pérez-Gómez, R.; García-Rey, A.; Piqueras-Losilla, D.; Ballestar, A.; Llamusí, B.; Cerro-Herreros, E.; Artero, R. Use of HSALR Female Mice as a Model for the Study of Myotonic Dystrophy Type I. Lab. Anim. 2025, 54, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Foroushani, A.B.K.; Brinkman, F.S.L.; Lynn, D.J. Pathway-GPS and SIGORA: Identifying Relevant Pathways Based on the over-Representation of Their Gene-Pair Signatures. PeerJ 2013, 1, e229. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Ozimski, L.L.; Sabater-Arcis, M.; Bargiela, A.; Artero, R. The Hallmarks of Myotonic Dystrophy Type 1 Muscle Dysfunction. Biol. Rev. 2021, 96, 716–730. [Google Scholar] [CrossRef]
- Hwang, J.; Qi, L. Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR Pathways. Trends Biochem. Sci. 2018, 43, 593–605. [Google Scholar] [CrossRef]
- Meusser, B.; Hirsch, C.; Jarosch, E.; Sommer, T. ERAD: The Long Road to Destruction. Nat. Cell Biol. 2005, 7, 766–772. [Google Scholar] [CrossRef]
- Chen, K.; Qu, S.; Chowdhury, S.; Noxon, I.C.; Schonhoft, J.D.; Plate, L.; Powers, E.T.; Kelly, J.W.; Lander, G.C.; Wiseman, R.L. The Endoplasmic Reticulum HSP 40 Co-chaperone ER Dj3/DNAJB 11 Assembles and Functions as a Tetramer. EMBO J. 2017, 36, 2296–2309. [Google Scholar] [CrossRef] [PubMed]
- Blythe, E.E.; Olson, K.C.; Chau, V.; Deshaies, R.J. Ubiquitin- and ATP-Dependent Unfoldase Activity of P97/VCP•NPLOC4•UFD1L Is Enhanced by a Mutation That Causes Multisystem Proteinopathy. Proc. Natl. Acad. Sci. USA 2017, 114, E4380–E4388. [Google Scholar] [CrossRef]
- Botta, A.; Malena, A.; Loro, E.; Del Moro, G.; Suman, M.; Pantic, B.; Szabadkai, G.; Vergani, L. Altered Ca2+ Homeostasis and Endoplasmic Reticulum Stress in Myotonic Dystrophy Type 1 Muscle Cells. Genes 2013, 4, 275–292. [Google Scholar] [CrossRef]
- Takayanagi, S.; Fukuda, R.; Takeuchi, Y.; Tsukada, S.; Yoshida, K. Gene Regulatory Network of Unfolded Protein Response Genes in Endoplasmic Reticulum Stress. Cell Stress Chaperones 2013, 18, 11–23. [Google Scholar] [CrossRef]
- Ikezoe, K.; Nakamori, M.; Furuya, H.; Arahata, H.; Kanemoto, S.; Kimura, T.; Imaizumi, K.; Takahashi, M.P.; Sakoda, S.; Fujii, N.; et al. Endoplasmic Reticulum Stress in Myotonic Dystrophy Type 1 Muscle. Acta Neuropathol. 2007, 114, 527–535. [Google Scholar] [CrossRef]
- Kitajima, Y.; Yoshioka, K.; Suzuki, N. The Ubiquitin–Proteasome System in Regulation of the Skeletal Muscle Homeostasis and Atrophy: From Basic Science to Disorders. J. Physiol. Sci. 2020, 70, 40. [Google Scholar] [CrossRef]
- Bonaldo, P.; Sandri, M. Cellular and Molecular Mechanisms of Muscle Atrophy. Dis. Models Mech. 2013, 6, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Vignaud, A.; Ferry, A.; Huguet, A.; Baraibar, M.; Trollet, C.; Hyzewicz, J.; Butler-Browne, G.; Puymirat, J.; Gourdon, G.; Furling, D. Progressive Skeletal Muscle Weakness in Transgenic Mice Expressing CTG Expansions Is Associated with the Activation of the Ubiquitin–Proteasome Pathway. Neuromuscul. Disord. 2010, 20, 319–325. [Google Scholar] [CrossRef]
