Sperm rDNA Copy Number and Methylation Are Associated with Male-Factor Infertility
Abstract
1. Introduction
2. Results
2.1. Association of Presumably Active rDNA CN and Semen Parameters
2.2. rDNA CN and ART Outcome
3. Discussion
3.1. Presumably Active rDNA CN as a Modulatory Factor in Male Infertility
3.2. Possible Role for Presumably Active Sperm rDNA Copies in Early Development
3.3. Conclusions and Limitations
4. Materials and Methods
4.1. Study Samples
4.2. Droplet Digital PCR
4.3. Deep Bisulfite Sequencing
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ART | assisted reproductive technologies |
| ASP | abnormal semen parameters |
| CN | copy number |
| ddPCR | droplet digital polymerase chain reaction |
| EGA | embryonic genome activation |
| IVF/ICSI | in vitro fertilization/intracytoplasmatic sperm injection |
| r | ribosomal |
| NSP | normal semen parameters |
| OAT | oligoasthenoteratozoospermia |
References
- Boivin, J.; Bunting, L.; Collins, J.A.; Nygren, K.G. International estimates of infertility prevalence and treatment-seeking: Potential need and demand for infertility medical care. Hum. Reprod. 2007, 22, 1506–1512. [Google Scholar] [CrossRef]
- Mascarenhas, M.N.; Flaxman, S.R.; Boerma, T.; Vanderpoel, S.; Stevens, G.A. National, regional, and global trends in infertility prevalence since 1990: A systematic analysis of 277 health surveys. PLoS Med. 2012, 9, e1001356. [Google Scholar] [CrossRef]
- Stallmeyer, B.; Dicke, A.K.; Tüttelmann, F. How exome sequencing improves the diagnostics and management of men with non-syndromic infertility. Andrology 2025, 13, 1011–1024. [Google Scholar] [CrossRef]
- Hammoud, S.S.; Nix, D.A.; Zhang, H.; Purwar, J.; Carrell, D.T.; Cairns, B.R. Distinctive chromatin in human sperm packages genes for embryo development. Nature 2009, 460, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, M.; Bernhardt, L.; Penfold, C.A.; Boroviak, T.E.; Drummer, C.; Behr, R.; Müller, T.; Haaf, T. Age-related and species-specific methylation changes in the protein-coding marmoset sperm epigenome. Aging Cell 2024, 23, e14200. [Google Scholar] [CrossRef] [PubMed]
- El Hajj, N.; Zechner, U.; Schneider, E.; Tresch, A.; Gromoll, J.; Hahn, T.; Schorsch, M.; Haaf, T. Methylation status of imprinted genes and repetitive elements in sperm DNA from infertile males. Sex. Dev. 2011, 5, 60–69. [Google Scholar] [CrossRef]
- Poplinski, A.; Tüttelmann, F.; Kanber, D.; Horsthemke, B.; Gromoll, J. Idiopathic male infertility is strongly associated with aberrant methylation of MEST and IGF2/H19 ICR1. Int. J. Androl. 2010, 33, 642–649. [Google Scholar] [CrossRef]
- Sato, A.; Hiura, H.; Okae, H.; Miyauchi, N.; Abe, Y.; Utsunomiya, T.; Yaegashi, N.; Arima, T. Assessing loss of imprint methylation in sperm from subfertile men using novel methylation polymerase chain reaction Luminex analysis. Fertil. Steril. 2011, 95, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Laurentino, S.; Cremers, J.F.; Horsthemke, B.; Tüttelmann, F.; Czeloth, K.; Zitzmann, M.; Pohl, E.; Rahmann, S.; Schröder, C.; Berres, S.; et al. A germ cell-specific ageing pattern in otherwise healthy men. Aging Cell 2020, 19, e13242. [Google Scholar] [CrossRef]
- Oluwayiose, O.A.; Wu, H.; Saddiki, H.; Whitcomb, B.W.; Balzer, L.B.; Brandon, N.; Suvorov, A.; Tayyab, R.; Sites, C.K.; Hill, L.; et al. Sperm DNA methylation mediates the association of male age on reproductive outcomes among couples undergoing infertility treatment. Sci. Rep. 2021, 11, 3216. [Google Scholar] [CrossRef]