- Huguet, A.; Medja, F.; Nicole, A.; Vignaud, A.; Guiraud-Dogan, C.; Ferry, A.; Decostre, V.; Hogrel, J.-Y.; Metzger, F.; Hoeflich, A.; et al. Molecular, Physiological, and Motor Performance Defects in DMSXL Mice Carrying >1,000 CTG Repeats from the Human DM1 Locus. PLoS Genet. 2012, 8, e1003043. [Google Scholar] [CrossRef]
- Lilienbaum, A. Relationship between the Proteasomal System and Autophagy. Int. J. Biochem. Mol. Biol. 2013, 4, 1–26. [Google Scholar]
- Mikhail, A.I.; Manta, A.; Ng, S.Y.; Osborne, A.K.; Mattina, S.R.; Mackie, M.R.; Ljubicic, V. A Single Dose of Exercise Stimulates Skeletal Muscle Mitochondrial Plasticity in Myotonic Dystrophy Type 1. Acta Physiol. 2023, 237, e13943. [Google Scholar] [CrossRef]
- Brockhoff, M.; Rion, N.; Chojnowska, K.; Wiktorowicz, T.; Eickhorst, C.; Erne, B.; Frank, S.; Angelini, C.; Furling, D.; Rüegg, M.A.; et al. Targeting Deregulated AMPK/mTORC1 Pathways Improves Muscle Function in Myotonic Dystrophy Type I. J. Clin. Investig. 2017, 127, 549–563. [Google Scholar] [CrossRef]
- Mateos-Aierdi, A.J.; Goicoechea, M.; Aiastui, A.; Fernández-Torrón, R.; Garcia-Puga, M.; Matheu, A.; De Munain, A.L. Muscle Wasting in Myotonic Dystrophies: A Model of Premature Aging. Front. Aging Neurosci. 2015, 7, 125. [Google Scholar] [CrossRef]
- Sabater-Arcis, M.; Bargiela, A.; Furling, D.; Artero, R. miR-7 Restores Phenotypes in Myotonic Dystrophy Muscle Cells by Repressing Hyperactivated Autophagy. Mol. Ther. Nucleic Acids 2020, 19, 278–292. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Huang, X.; Huang, J.; Zheng, Y.; March, M.E.; Li, J.; Wei, Y. The Role of Autophagy in Skeletal Muscle Diseases. Front. Physiol. 2021, 12, 638983. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Phogat, J.; Yadav, A.; Dabur, R. The Dependency of Autophagy and Ubiquitin Proteasome System during Skeletal Muscle Atrophy. Biophys. Rev. 2021, 13, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Mikhail, A.I.; Nagy, P.L.; Manta, K.; Rouse, N.; Manta, A.; Ng, S.Y.; Nagy, M.F.; Smith, P.; Lu, J.-Q.; Nederveen, J.P.; et al. Aerobic Exercise Elicits Clinical Adaptations in Myotonic Dystrophy Type 1 Patients Independently of Pathophysiological Changes. J. Clin. Investig. 2022, 132, e156125. [Google Scholar] [CrossRef]
- Sebastián, D.; Sorianello, E.; Segalés, J.; Irazoki, A.; Ruiz-Bonilla, V.; Sala, D.; Planet, E.; Berenguer-Llergo, A.; Muñoz, J.P.; Sánchez-Feutrie, M.; et al. Mfn2 Deficiency Links Age-related Sarcopenia and Impaired Autophagy to Activation of an Adaptive Mitophagy Pathway. EMBO J. 2016, 35, 1677–1693. [Google Scholar] [CrossRef]
- Gambarotto, L.; Metti, S.; Chrisam, M.; Cerqua, C.; Sabatelli, P.; Armani, A.; Zanon, C.; Spizzotin, M.; Castagnaro, S.; Strappazzon, F.; et al. Ambra1 Deficiency Impairs Mitophagy in Skeletal Muscle. J. Cachexia Sarcopenia Muscle 2022, 13, 2211–2224. [Google Scholar] [CrossRef]
- Yue, W.; Chen, Z.; Liu, H.; Yan, C.; Chen, M.; Feng, D.; Yan, C.; Wu, H.; Du, L.; Wang, Y.; et al. A Small Natural Molecule Promotes Mitochondrial Fusion through Inhibition of the Deubiquitinase USP30. Cell Res. 2014, 24, 482–496. [Google Scholar] [CrossRef]
- Siwach, A.; Patel, H.; Khairnar, A.; Parekh, P. Molecular Symphony of Mitophagy: Ubiquitin-Specific Protease-30 as a Maestro for Precision Management of Neurodegenerative Diseases. CNS Neurosci. Ther. 2025, 31, e70192. [Google Scholar] [CrossRef]
- Veeresh, P.; Kaur, H.; Sarmah, D.; Mounica, L.; Verma, G.; Kotian, V.; Kesharwani, R.; Kalia, K.; Borah, A.; Wang, X.; et al. Endoplasmic Reticulum–Mitochondria Crosstalk: From Junction to Function across Neurological Disorders. Ann. N. Y. Acad. Sci. 2019, 1457, 41–60. [Google Scholar] [CrossRef]
- Joaquim, M.; Altin, S.; Bulimaga, M.-B.; Simões, T.; Nolte, H.; Bader, V.; Franchino, C.A.; Plouzennec, S.; Szczepanowska, K.; Marchesan, E.; et al. Mitofusin 2 Displays Fusion-Independent Roles in Proteostasis Surveillance. Nat. Commun. 2025, 16, 1501. [Google Scholar] [CrossRef] [PubMed]
- Jadiya, P.; Tomar, D. Mitochondrial Protein Quality Control Mechanisms. Genes 2020, 11, 563. [Google Scholar] [CrossRef]
- Tang, F.; Wang, B.; Li, N.; Wu, Y.; Jia, J.; Suo, T.; Chen, Q.; Liu, Y.-J.; Tang, J. RNF185, a Novel Mitochondrial Ubiquitin E3 Ligase, Regulates Autophagy through Interaction with BNIP1. PLoS ONE 2011, 6, e24367. [Google Scholar] [CrossRef] [PubMed]
- Falcetta, D.; Quirim, S.; Cocchiararo, I.; Chabry, F.; Théodore, M.; Stiefvater, A.; Lin, S.; Tintignac, L.; Ivanek, R.; Kinter, J.; et al. CaMKIIβ Deregulation Contributes to Neuromuscular Junction Destabilization in Myotonic Dystrophy Type I. Skelet. Muscle 2024, 14, 11. [Google Scholar] [CrossRef]
- Zhang, T.; Maier, L.S.; Dalton, N.D.; Miyamoto, S.; Ross, J.; Bers, D.M.; Brown, J.H. The δC Isoform of CaMKII Is Activated in Cardiac Hypertrophy and Induces Dilated Cardiomyopathy and Heart Failure. Circ. Res. 2003, 92, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hockerman, G.H.; Green, H.W.; Babbs, C.F.; Mohammad, S.I.; Gerrard, D.; Latour, M.A.; London, B.; Harmon, K.M.; Pond, A.L.; et al. Mergla K+ Channel Induces Skeletal Muscle Atrophy by Activating the Ubiquitin Proteasome Pathway. FASEB J. 2006, 20, 1531–1533. [Google Scholar] [CrossRef]
- Szabadkai, G.; Duchen, M.R. Mitochondria: The Hub of Cellular Ca2+ Signaling. Physiology 2008, 23, 84–94. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, Y.; Jin, G.; Huang, T.; Zou, M.; Duan, S. The Biological Role of Arachidonic Acid 12-Lipoxygenase (ALOX12) in Various Human Diseases. Biomed. Pharmacother. 2020, 129, 110354. [Google Scholar] [CrossRef]
- Handy, D.E.; Loscalzo, J. The Role of Glutathione Peroxidase-1 in Health and Disease. Free Radic. Biol. Med. 2022, 188, 146–161. [Google Scholar] [CrossRef]