- Bernhardt, L.; Dittrich, M.; Prell, A.; Potabattula, R.; Drummer, C.; Behr, R.; Hahn, T.; Schorsch, M.; Müller, T.; Haaf, T. Age-related methylation changes in the human sperm epigenome. Aging 2023, 15, 1257–1278. [Google Scholar] [CrossRef]
- D’Aquila, P.; Montesanto, A.; Mandalà, M.; Garasto, S.; Mari, V.; Corsonello, A.; Bellizzi, D.; Passarino, G. Methylation of the ribosomal RNA gene promoter is associated with aging and age-related decline. Aging Cell 2017, 16, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Geisen, A.B.C.; Santana Acevedo, N.; Oshima, J.; Dittrich, M.; Potabattula, R.; Haaf, T. rDNA copy number variation and methylation during normal and premature aging. Aging Cell 2025, 24, e14497. [Google Scholar] [CrossRef] [PubMed]
- Potabattula, R.; Zacchini, F.; Ptak, G.E.; Dittrich, M.; Müller, T.; El Hajj, N.; Hahn, T.; Drummer, C.; Behr, R.; Lucas-Hahn, A.; et al. Increasing methylation of sperm rDNA and other repetitive elements in the aging male mammalian germline. Aging Cell 2020, 19, e13181. [Google Scholar] [CrossRef] [PubMed]
- Potabattula, R.; Trapphoff, T.; Dittrich, M.; Fic, K.; Ptak, G.E.; Dieterle, S.; Haaf, T. Ribosomal DNA methylation in human and mouse oocytes increases with age. Aging 2022, 14, 1214–1232. [Google Scholar] [CrossRef] [PubMed]
- Potabattula, R.; Dittrich, M.; Hahn, T.; Schorsch, M.; Ptak, G.E.; Haaf, T. rDNA copy number variation and methylation in human and mouse sperm. Int. J. Mol. Sci. 2025, 26, 4197. [Google Scholar] [CrossRef]
- Porokhovnik, L.N.; Lyapunova, N.A. Dosage effects of human ribosomal genes (rDNA) in health and disease. Chromosome Res. 2019, 27, 5–17. [Google Scholar] [CrossRef]
- Chestkov, I.V.; Jestkova, E.M.; Ershova, E.S.; Golimbet, V.E.; Lezheiko, T.V.; Kolesina, N.Y.; Porokhovnik, L.N.; Lyapunova, N.A.; Izhevskaya, V.L.; Kutsev, S.I.; et al. Abundance of ribosomal RNA gene copies in the genomes of schizophrenia patients. Schizophr. Res. 2018, 197, 305–314. [Google Scholar] [CrossRef]
- Law, P.P.; Mikheeva, L.A.; Rodriguez-Algarra, F.; Asenius, F.; Gregori, M.; Seaborne, R.A.E.; Yildizoglu, S.; Miller, J.R.C.; Tummala, H.; Mesnage, R.; et al. Ribosomal DNA copy number is associated with body mass in humans and other mammals. Nat. Comm. 2024, 15, 500623. [Google Scholar] [CrossRef]
- Rodriguez-Algarra, F.; Evans, D.M.; Rakyan, V.K. Ribosomal DNA copy number variation associates with hematological profiles and renal function in the UK Biobank. Cell Genom. 2024, 4, 100562. [Google Scholar] [CrossRef]
- Santoro, R.; Grummt, I. Molecular mechanisms mediating methylation-dependent silencing of ribosomal gene transcription. Mol. Cell 2001, 8, 719–725. [Google Scholar] [CrossRef]
- Wang, M.; Lemos, B. Ribosomal DNA harbors an evolutionarily conserved clock of biological aging. Genome Res. 2019, 29, 325–333. [Google Scholar] [CrossRef]
- Hassan, M.A.; Killick, S.R. Effect of male age on fertility: Evidence for the decline in male fertility with increasing age. Fertil. Steril. 2003, 79 (Suppl. 3), 1520–1527. [Google Scholar] [CrossRef]
- Horta, F.; Vollenhoven, B.; Healey, M.; Busija, L.; Catt, S.; Temple-Smith, P. Male ageing is negatively associated with the chance of live birth in IVF/ICSI cycles for idiopathic infertility. Hum. Reprod. 2019, 34, 2523–2532. [Google Scholar] [CrossRef] [PubMed]
- Ritossa, F.M.; Atwood, K.C.; Lindsley, D.L.; Spiegelman, S. On the chromosomal distribution of DNA complementary to ribosomal and soluble RNA. Natl. Cancer Inst. Monogr. 1966, 23, 449–472. [Google Scholar] [PubMed]