- Mierke, C.T. The Role of Vinculin in the Regulation of the Mechanical Properties of Cells. Cell Biochem. Biophys. 2009, 53, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; He, H.; Xing, Y.; Liu, Q.; Gu, N.; Kenkichi, S.; Jiang, H.; Wu, Q. Expression of Non-Coding RNA AB063319 Derived from Rian Gene during Mouse Development. J. Mol. Hist. 2011, 42, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Hu, M.; Xiang, Y.; Wang, D.; Xu, Y.; Hou, Y.; Zhou, H.; Luan, Y.; Wang, Z.; Zhang, W.; et al. LncRNAs Are Regulated by Chromatin States and Affect the Skeletal Muscle Cell Differentiation. Cell Prolif. 2020, 53, e12879. [Google Scholar] [CrossRef]
- Buschdorf, J.P.; Li Chew, L.; Zhang, B.; Cao, Q.; Liang, F.-Y.; Liou, Y.-C.; Zhou, Y.T.; Low, B.C. Brain-Specific BNIP-2-Homology Protein Caytaxin Relocalises Glutaminase to Neurite Terminals and Reduces Glutamate Levels. J. Cell Sci. 2006, 119, 3337–3350. [Google Scholar] [CrossRef]
- Sun, J.; Pan, C.Q.; Chew, T.W.; Liang, F.; Burmeister, M.; Low, B.C. BNIP-H Recruits the Cholinergic Machinery to Neurite Terminals to Promote Acetylcholine Signaling and Neuritogenesis. Dev. Cell 2015, 34, 555–568. [Google Scholar] [CrossRef]
- Aoyama, T.; Hata, S.; Nakao, T.; Tanigawa, Y.; Oka, C.; Kawaichi, M. Cayman Ataxia Protein Caytaxin Is Transported by Kinesin along Neurites through Binding to Kinesin Light Chains. J. Cell Sci. 2009, 122, 4177–4185. [Google Scholar] [CrossRef]
- Pant, M.; Bal, N.C.; Periasamy, M. Sarcolipin: A Key Thermogenic and Metabolic Regulator in Skeletal Muscle. Trends Endocrinol. Metab. 2016, 27, 881–892. [Google Scholar] [CrossRef]
- Osborne, R.J.; Lin, X.; Welle, S.; Sobczak, K.; O’Rourke, J.R.; Swanson, M.S.; Thornton, C.A. Transcriptional and Post-Transcriptional Impact of Toxic RNA in Myotonic Dystrophy. Hum. Mol. Genet. 2009, 18, 1471–1481. [Google Scholar] [CrossRef]
- Liu, Y.; Sugiura, Y.; Lin, W. The Role of Synaptobrevin1/VAMP1 in Ca2+-triggered Neurotransmitter Release at the Mouse Neuromuscular Junction. J. Physiol. 2011, 589, 1603–1618. [Google Scholar] [CrossRef]
- Andrews, S.; Krueger, F.; Segonds-Pichon, A.; Biggins, L.; Krueger, C.; Wingett, S. FastQC. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 13 November 2024).
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-Based Genome Alignment and Genotyping with HISAT2 and HISAT-Genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- John, C.R.; Watson, D.; Russ, D.; Goldmann, K.; Ehrenstein, M.; Pitzalis, C.; Lewis, M.; Barnes, M. M3C: Monte Carlo Reference-Based Consensus Clustering. Sci. Rep. 2020, 10, 1816. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Use R!; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Csárdi, G.; Nepusz, T.; Traag, V.; Horvát, S.; Zanini, F.; Noom, D.; Müller, K. Igraph: Network Analysis and Visualization, R Package Version 2.1.4. Available online: https://cran.r-project.org/package=igraph (accessed on 14 May 2025).