- Ritossa, F.M. Unstable redundancy of genes for ribosomal RNA. Proc. Natl. Acad. Sci. USA 1968, 60, 509–616. [Google Scholar] [CrossRef]
- Delany, M.E.; Muscarella, D.E.; Bloom, S.E. Effects of rRNA gene copy number and nucleolar variation on early development: Inhibition of gastrulation in rDNA-deficient chick embryos. J. Hered. 1994, 85, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Su, M.H.; Delany, M.E. Ribosomal RNA gene copy number and nucleolar-size polymorphisms within and among chicken lines selected for enhanced growth. Poult. Sci. 1998, 77, 1748–1754. [Google Scholar] [CrossRef]
- Hajkova, P.; Erhardt, S.; Lane, N.; Haaf, T.; El-Maarri, O.; Reik, W.; Walter, J.; Surani, M.A. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 2002, 117, 15–23. [Google Scholar] [CrossRef]
- Marques, C.J.; João Pinho, M.; Carvalho, F.; Bièche, I.; Barros, A.; Sousa, M. DNA methylation imprinting marks and DNA methyltransferase expression in human spermatogenic cell stages. Epigenetics 2011, 6, 1354–1361. [Google Scholar] [CrossRef]
- Jenkins, T.G.; Aston, K.I.; Pflueger, C.; Cairns, B.R.; Carrell, D.T. Age-associated sperm DNA methylation alterations: Possible implications in offspring disease susceptibility. PLoS Genet. 2014, 10, e1004458. [Google Scholar] [CrossRef]
- Smith, Z.D.; Chan, M.M.; Mikkelsen, T.S.; Gu, H.; Gnirke, A.; Regev, A.; Meissner, A. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 2012, 484, 339–344. [Google Scholar] [CrossRef]
- Teperek, M.; Simeone, A.; Gaggioli, V.; Miyamoto, K.; Allen, G.E.; Erkek, S.; Kwon, T.; Marcotte, E.M.; Zegerman, P.; Bradshaw, C.R.; et al. Sperm is epigenetically programmed to regulate gene transcription in embryos. Genome Res. 2016, 26, 1034–1046. [Google Scholar] [CrossRef]
- Perry, A.C.F.; Asami, M.; Lam, B.Y.H.; Yeo, G.S.H. The initiation of mammalian embryonic transcription: To begin at the beginning. Trends Cell Biol. 2023, 33, 365–373. [Google Scholar] [CrossRef]
- Grillo, J.M.; Vasserot, M.; Gamerre, M.; Vitry, G.; Stahl, A. Nucleolar changes in human embryo during the pre-implantation stage. Activation of ribosomal genes during the nucleologenesis. Biol. Cell 1991, 72, 201–209. [Google Scholar] [CrossRef]
- Braude, P.; Bolton, V.; Moore, S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 1988, 332, 459–461. [Google Scholar] [CrossRef] [PubMed]
- Chebrout, M.; Koné, M.C.; Jan, H.U.; Cournut, M.; Letheule, M.; Fleurot, R.; Aguirre-Lavin, T.; Peynot, N.; Jouneau, A.; Beaujean, N.; et al. Transcription of rRNA in early mouse embryos promotes chromatin reorganization and expression of major satellite repeats. J. Cell Sci. 2022, 135, jcs258798. [Google Scholar] [CrossRef]
- Weber, M.; Hellmann, I.; Stadler, M.B.; Ramos, L.; Pääbo, S.; Rebhan, M.; Schübeler, D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 2007, 39, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.; Srivastava, R.; Ahn, S.H. The epigenetic pathways to ribosomal DNA silencing. Microbiol. Mol. Biol. Rev. 2016, 80, 545–563. [Google Scholar] [CrossRef]
- French, S.L.; Osheim, Y.N.; Cioci, F.; Nomura, M.; Beyer, A.L. In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol. Cell. Biol. 2003, 23, 1558–1568. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; WHO Press: Geneva, Switzerland, 2010. Available online: https://apps.who.int/iris/handle/10665/44261 (accessed on 22 September 2025).
- Xu, B.; Li, H.; Perry, J.M.; Singh, V.P.; Unruh, J.; Yu, Z.; Zakari, M.; McDowell, W.; Li, L.; Gerton, J.L. Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genet. 2017, 13, e1006771. [Google Scholar] [CrossRef] [PubMed]
- Michler, A.; Kießling, S.; Durackova, J.; Potabattula, R.; Koparir, A.; Haaf, T. rDNA copy number variation and methylation from birth to sexual maturity. Aging 2025, 17, 1511–1520. [Google Scholar] [CrossRef] [PubMed]
- Babaian, A. Intra- and inter-individual variation in human ribosomal RNAs. bioRxiv 2017. [Google Scholar] [CrossRef]
- Leitao, E.; Beygo, J.; Zeschnigk, M.; Klein-Hitpass, L.; Bargull, M.; Rahmann, S.; Horsthemke, B. Locus-specific DNA methylation analysis by targeted deep bisulfite sequencing. Meth. Mol. Biol. 2018, 1767, 351–366. [Google Scholar]





| Mean ± SD | Median | Range | |
|---|---|---|---|
| Absolute Copy Number | 236 ± 61 | 223 | 108–416 |
| Presumably Active Copy Number | 115 ± 31 | 116 | 47–210 |
| Methylation (%) | 12.1 ± 3.2 | 11.7 | 7.3–23.2 |
| Age | 38.1 ± 5.6 | 37.8 | 26.2–56.9 |
| BMI (kg/m2) | 26.7 ± 5.0 | 25.7 | 17.5–51.7 |
| Volume (mL) | 3.3 ± 1.3 | 3.0 | 1.4–8.0 |
| Concentration (×106/mL) | 85 ± 50 | 78.0 | 16–2 50 |
| Morphology (% normal) | 8.5 ± 3.5 | 8.0 | 3–18 |
| Motility (% motile) | 58 ± 11 | 59 | 34–85 |
| Mean ± SD | Median | Range | |
|---|---|---|---|
| Absolute Copy Number | 240 ± 56 | 230 | 118–400 |
| Presumably Active Copy Number | 104 ± 31 | 101 | 43–226 |
| Methylation (%) | 13.9 ± 3.6 | 13.7 | 5.4–29 |
| Age | 40 ± 8.6 | 39.1 | 25.8–54.8 |
| BMI (kg/m2) | 26.2 ± 3.9 | 25.1 | 20.3–38.5 |
| Volume (mL) | 3.3 ± 1.5 | 3.3 | 0.2–9.0 |
| Concentration (×106/mL) | 29 ± 32 | 18.0 | 0.5–180 |
| Morphology (% normal) | 5.5 ± 3.7 | 5.0 | 0–15 |
| Motility (% motile) | 36 ± 17.5 | 33.0 | 1–88 |
| Mean ± SD | Median | Range | |
|---|---|---|---|
| Absolute Copy Number | 249 ± 62 | 243 | 108–416 |
| Presumably Active Copy Number | 115 ± 31 | 110 | 61–226 |
| Methylation (%) | 12.7 ± 3.2 | 12.0 | 7.3–24.0 |
| Age | 39.1 ± 6.5 | 38.2 | 25.8–57.0 |
| BMI (kg/m2) | 26.6 ± 4.1 | 25.2 | 20.3–44.8 |
| Volume (mL) | 3.3 ± 1.5 | 3.0 | 0.8–9.0 |
| Concentration (×106/mL) | 64 ± 47 | 56.0 | 1.0–200 |
| Morphology (% normal) | 8.1 ± 4.0 | 8.0 | 1.0–18 |
| Motility (% motile) | 49.0 ± 15.6 | 50.0 | 1.0–85 |
| Mean ± SD | Median | Range | |
|---|---|---|---|
| Absolute Copy Number | 225 ± 52 | 220 | 118–381 |
| Presumably Active Copy Number | 103 ± 30 | 102 | 43–203 |
| Methylation (%) | 13.3± 3.8 | 12.5 | 5.4–29.0 |
| Age | 39.3± 6.4 | 38.0 | 26.2–54.8 |
| BMI (kg/m2) | 26.4 ± 4.9 | 25.5 | 17.5–51.7 |
| Volume (mL) | 3.3 ± 1.2 | 3.2 | 0.2–6.5 |
| Concentration (×106/mL) | 48 ± 52 | 36.0 | 0.5–250 |
| Morphology (% normal) | 5.8 ± 3.4 | 6.0 | 0–15 |
| Motility (% motile) | 43.5 ± 21.0 | 45.0 | 5–88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michler, A.; Kießling, S.; Durackova, J.; Hahn, T.; Schorsch, M.; Haaf, T. Sperm rDNA Copy Number and Methylation Are Associated with Male-Factor Infertility. Int. J. Mol. Sci. 2025, 26, 10657. https://doi.org/10.3390/ijms262110657
Michler A, Kießling S, Durackova J, Hahn T, Schorsch M, Haaf T. Sperm rDNA Copy Number and Methylation Are Associated with Male-Factor Infertility. International Journal of Molecular Sciences. 2025; 26(21):10657. https://doi.org/10.3390/ijms262110657
Chicago/Turabian StyleMichler, Alina, Sarah Kießling, Jana Durackova, Thomas Hahn, Martin Schorsch, and Thomas Haaf. 2025. "Sperm rDNA Copy Number and Methylation Are Associated with Male-Factor Infertility" International Journal of Molecular Sciences 26, no. 21: 10657. https://doi.org/10.3390/ijms262110657
APA StyleMichler, A., Kießling, S., Durackova, J., Hahn, T., Schorsch, M., & Haaf, T. (2025). Sperm rDNA Copy Number and Methylation Are Associated with Male-Factor Infertility. International Journal of Molecular Sciences, 26(21), 10657. https://doi.org/10.3390/ijms262110657