- Jensen, L.J.; Kuhn, M.; Stark, M.; Chaffron, S.; Creevey, C.; Muller, J.; Doerks, T.; Julien, P.; Roth, A.; Simonovic, M.; et al. STRING 8—A Global View on Proteins and Their Functional Interactions in 630 Organisms. Nucleic Acids Res. 2009, 37, D412–D416. [Google Scholar] [CrossRef]
- Piasecka, A.; Szcześniak, M.W.; Sekrecki, M.; Kajdasz, A.; Sznajder, Ł.J.; Baud, A.; Sobczak, K. MBNL Splicing Factors Regulate the Microtranscriptome of Skeletal Muscles. Nucleic Acids Res. 2024, 52, 12055–12073. [Google Scholar] [CrossRef]
- Angelbello, A.J.; Rzuczek, S.G.; Mckee, K.K.; Chen, J.L.; Olafson, H.; Cameron, M.D.; Moss, W.N.; Wang, E.T.; Disney, M.D. Precise Small-Molecule Cleavage of an r (CUG) Repeat Expansion in a Myotonic Dystrophy Mouse Model. Proc. Natl. Acad. Sci. USA 2019, 116, 7799–7804. [Google Scholar] [CrossRef]
- Reddy, K.; Jenquin, J.R.; McConnell, O.L.; Cleary, J.D.; Richardson, J.I.; Pinto, B.S.; Haerle, M.C.; Delgado, E.; Planco, L.; Nakamori, M.; et al. A CTG Repeat-Selective Chemical Screen Identifies Microtubule Inhibitors as Selective Modulators of Toxic CUG RNA Levels. Proc. Natl. Acad. Sci. USA 2019, 116, 20991–21000. [Google Scholar] [CrossRef]
- Jenquin, J.R.; Yang, H.; Huigens III, R.W.; Nakamori, M.; Berglund, J.A. Combination Treatment of Erythromycin and Furamidine Provides Additive and Synergistic Rescue of Mis-Splicing in Myotonic Dystrophy Type 1 Models. ACS Pharmacol. Transl. Sci. 2019, 2, 247–263. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazic, D.M.; Jovanovic, V.M.; Karanovic, J.; Savic-Pavicevic, D.; Jovanovic, B. HSALR Mice Exhibit Co-Expression of Proteostasis Genes Prior to Development of Muscle Weakness. Int. J. Mol. Sci. 2025, 26, 10793. https://doi.org/10.3390/ijms262110793
Lazic DM, Jovanovic VM, Karanovic J, Savic-Pavicevic D, Jovanovic B. HSALR Mice Exhibit Co-Expression of Proteostasis Genes Prior to Development of Muscle Weakness. International Journal of Molecular Sciences. 2025; 26(21):10793. https://doi.org/10.3390/ijms262110793
Chicago/Turabian StyleLazic, Dusan M., Vladimir M. Jovanovic, Jelena Karanovic, Dusanka Savic-Pavicevic, and Bogdan Jovanovic. 2025. "HSALR Mice Exhibit Co-Expression of Proteostasis Genes Prior to Development of Muscle Weakness" International Journal of Molecular Sciences 26, no. 21: 10793. https://doi.org/10.3390/ijms262110793
APA StyleLazic, D. M., Jovanovic, V. M., Karanovic, J., Savic-Pavicevic, D., & Jovanovic, B. (2025). HSALR Mice Exhibit Co-Expression of Proteostasis Genes Prior to Development of Muscle Weakness. International Journal of Molecular Sciences, 26(21), 10793. https://doi.org/10.3390/ijms262110793

